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Abstract. With the rapid development of smart city, the indoor positioning services became more and more 
important. During the existing solutions, inertial measurement unit (IMU) with pedestrian dead reckoning 
(PDR) was a promising scheme since they did not require external equipment in the environment. However, 
the orientation drift of low-cost IMU limited their application in practical. To address this problem, a zero-ve-
locity update (ZUPT) framework included Kalman filter and particle filter is designed based on the foot-based 
low-cost IMU and digital floor plan to provide the service of personal navigation. In the designed Smoothing 
for ZUPT-aided INSs framework, the Kalman filter is used to estimate the position and attitude by zero veloc-
ity correction technique. Then, the particle filter is used to improve the localization and heading accuracy by 
map matching. The position estimation presented in this study achieves an average position error of 1.16 m. 
The experimental results show that the designed framework can solve the personal navigation problem in the 
case of building plan information assistance and help improve the accuracy and reliability of continuous posi-
tion determination of personal navigation systems effectively. 

Keywords: pedestrian dead reckoning, zero-velocity update, particle filter, map matching

1   Introduction

In recent years, there has been an increasing interest in the Location Based Services (LBS) [1] with the 
development of various industries utilizing the information of individual location. In outdoor positioning systems, 
the Global Position System (GPS) is frequently prescribed for the Location Based Services. However, the primary 
disadvantage of the GPS is that the position accuracy largely becomes very limited in indoor environments 
because the walls of the building block the satellite signals.

The high-precision indoor navigation systems can help people save time and increase productivity in cities, 
where people live and work primarily in indoor environments. Nowadays, the demand of indoor location-relat-
ed services for Location Based Services (LBS) has growing dramatically with the development of smart city. In 
technical terms, indoor navigation systems can be divided into two types: infrastructure-based system and infra-
structure-free system [2]. Wireless Sensor Networks, such as Wi-Fi [3], ultra-wideband (UWB) [4], and Bluetooth 
[5], belong in this type. Despite its popularity, the infrastructure-based system is a laborious task that requires a 
considerable amount of time to install and commission the equipment. The infrastructure-based system requires a 
large number of devices to be pre-installed in a small space in order to guarantee the accuracy of navigation. For 
example, five Bluetooth sensors are required for a 6*8 square meter area when using Bluetooth location [5], and 
Six UWB beacons were installed in each of the three UWB systems to cover a 24 m*14 m indoor area [4]. The 
second type does not require any additional hardware to be installed and can be more cost effective, such as iner-
tial navigation systems [6-7].

Compared to other navigation systems, inertial navigation systems (INSs) don’t require the installation of ad-
ditional external equipment [8-9]. The inertial navigation systems are not limited by external environmental con-
ditions, making it a fully autonomous navigation system. In addition, microelectromechanical systems (MEMS)-
based inertial measurement unit (IMU) sensors offer the advantages of low cost, miniaturization, and low power 
consumption. Such approaches, however, have failed to address the navigation errors of IMU grow significantly 
with time. To calibrate the sensor drift errors, the IMU was mounted on a foot to utilize the framework of the zero 
velocity update (ZUPT) [10-13]. For pedestrian dead reckoning with foot-mounted inertial sensors, this gives 
undesirable discontinuities in the estimated trajectory at the end of each step. DS Colomar et al. proposed method 
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is based on a 3-pass mixed open-closed-loop filter to eliminate the discontinuities [14]. However, the low appre-
ciable heading error of a standalone inertial navigation system will lead to the drift errors in the final navigation 
solution. Therefore, inertial navigation systems should be integrated with other sensors or aiding information to 
improve the navigation accuracy [15]. References [16-21] use Bluetooth, UWB, Wi-Fi sensor information to cor-
rect inertial navigation drift errors, respectively. Multi-sensor fusion positioning methods are all effective in pro-
viding users with efficient indoor positioning navigation. However, these methods have high infrastructure costs 
and require a large workforce to build a complete indoor positioning navigation system. Another way to improve 
the navigation accuracy is using maps that need no additional infrastructure or equipment [22-25].

The common solution of inertial navigation systems (INSs) and auxiliary information integration is using 
extended Kalman filter (EKF). However, Extended Kalman filter is not an effective method to provide accurate 
positioning for the nonlinear integrated navigation systems anymore. As a completely nonlinear state estimator, 
particle filter can improve the performance of INS/map-integration systems by utilizing information from indoor 
building structures. In view of the advantages and disadvantages of the two filters, this paper pro-poses an inertial 
navigation algorithm combining extended Kalman and particle filter which are combined using pedestrian motion 
features and indoor map information.

