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Abstract. To reduce the error of coordinate transformation, a fractional order convex valued neural network 
(FCVNN) is explored. The convergence is proved. We take the longitude as the real part of the input, and take 
the latitude as the imaginary part of the input. Thus, we construct the complex valued input of the CVNN. 
All longitudes and latitudes on the earth are perpendicular to each other. This satisfies that the real part and 
imaginary part of the complex form an orthogonal unit basis. Input Xiamen 92 space coordinates and WGS-84 
space coordinates obtained from the transformation as the training samples. The weights of neural network are 
updated. Input the geodetic coordinates of test data and output the geodetic coordinates of WGS84 correspond-
ing to the results. FCVNN is applied to Xiamen 92 coordinate transformation, and the transformation accuracy 
is improved. Using the orthogonality of longitude and latitude, CVNN are constructively used to solve the 
coordinate transformation problem. Many insights can be transferred from real domain to complex domain. 
If the data exists naturally in the complex domain, or can be meaningfully moved to the complex plane, the 
complex neural network should be used for the task. 
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1   Introduction

The seven parameter model is usually used for the transformation between two different three-dimensional 
Cartesian coordinate systems. In general, the least square method is used to calculate seven parameters [1-2]. In 
order to reduce the error of coordinate transformation, Wang et al. [3] proposed an improved artificial bee colony 
algorithm for seven parameter calculation of coordinate transformation. Chen et al. [4] designed coordinate trans-
formation based on BP neural network. Cui et al. [5] proposed the convolution neural network GPS coordinate 
transformation method.

Neural network has been used for coordinate transformation. Complex valued neural network (CVNN) has at-
tracted extensive attention in academic circles because of its strong mapping ability and good adaptability. CVNN 
has been applied to areas, especially in signal processing, in which the input data has natural interpretation in 
complex domain. The use of complex numbers allows neural networks to deal with noise on complex planes. 
Different strategies can be used to transfer many activation functions from real domain to complex domain. Chen 
et al. [6] studied the master-slave synchronization of CVNN based on event triggering. Song et al. [7] discussed 
the input state exponential stability of stochastic CVNN with neutral and discrete delays. Huang et al. [8] stud-
ied the finite time passivity and finite time synchronization of two classes of coupled memristor CVNN with and 
without time-varying delays. Li et al. [9] used the deep CVNN trained by alternating frequency phase amplitude 
coupling features to separate different regions. Song et al. [10] discussed the synchronization problem of fraction-
al CVNN with reaction-diffusion term in finite time interval. Aouiti et al. [11] considered the finite time and fixed 
time synchronization problem of time-delay recurrent CVNN controlled by sliding mode with discontinuous acti-
vation function and different parameters. 

However, the neural network itself has some shortcomings, gradient descent method is an effective method for 
training neural network [12-14]. Fractional calculus was born in 1695, it can deal with disturbance, fast response, 
small overshoot, small chattering effect, has good control performance [15-20]. Wang et al [21] proposed a frac-
tional gradient descent method for BP neural network training, and estimated the error fractional gradient defined 
by traditional quadratic energy function with Caputo derivative. Two simulation results show the performance of 
the proposed fractional order BP algorithm on three small data sets and one large data set. Khan et al. [22] pro-
posed a new radial basis function neural network fractional gradient descent learning algorithm, which is a con-



74

Coordinate Transformation of Buoy Based on Fractional Complex Valued Neural Network

vex combination of the traditional fractional gradient descent method and the improved Riemannian derivative. 
The optimal solution of the system identification problem is analyzed, and the closed form Wiener solution of the 
least square problem is obtained. The weight updating rules of fractional order RBF neural network are derived. 
It is suitable for four main estimation problems: nonlinear system identification, pattern classification, time series 
and function approximation. 