Our main contribution can be summarized as follows:
Firstly, Only IMU and indoor map information are available in the proposed algorithm, and the system does 

not involve pre-measurement or installation of structures, which can significantly reduce the time and economic 
cost of indoor navigation systems.

Secondly, the Smoothing for ZUPT-aided INSs and map matching method are innovatively combined. An aux-
iliary particle filter algorithm fused with map matching techniques is used to correct the heading drift error of the 
Smoothing for ZUPT-aided INSs.

Finally, experimental results in different scenarios are used to show the advantages of the proposed algorithm.
This paper has been divided into three parts. The first part deals with an overview of the system for pedestrian 

inertial navigation, and details the algorithms involved in the system. In the second part, the experimental results 
of the indoor navigation system proposed in this paper are analyze. The third part presents the conclusions and 
future work.

2   Methods

The specific objective of this study was to combination of the Smoothing for ZUPT-aided INSs (SINS) and map 
matching for indoor positioning and navigation system, whose structure is shown in Fig. 1. Firstly, Preliminary 
navigation and positioning using ZUPT-aided INSs, which includes zero velocity detection, zero velocity update 
and inertial navigation algorithm [26] in this system framework. Then, the paper used a smoothing algorithm 
for ZUPT-aided INSs that removes the discontinuity at the end of each step [11]. However, the errors in position 
and heading still increase with time. Finally, the system optimizes the estimated trajectories by map matching 
algorithm. Based on the above parts, we implement a complete indoor navigation system. We'll go through each 
phase in detail in the following sections.
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Fig. 1. System overview

2.1   Navigation Algorithm 

The input data of the inertial navigation systems are acceleration and angular velocity expressed in time series. 
Firstly, the rotation matrix of the navigation coordinate system is calculated from the gyroscope data.

1 1[   ] [   ]T T
k k k tφ θ ψ φ θ ψ ω− −= + ∆ (1)

where [ ] 3=   T Rω φ θ ψ ∈  is the Euler angle that describes the direction of IMU, i.e., roll, pitch and yaw. And 

t∆  indicates the sampling time.
Next, removing the Earth’s gravity, the following velocity is obtained.

1 1( [0 0 ] )N T
k k B kv v R a g t− −= + − ∆ (2)

where 3v R∈  denotes the velocity, and 3a R∈  denotes the x-y-z acceleration and the subscript k denotes the 
time.

Finally, the position is obtained by integrating the velocity.

1 1k k kr r v t− −= + ∆ (3)

where kr  denotes the position.
After two integration operations, the increasing position error due to sensor data noise and sensor bias varia-

tion. Therefore, the Smoothing for ZUPT-aided INSs algorithm is adopted to correct the inertial navigation error 
in this study. The zero velocity detection algorithm is the key step of the zero velocity update algorithm.
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2.2   Zero Velocity Detection

In each gait cycle, the pedestrian's velocity should theoretically be zero when the sole of the foot completely 
touches the ground, as shown in Fig. 2. The zero velocity detection algorithm discriminates whether the 
pedestrian is stationary or not [27]. According to Isaac Skog, the Stance Hypothesis Optimal Detector (SHOE) is 
far more cost eff ective [27].

Fig. 2. Pedestrian gait cycle

The goal of the zero velocity detection is to determine whether the IMU is moving or stationary, during a time 
epoch consisting of n N∈  observation between the time instants n  and 1n W+ − . The measured values of 

the acceleration vector and angular rate vector at this moment are denoted as a
nZ  and nZω , respectively.

  1n Wa a
n k k n

Z y
 


 (4)

where 3a
ky R∈  denote the at the time instant n N∈  measured acceleration vector.

  1n W

n k k n
Z y   


 (5)

where 3
ky Rω ∈  denote the at the time instant n N∈  measured angular rate vector.

The problem of detecting stationary or moving can be formulated as a binary hypothesis testing problem. The 
Stance Hypothesis Optimal Detector (SHOE) chooses the hypothesis that IMU is stationary if

( , )a
n nT Z Zω γ< (6)

where ( , )a
n nT Z Zω  denote the test statistics of the detector. And   denote the detection threshold.

The Stance Hypothesis Optimal Detector (SHOE)

2
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1 1 1( , )
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n n k kak n

a n

yT Z Z y g y
W y

ω ω

ω

γ
σ σ

+ +

=
= − + <∑ (7)

where 2
aσ  denote the variance of the measurement noise of the accelerometers, and 2

ωσ  denote the variance of 
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the measurement noise of the gyroscopes. where a
ny  denoted the sample mean.

The zero velocity detection algorithm determines the stationary phase and uses the zero velocity update algo-
rithm to correct the inertial navigation error during the stationary phase.

2.3   Zero Velocity Update

The zero velocity update algorithm can eff ectively suppress the integral accumulation error of the inertial nav-
igation system. The structure of the zero velocity update algorithm based on Kalman fi lter is shown in Fig. 3. 
Firstly, acceleration and gyroscope data are collected via IMU. Secondly, the Stance Hypothesis Optimal Detector 
algorithm is used to determine the zero velocity interval. Finally, the position, velocity and attitude errors of the 
system are continuously corrected separately during the zero velocity interval using the zero velocity update algo-
rithm.

Fig. 3. Structure diagram of zero velocity update algorithm based on Kalman fi lter

If the 9-element error state vector at time k  is

 v  
TT T T

k k k kX Lδ δ δ δθ =   (8)

where 3T
nL R∈ , 3vT

n R∈ , 3T
n Rθ ∈  denotes the position, velocity, and attitude errors, respectively.

Then, the linearized state transition model is

3 3 3 3 3
(1)

1 3 3 3

3 3 3 3

             0 0     0
0             R    0

0         0          0      R

S

n n
k S n p n

n
p

I T I

X I T s X w

I

δ δ+

  
  

 = × +    
  
    

(9)

where ST  is the sampling period, R n
p  is the rotation matrix transforming a vector from platform coordinates to 
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navigation coordinates.  ns ×   is the skew-symmetric matrix representation of the specific force vector. And, 

(1) 6
nw R∈  is the covariance matrices of process noise and the observation noise. Here 3  I and 30  denote a three 

by three identity and zero matrices, respectively.
The measurement model is

k k kZ H X wδ= + (10)

where kZ  is the error measurements, H  is the measurement matrix, and kw  is the measurement noise.
In an error-state Kalman filter, inertial navigation algorithm form the process model along with error covari-

ance matrix   propagation.

1
T

k k k k kP P Q−
−= Φ Φ + (11)

where kP−  is error covariance matrix. Moreover 9 9
k R ×Φ ∈  denote the state transition matrix. And, 9 9

kQ R ×∈  

denote stands for process covariance matrix that includes ωσ  and aσ , gyroscope and accelerometer noises, re-
spectively. The process covariance matrix is 

2
3 3

2
3 3

,      0
0        ,

a
k

I
Q

Iω

σ

σ

 
=  
  

(12)

The Kalman gain is computed as

1( )T T
k k kK P H HP H R− − −= + (13)

The Kalman gain is applied to update the error covariance.

9 9( )k k kP I K H P−
×= − (14)

The measurement matrix 3 3 3 3 3 3[0    I    0 ]H × × ×=  observes only velocity error, so error-state e  is formed as

n n ne K v= (15)

where v  denote the observed velocity, and 9 9
ne R ×∈  is lined up as position, velocity, and attitude errors.

2.4   Smoothing for ZUPT-aided INSs

Pedestrian dead reckoning systems built with ZUPT-aided INSs has exhibited outstanding results. Such approach-
es, however, have failed to address the “collapses” when the step ends. This condition is shown in Fig. 4, where 
the large corrections leading to significant discontinuities at the end of each step.
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Fig. 4. Steps from a straight-line trajectory as tracked by a ZUPT-aided INS

For foot-mounted inertial navigation systems, this gives undesirable discontinuities at the end of each step. 
According to D. Simón Colomar, 3-pass algorithm is far more cost eff ective [14]. The 3-pass algorithm is given 
in Alg. 1.