However, complex valued neural networks face some essential problems, such as the selection standard of 
complex activation function is not clear, the traditional cost function has no complex derivative, the learning al-
gorithm is too complex, and the algorithm lacks convergence analysis, which limits the effective application of 
CVNN. In this paper, we take the longitude as the real part of the input, and take the latitude as the imaginary part 
of the input. Thus, we construct the complex valued input of the CVNN. All longitudes and latitudes on the earth 
are perpendicular to each other. This satisfies that the real part and imaginary part of the complex form an orthog-
onal unit basis. 

In this paper, the fractional order complex valued neural network is designed, its convergence is proved, and 
the influence of error covariance is analyzed. FCVNN is applied to Xiamen 92 coordinate transformation, and the 
transformation accuracy is improved. The contributions are summarized blow.

(1) A novel fractional convex valued neural network (FCVNN) is explored. 
(2) Its convergence is proved.
(3) We take the longitude as the real part of the input, and take the latitude as the imaginary part of the 

input. Thus, we construct the complex valued input of the CVNN. All longitudes and latitudes on the earth are 
perpendicular to each other. This satisfies that the real part and imaginary part of the complex form an orthogonal 
unit basis.

2. Related Work

2.1. CVNN

In CVNN, the input is z:

,R Iz z iz= +                                                                           (1)   

1 2[ , , , ],Pϕ ϕ ϕ ϕ=                                                                       (2)   

Where zR is the real part of the input vector. zI is the imaginary part of z. || ||x  is the Euclidean norm. ϕ  de-
notes the neurons excitation function. H is the hidden nodes number. w is the weight connecting the hidden layer 
and output layer. N  denotes the input nodes number. wR is real part of the w. wI is imaginary part of w. o denotes 
the output of neural network: 

)),(()( nznWo ϕ=                                                                     (3)

)],(,),(),([)( 21 nwnwnwnW H=   ),()()( nwnwnw IR +=                                   (4)                    

The CVNN frame is in Fig. 1: 
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Fig. 1. CVNN frame

2.2. Riemann-Liouville Fractional Order Calculus

Denote t as the integral end point. Denote t0 as the integral starting point. For a function x which is defined in 
[t0,t], the fractional integrator is:

0
0

11( ) ( ) ( ) ,
( )

t

t t t
D x t t x dα ατ τ τ

α
−= −

Γ ∫

  

                                                           (5)

where α is the fractional order. τ is the integral variable. Γ is the gamma function:

  1

0
( ) ,xx e dττ τ

∞ − −Γ = ∫                                                                           (6)

The fractional derivative is:

0
0

11( ) ( ) ( ) ,
( )

m t m
t t n t

dD x t t x d
mdt

α ατ τ τ
α

− − 
= − Γ − 

∫                                                   (7)

where [ 1, )m mα ∈ − . m  is a positive integer near α .

Lemma 1. For the function ( ) mf x x=  when 0 1m mα≤ ≤ < + , the following formula holds:

0

( 1)( ) ,
( 1)

m
x x

mD f x x
m

α α

α
−Γ +

=
Γ − +

                                                                (8)

2.3 Seven Parameter Space Coordinate Transformation

The seven parameters are divided into three categories: rotation, scaling and translation. Let K be the scale change 
parameter, ( △ X, △ Y, △ Z) be the translation change parameter, and (rx, ry, rz) be the rotation parameter. The 
seven parameter conversion formula is as follows:

2 1

2 1

2 1

1

+(1 ) 1
1

  ,
z y

z x

y x

r rX XX
Y Y k r r Y

r rZZ Z

 ∆    
     = ∆ + −     
      −∆                                                    

  (9)  
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At the end of 1995, the Xiamen new coordinate system, which was established by Xiamen second and third 
class GPS network, was put out of use at the same time as the old Xiamen coordinate system. The main parame-
ters of 92 coordinate system are shown in Table 1.