Algorithm 1. Pseudo code for the proposed 3-pass smoothing algorithm

Initialization:

Loop While:

%Forward Kalman filter

Loop:   start endn s s= to

start ends s<

0 0 0 0
ˆ ˆ[ ], 0, var( ),

0, 1, "  of  data"start end

X E X X X
c s s end

δ= = =
= = =

P

 %Time update 

1
ˆ ˆ( , , )n mech n n nX f X ω−= f

| 1 1| 1
ˆ ˆ

n n n n nX Xδ δ− − −= F

| 1 1| 1
T T

n n n n n n− − −= +P F P F GQG

%Measurement update

if ({ , })i iT γ<ω f
1

| 1 | 1( )T T
n n n n n

−
− −= +K P H HP H R

| | 1 | 1
ˆ ˆ ˆ ˆ( v v )n n n n n n n nX Xδ δ δ− −= − −K

| | 1( )n n n n n−= −P P I K H

   %Segementation rule 
0c >

sc c T= +

1( ) ( ) 0v vel
n s n sif   diag diag cγ γ− > ∧ ≤ ∧ =P P

sc T=

sc τ>

ends n←
break loop

%Smoothing
1  end startn s s= − to

1
| 1|

T
n n n n n

−
+=A P F P

| | 1| 1|
ˆ ˆ ˆ ˆ( )

end endn s n n n n s n nX X X Xδ δ δ δ+ += + −A

| | 1| 1|( )
end end

T
n s n n n n s n n n+ += + −P P A P P A

%Internal state compensation

|

|

ˆˆ ˆ
ˆ ˆ ˆ

end

end

n sn n

n n n s

δ

δ
    

← +     
      

pp p
v v v

3 |
ˆ ˆ( )( )

endn n s n← −∆R I R
ˆ 0nXδ ←

 end  startn s s= to

 end end 1, "end of data", 0starts s s c= + = =

if

Loop:

Loop:

if
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2.5   Program Code

Measurement of pedestrian foot movements by an IMU mounted on the pedestrian’s foot. Pedestrian position 
update information with optimal estimation can be obtained by using dead reckoning algorithm. The map match-
ing algorithm based on the particle filter [28-29] can determine the coordinate position and the trajectory of the 
pedestrian after the pedestrian walks a section of the path in the indoor. In this paper, we combine Map Matching 
algorithm and Smoothing for ZUPT-aided INSs algorithm (MM-SINS), thus improving the positioning accuracy.

This paper performs two-dimensional plane navigation, so the navigation position after Smoothing for ZUPT-
aided INSs calculation is

  k=1,2,3k
k

k

x
L N

y
 

=  
 

 (16)

where kx  is the x-axis coordinate point and ky  is the y-axis coordinate point.
In the particle position update algorithm, the position update information of the pedestrian optimal estimated 

trajectory is

-1

1 1         ( , )
         ( )

k k k

k k k k

k k

pos L L
x x y y

x y
− −

∆ = −
= − −
= ∆ −∆

(17)

where kpos∆  denoted position update information for the optimal estimated trajectory for pedestrians.
During map matching, the position update information of the navigation coordinate system is converted to the 

position update information of the map coordinate system by

cos( )    sin( )
sin( )  cos( )

map
nR

β β
β β

 
=  − 

(18)

where β  is the rotation angle from the navigation coordinate system to the map coordinate system.
Thus, the position of the pedestrian in the map coordinate system is updated by the vector expressed as:

(19)

where kp∆  is used as the input to the particle filter to update the state of the sampled particles. The flow and 
overall framework of map matching based on particle filter is shown in Fig. 5.
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Fig. 5. Map matching algorithm based on particle fi lter

The particle fi lter method is based on Monte Carlo simulation theory, which uses a statistical state for estimat-
ing the system state, and its corresponding probability density function is numerically approximated. To defi ne 
the problem during location estimation, the target state and measurement evolves according to the following dis-
crete-time stochastic model:

1( )k k k kx f x W−= + (20)

1( )k k k kz h x V−= + (21)

where ( )f ⋅  and ( )h ⋅  are the state equation and observation equation of the system, respectively. Where kx  is 

the system state vector at moment k , and kz  is the observation value. Moreover kW  and kV  denote the system 
noise and observation noise, respectively.

The state prediction equation is

1: 1 1 1 1: 1 1( | ) ( | ) ( | )k k k k k k kP x z P x x P x z dx− − − − −= ∫ (22)

where 1( | )k kP x x −  is the transition probability density function.
The state update equation is

1: 1
1:

1: 1

( | ) ( | )( | )
( | )

k k k k
k k

k k

P z x P x zP x z
P z z

−

−

= (23)

with the normalizing constant is

1: 1 1: 1( | ) ( | ) ( | )k k k k k k kP z z P z x P x z dx− −= ∫ (24)

where ( | )k kP z x  represents the likelihood function, 1: 1( | )k kP x z −  is the previous posterior distribution.
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Equations (22) and (23) are recursive methods for fi nding the posterior probability, but they are diffi  cult to im-
plement due to integration. Thus, the particle fi lter directly estimates the posterior probability density function of 
the state using the following equation:

1
( | ) ( )N i

k k t k ki
P x z x xω δ

=
≈ −∑ (25)

Regardless of system noise and observation noise, the state vector of each particle is the coordinate position in 
its position diagram. The equation for updating the state of each particle is

1
i i
k k kx x p−= + ∆ (26)

Map matching algorithm based on particle fi lter implements a fairly straightforward idea. After a given map 
constraint, new particles should not occupy impossible positions. This paper adopts the line segment intersection 
algorithm. The line segment intersection is passing through the wall, as shown in Fig. 6.

Fig. 6. Schematic diagram of line segment intersection

where the lines A  and B  and their intersection C  is related as follows:

1 2 1 1 2 1( ) ( )ABC B B B A A Aγ λ= + − = + − (27)

Here, γ  and λ  obtained from equations (27) and (28), respectively.

1 2 1 1 1 2 1 1

1 2 2 1 1 2 2 1

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

y x x y

y x x y

A A A B A A A B
A A B B A A B B

γ
− − − − −

=
− − − − −

(28)

2 1 1 1 2 1 1 1

1 2 2 1 1 2 2 1

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

x y y x

y x x y

B B A B B B A B
A A B B A A B B

λ
− − − − −

=
− − − − −

(29)

If γ  and λ  are greater than 0 and 1 at the same time, the two line segments intersect. The line segment in-
tersection algorithm is used to detect the through wall points, and the particle through wall detection results are 
shown in Fig. 7.
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Fig. 7. Motion trajectory through wall detection

Map matching algorithm based on particle filter implements a fairly straightforward idea. After a given map 
constraint, new particles should not occupy impossible positions. After the particle update, the remaining particle 
weights are then normalized. the particle weight will also be changed according to the following rule:

0,           if new particle crpssed a wall   
1/ ,                    otherwise

i
k N

ω


= 


(30)

The position update information of the pedestrian is obtained according to Equation (19), and the sampled par-
ticle state is updated in each iteration step. It also determines whether the particle passes through the wall or not, 
and then reassigns the weights according to the Equation (30) in the importance sampling.

3   Lab Experiment

The performance of the combined Smoothing for ZUPT-aided INSs and Map matching based pedestrian inertial 
indoor localization method was evaluated using NGIMU from x-io Technologies Limited as an inertial navigation 
sensor device in an actual indoor test. As shown in Fig. 8, the NGIMU is mounted on the foot.

Fig. 8. The NGIMU mounted on the foot

In the first test, we evaluated our system in an indoor building. As shown in Fig. 9, pedestrians were asked to 
start from the blue point, walk along the red arrow, and finally walk back to the starting point along the red arrow. 
In this experiment, the width of the corridor of the indoor building was about 2 m and the distance traveled was 
about 215.94 m.
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Fig. 9. Designed test 1 trajectory

The collected three-axis acceleration data and three-axis gyroscope data are input into the Stance Hypothesis 
Optimal Detector (SHOE). The zero velocity interval is detected by the zero velocity detector algorithm. The zero 
velocity detector results of test 1 are shown in Fig. 10. The x-axis is the experimental row of people walking time, 
and the y-axis is the switch of the zero velocity interval.

Fig. 10. Designed test 1 trajectory

The acceleration and gyroscope data are collected via IMU. The Stance Hypothesis Optimal Detector algo-
rithm is used to determine the zero-velocity interval. Then, the position, velocity and attitude errors of the system 
are continuously corrected separately using the smoothing for ZUPT-aided INSs algorithm. Fig. 11 illustrates the 
result of the smoothing for ZUPT-aided INS.

Fig. 11. The result of the smoothing for ZUPT-aided INS

The simulation results of test 1 are shown in Fig. 12. The black trajectory is the trajectory without smooth 
treatment, and the red trajectory is the trajectory with smooth treatment. It can be clearly observed from the par-
tial enlargement in the fi gure that the smoothing process can make the trajectory smooth.
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Fig. 12. The estimated trajectory of Smoothing for ZUPT-aided INSs for test 1

Set the number of particles to 350. The results of test 1 map matching are shown in Fig. 13. The blue trajec-
tories are the results of Smoot hing for ZUPT-aided INSs, and the green trajectories are the results of MM-SINS 
method.