Table 1. Main parameters of Xiamen 92 coordinate system
Ellipsoid Beijing 54 ellipsoid (krasov ellipsoid)
Projection mode Gauss projection
Central longitude 118.5°
Scale factor 1.0
East coordinates -400000
North coordinates -2700000

3 Main Results

3.1 FCVNN Algorithm

Define d as the expected output. dR is the real part of d. dI is the imaginary part of d. The square error function is 
defined as:

2 2

1

1 [( ( ) ) ( ( ) ) ],
2

H

R R I I
n

E w n d w n dϕ ϕ
=

= − + −∑                                                  (10)

,R Id d d= +                                                                        (11)

Denote:

21 ( ) ,
2R R Rg w dϕ= −                                                                  (12)

21 ( ) ,
2I I Ig w dϕ= −                                                                   (13)

Differentiating (12) can obtain:

' '( ),R R Rg y w dϕ= −                                                                  (14)

Differentiating (13) can obtain:

' '( ),I I Ig y w dϕ= −                                                                   (15)

Taking the second derivative of (12) can obtain: 

2'' ''( ) ( ') ,R R Rg y w d yϕ= − +                                                            (16)

Taking the second derivative of (13) can obtain: 

   2'' ''( ) ( ') ,I I Ig y w d yϕ= − +                                                            (17)

The loss function can be minimized by adjusting the weight. Denote n
Rw∆  as the adjustment increment of wR. 
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Denote n
Iw∆  as the adjustment increment of wI.

                1 ,n n n
R R Rw w w+∆ = −                                                                     (18)

   1 ,n n n
I I Iw w w+∆ = −                                                                     (19)

 
  ,n n n

R Iw w i w∆ = ∆ + ∆                                                                   (20)

The updating rule is:

,
R

n
R ww D Eαλ∆ = −                                                                      (21)

  ,
I

n
I ww D Eαλ∆ = −                                                                      (22)

where is 0>λ  the learning rate.
Differentiating E with respect to wR can obtain:  

1

' ,
(2 )R

R
w R R

wD E g
α

α ϕ
α

−

=
Γ −                                                      

    (23)

Differentiating E with respect to wI can obtain:  

1

' ,
(2 )I

I
w I I

wD E g
α

α ϕ
α

−

=
Γ −                                                        

    (24)

Substituting (23) into (21) can obtain

1

' ,
(2 )

n R
R R R

ww g
α

λ ϕ
α

−

∆ = −
Γ −

                                                            (25)

Substituting (24) into (22) can obtain

1

' ,
(2 )

n I
I I I

ww g
α

λ ϕ
α

−

∆ = −
Γ −

                                                             (26)

3.2 Convergence Analysis 

Assume 1. |φ|, |g'|, |g''|, | w1-α| are uniformly bounded. There exist constant c0>0, c1>0, c2>0 such that:

,|| 0cI ≤ϕ                                                                             (27)

,|| 0cR ≤ϕ                                                                            (28)

,|'| 1cg R ≤                                                                            (29)

,|''| 1cg R ≤                                                                           (30)
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,|'| 1cg I ≤                                                                            (31)

,|''| 1cg I ≤                                                                           (32)

,|| 2
1 cwR ≤−α                                                                         (33)

,|| 2
1 cwI ≤−α                                                                         (34)

Theorem 1. Suppose the assumptions (27)-(32) are valid, and the weight of CVNN is updated by (25)-(26). 
Then one has:

 ),()( 1 nn wEwE ≤+                                                                  (35)

,0lim =
∞→

ED
Rwn

α
                                                                     (36)

,0lim =
∞→

ED
Iwn

α
                                                                     (37)

Proof of Theorem 1.  It can be deduced from (3): 

1 1

1 1

' ( ) ' ( )
' ( ) ' ( )
' ' ,

n n n n
R R R I I I

n n n n
R R R R R I I I I I I
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                     (38)

From (25) one can obtain:

1

(2 )' ,n
R R R

R

g w
w α

αϕ
λ −

Γ −
= − ∆                                                               (39)