Fig. 13. Estimated trajectory for test 1

We further validate the eff ectiveness of the MM-SINS method by increasing the walking distance. The test 2 
walked one more lap according to the walking track of test 1, and the walking distance of test 2 was about 431.88 
m. The test 3 walked three laps, and the walking distance of test 3 was about 647.82 m. The test 4 walked three 
laps, and the walking distance of test 4 was about 863.76 m. The test 2, test 3, test 4 walking average speeds of 
1.20m/s, 0.93m/s,0.93m/s, respectively. The number of particles used in this test is 350. The test 2,3,4 trajectory 
simulation results are shown in Fig. 14, Fig. 15, Fig. 16, respectively.

Fig. 14. Estimated trajectory for test 2
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Fig. 15.  Estimated trajectory for test 3

Fig. 16.  Estimated trajectory for test 4

All tests start and end at the same position. Hence, the position error of the fi nal position estimate is evaluated 
by the diff erence between the initial and fi nal position estimates. In order to analyze the eff ect of the MM-SINS 
method on the navigation accuracy, diff erent numbers of particles (N=300, 500, 600, 1200, 1500) were used in 
the four tests respectively to verify its eff ect on the localization error. Table 1 illustrates the results of the MM-
SINS and SINS estimation solution.

Table 1. Indoor positioning performance using diff erent particles

Particles Algorithm Error(m)
Test 1 Test 2 Test 3 Test 4

300 MM-SINS 2.41 1.24 2.11 1.30
SINS 4.68 2.31 3.88 9.29

500 MM-SINS 2.33 1.11 1.81 1.28
SINS 4.68 2.31 3.88 9.29

600 MM-SINS 2.22 1.07 1.31 1.20
SINS 4.68 2.31 3.88 9.29

1200 MM-SINS 2.12 0.89 1.13 0.96
SINS 4.68 2.31 3.88 9.29

1500  MM-SINS 1.98 0.79 1.01 0.89
SINS 4.68 2.31 3.88 9.29

As shown in Table 1, the error of MM-SINS estimation decreases with the increasing of the number of parti-
cles. From the expression of equation (25), we can also deduce that the right part of equation (25) is almost same 
as its left part when the number of particles N tends to infi nite. Both the experiment results and theorical analysis 
indicate that the particles in PF represent the probability density function of the system. The error of the MM-
SINS method and SINS method are shown in Fig. 17(a) to Fig. 17(d).
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(a) Position error of Test 1 (b) Position error of Test 2

(c) Position error of Test 3 (d) Position error of Test 4

Fig. 17. Position error of initial and final position

When the particle number is 1500, the average position error of MM-SINS method for four tests is 1.16 m 
compared to the SINS method. The distance error of MM-SINS method is less than that of SINS method. This 
shows that the MM-SINS algorithm can effectively correct the position error of the SINS algorithm. For four in-
door experiments, the distance error of the MM-SINS method decreases with the increase of the number of parti-
cles. 

4   Conclusions

This study set out to build a complete personal indoor positioning navigation system. Based on the result of re-
al-world experiments, the following conclusion can be summarized as: an ideal navigation calculating precision 
can be achieved by the proposed method; and the accuracy of the SINS method navigation solution can be im-
proved sharply.

This study has shown that an effective and accurate indoor positioning and navigation system can be built by 
fusing inertial measurement unit information with map information. The findings will be of interest to indoor pe-
destrian navigation system. It is un-fortunate that the study did not include reducing the time redundancy of the 
particle filter algorithm. Despite its limitations, the study will undoubtedly deepen our under-standing of inertial 
measurement units and plane map information fusion navigation systems. Further research should be conducted 
to explore reducing the computational burden of the particle filter algorithm thereby improving navigation effi-
ciency. The results of this paper have practical implications for solving indoor navigation problems, where only 
simple indoor plane information is needed to obtain high navigation accuracy.

5   Data Availability

The data can be obtained at https://github.com/Evangear/Pedestrian-Inertial-Navigation-with-Building-Floor-
Plans-for-Indoor-Environments-via-particle-filte.
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