From (26) one can obtain:

1
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I
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Substituting (39) and (40) into (38) can obtain
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2
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From (30) and (32) one can obtain:
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It can be deduced from the Taylor mean value theorem with Lagrange remainder:

1
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Substituting (41) and (42) into (43) can obtain

                        
   

1

2 2 2 2 2
1 0

2

2 2 2
1 0

2

( ) ( )
(2 ) (|| || || || ) (|| || || || )

(2 )( )(|| || || || ),

n n

n n n n
R I R I

n n
R I

E w E w

w w c Hc w w
c

c Hc w w
c

α
λ

α
λ

+ −
Γ −

≤ − ∆ + ∆ + ∆ + ∆

Γ −
= − − ∆ + ∆

                        (44)

We take:

2
1 2 0

(2 ) ,
c c c H

αλ Γ −
<                                                                          (45)             

Then, the following results hold:

1( ) ( ),n nE w E w+ ≤                                                                   (46)

This indicates the monotonicity error function E. Since ( ) 0nE w ≥  and each bounded monotonic sequence 

converges, ( )nE w  is convergent. Therefore, there exists  0* ≥E   

*lim ( ) ,n

n
E w E

→+∞
=                                                                   (47)



80

Coordinate Transformation of Buoy Based on Fractional Complex Valued Neural Network

Denote

                     
2

1 0
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Substituting (48) into (44) yields:
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Thus, we have: 
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Since 1( ) 0nE w + ≥ , we can get:
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When n → +∞, it holds that

2 2lim || || || || 0,n n
R In
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Thus, we have
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When n→ +∞ , it holds that:
1lim || || 0,n n

n
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− =                                                                (55)

Thus there exists a w*: 

*lim .n

n
w w

→+∞
=                                                                      (56)

3.3 Coordinate Transformation of Light Buoy Based on Neural Network

The model of FCVNN algorithm is as follows:
Step 1: initialize the neural network model;
Step 2: set the Gaussian projection parameters: central meridian, x-coordinate constant and Y coordinate con-

stant, and scale factor;
Step 3: the longitude and latitude of geodetic coordinate under WGS84 ellipsoid are transformed into the space 

rectangular coordinates of WGS84 by using WGS84 ellipsoid parameters;
Step 4: the plane rectangular coordinates of Xiamen 92 are projected, and then converted to the spatial rectan-
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gular coordinates of Xiamen 92 after the krasovsky ellipsoid parameters are used.
Step 5: input training samples, input the Xiamen 92 spatial coordinates and WGS-84 spatial coordinates ob-

tained from the transformation of several known points;
Step 6: update the weight of neural network;
Step 7: calculate the hidden layer;
Step 8: calculate the output layer;
Step 9: calculate the output error;
Step 10: if the error does not meet the learning requirements, turn step 4 until the training results meet the re-

quirements;
Step 11: initialize the neural network with the obtained weight;
Step 12: input the geodetic coordinates of Xiamen 92, and output the geodetic coordinates of WGS84 corre-

sponding to the results.

4.Experiment

4.1 Coordinate Transformation of Points

WGS84 and Xiamen 92 coordinate systems are selected as test data. The conversion results of this example are 
shown in Table 2 to Table 4.

Table 2. Coordinates of control points in safe operation area of drilling zone 1

Points X Y Latitude Longitude
A1 2718385.652 463445.905 24°34’7.32’’ 118°8’23.56’’
A2 2718298.641 463336.796 24°34’4.49’’ 118°8’19.69’’
A3 2717466.634 463165.453 24°34’37.43’’ 118°8’13.68’’
A4 2717347.303 463583.961 24°34’33.57’’ 118°8’28.57’’
A5 2717976.512 463760.505 24°34’54.06’’ 118°8’34.78’’

Table 3. Coordinates of control points in safe operation area of drilling zone 2
X Y Latitude Longitude

B1 2720887.744 463226.980 24°35’28.62’’ 118°8’15.55’’
B2 2718625.880 463351.561 24°34’15.12’’ 118°8’20.19’’
B3 2718630.374 463671.012 24°34’15.27’’ 118°8’31.54’’
B4 2720898.186 463538.795 24°34’28.97’’ 118°8’26.63’’

Table 4. Coordinates of control points in safe operation area of drilling zone 2
X Y Latitude Longitude

C1 2723086.338 463063.276 24°36’40.04” 118°8’9.52’’
C2 2722709.575 463118.320 24°36’27.82” 118°8’11.51’’
C3 2720737.377 463235.378 24°35’23.71” 118°8’15.86’’
C4 2720749.385 463548.997 24°35’24.13” 118°8’27.01’’
C5 2722757.111 463432.271 24°36’29.38” 118°8’22.67’’
C6 2723413.449 463325.049 24°36’50.69” 118°8’18.80’’

The drilling is plotted in AutoCAD as shown in Fig. 2.
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Fig. 2.  Points in the AutoCAD

4.2 Coordinate Transformation of Buoys

The conversion results of buoys are shown in Table 5.

Table 5. Conversion examples of buoys

Buoy X Y Latitude Longitude
209# 2703011.8117  467803.7018 024:25:48.349120 118:10:57.080455
210# 2703018.1032 467480.7968 024:25:48.529424 118:10:45.617442
DX25 2702279.9504 465859.8746 024:25:24.414279 118:09:48.141578
DX27 2700816.8706 463467.9174 024:24:36.668374 118:08:23.371452

4.3 Comparison with Other Algorithms

Compared with the actual results, the checking accuracy is calculated. Comparing the results of this example with 
those of the least square method, the accuracy error is shown in Table 6.

Table 6. Comparison of conversion accuracy error

Coordinate Least square method RBF FCVNN
X 1.29cm 1.25cm 1.24cm
Y 1.36cm 1.30cm 1.28cm

It can be seen from the above calculation results that compared with the least square method and RBF, FCVNN 



83

Journal of Computers Vol. 33 No. 3, June 2022

neural network can effectively restrain the influence of transformation error and improve the accuracy of coordi-
nate transformation.

4.4 Discussion

Using the orthogonality of longitude and latitude, CVNN are constructively used to solve the coordinate 
transformation problem. Many insights can be transferred from real domain to complex domain. If the data exists 
naturally in the complex domain, or can be meaningfully moved to the complex plane, the complex neural net-
work should be used for the task. The study of information and gradient flow can help identify tasks that benefit 
from complex valued neural networks. Complex value models allow greater degrees of freedom.  If the input data 
has the function of natural mapping to complex numbers, and the noise in the input data is distributed on the com-
plex plane, complex value embedding can be learned from real value data. The introduction of complex numbers 
as parameters also determines the trade-off between task specific performance and computational cost.

5 Conclusion

In order to reduce the error of coordinate transformation, a fractional complex valued neural network is designed, 
its convergence is proved, and the influence of error covariance is analyzed. Input training samples, input Xiamen 
92 space coordinates and WGS-84 space coordinates WGS84 obtained from the transformation of multiple 
known points; The weights of neural network are updated; The hidden layer of neural network is calculated; The 
output layer of neural network is calculated; The output error of neural network is calculated; Until the training 
results meet the requirements; The weights are used to initialize the neural network; Input the geodetic coordi-
nates of test data and output the geodetic coordinates of WGS84 corresponding to the results. FCVNN is applied 
to Xiamen 92 coordinate transformation, and the transformation accuracy is improved. Compared with the least 
square method and RBF neural network, FCVNN can effectively suppress the influence of system error and ab-
normal error of transformed data, and improve the accuracy of coordinate transformation. Further research will 
improve the conversion accuracy.

Future work of this research encompasses more experimental validation and improve the conversion accuracy.
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