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Abstract: In order to solve the problem that the recognition performance is obviously degraded when the 
model trained by known data distribution transfer to unknown data distribution, domain generalization method 
based on attention mechanism and adversarial training is proposed. Firstly, a multi-level attention mechanism 
module is designed to capture the underlying abstract information features of the image; Secondly, increases 
the loss limit of the generative adversarial network，the virtual enhanced domain which can simulate the 
target domain of unknown data distribution is generated by adversarial training on the premise of ensuring 
the consistency of data features and semantics; Finally, through the data mixing algorithm, the source domain 
and virtual enhanced domain are mixed and input into the model to improve the performance of the classifier. 
The experiment is carried out on five classic digit recognition and CIFAR-10 series datasets. The experimental 
results show that the model can learn better decision boundary, generate virtual enhanced domain and signifi-
cantly improve the accuracy of recognition after model transplantation. Comparing to the previous method, 
our method improves average accuracy by at least 2.5% and 3% respectively. Experiments on five classic digit 
recognition and CIFAR-10 series datasets which significantly improves the classification average accuracy af-
ter model transfer. 
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1 Introduction

In the domain of transfer learning, datasets are usually divided into source domain and target domain. The data 
and labels of the source domain are easy to obtain, but the data labels of the target domain are expensive or seri-
ously missing. Due to the lack of data, only the datasets with known data distribution can be directly used to train 
the network model. However, when the training model is transplanted to the datasets with unknown data distribu-
tion, the robustness of the model often decreases obviously. The reason for this problem is called domain discrep-
ancy [1]. Therefore, how to solve the problem of domain discrepancy has attracted extensive attention in various 
fields of deep computer vision domain generalization.

In response to the above problems, Qiao et al. [2] considered the worst-case expression of data distribution 
near the source domain in the feature space, data enhancement by extending virtual domains. Although the model 
has achieved excellent performance on the benchmark datasets, there are some defects in the process of expand-
ing the virtual enhanced domain, such as low data semantic consistency, poor simulation target domain distribu-
tion, and insufficient image key feature information extraction. Therefore, aiming at the shortcomings of the cur-
rent model, this paper proposes an improved algorithm model. The experimental results show that the improved 
model can obtain higher average recognition accuracy, effectively solve the problem of domain discrepancy, 
and improve the robustness of model transfer. Multi-level parallel attention (MLPA) model is used to solve the 
shortage of feature extraction. The data mixing algorithm and the loss limit of the generative adversarial network 
are used to improve the semantic consistency stability of image sample level and feature level, simulate more 
unknown distributions and improve the performance of the classifier. The final experimental results show that the 
test accuracy of the improved model in the target domain is significantly higher than that of the original model. 
The specific work of this paper is as follows:

Therefore, in view of the shortcomings of the current model, we consider the limitation of semantic consisten-
cy in the representation of image sample level and feature level at the same time and propose an attention gen-
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erative adversarial domain generalization model (AGADG) to simulate more unknown distributions and realize 
greater domain transportation. The main work of this paper is to make a series of improvements to the single do-
main generalization method proposed by Qiao et al. The final experimental results show that the test accuracy of 
the improved model in the target domain is significantly improved compared with the original model. The specific 
work of this paper is as follows: 

(1) A multi-level parallel attention mechanism module (MLPA) is proposed, which can fully capture the de-
tailed features of the image, fuse the multi-level features and establish the relationship between the feature infor-
mation.

(2) A data mixing algorithm is proposed, which combines the generated virtual enhanced domain data with 
the source domain data, which can realize the expansion of data distribution and improve the recognition perfor-
mance of the classifier.

(3) Combining adversarial training and generative adversarial loss is used to enhance the semantic consistency 
of sample level and feature level, improve the complexity of generating virtual enhanced domain.

(4) Combine the above parts to get the attention generative adversarial domain generalization (AGADG) mod-
el. 

2 Related Work

In the domain of unsupervised deep learning, in order to improve the portability of neural networks and solve the 
distribution offset between the source domain and the target domain, there has been a lot of work domain adapta-
tion [2-7] was studied. Among them, Chen et al. [3] proposed an unsupervised domain adaptation method based 
on a stepwise feature alignment network by allowing a large amount of labeled source domain data and a large 
amount of unlabeled data target domain for large-scale training. Cai et al. [4] proposed the maximum square loss, 
which solved the problem of uneven probability distribution caused by unsupervised domain adaptation to mini-
mize entropy through the method of linear growth gradient. Tsai et al. [6] verified that the output of the segment-
ed image can adapt to the scene distribution and semantic information of the source and target domain images and 
proposed a multi-layer pixel-level semantic segmentation method based on adversarial learning. 

At the same time, the idea of adversarial learning [8-13] has also been widely applied to the research work 
of domain generalization. Vu et al. [8] used the idea of adversarial learning to propose a semantic segmentation 
domain adaptation method based on entropy loss. Among them, Sinha et al. [9] designed a principled adversarial 
training algorithm, which first generated some new images that maximize the risk, and the model parameters were 
optimized for those adversarial images. In order to resist the imperceptible adversarial disturbance, the loss of the 
new image is absorbed to punish the original and the new difference. Peng et al. [10] proposed that a powerful 
generalization model of pose estimation can be obtained by combining adversarial learning methods with tradi-
tional data enhanced training. Volpi et al. [11] considered the worst-case expression of the data distribution close 
to the source domain in the feature space. They also proposed an iterative process of domain adaptation against 
data expansion, which uses samples from the virtual target domain to expand the datasets, has good performance 
when transplanted to image recognition and semantic segmentation tasks.

At present, meta-learning [12-15] has begun to be studied by more and more scholars, and at the same time, 
meta-learning is applied to computer vision tasks. The essence of meta-learning is to use a small amount of data 
in multiple learning tasks to achieve the fastest solution to new tasks and improve the generalization performance 
of the model. Guo et al. [12] proposed a method of facial recognition based on meta-learning in to learn a facial 
recognition model that can directly recognize without model update. Finn et al. [13] proposed the MAML meth-
od to find an optimal initialization weight more quickly so that the model can adapt to new tasks more quickly. 
This model has been widely used in small sample learning and reinforcement learning. To evaluate the quality of 
various damaged images and better adapt to the unknown degree of damage, Zhu et al. [14] proposed a method 
of non-reference image quality evaluation based on deep meta-learning, which can be obtained by fine-tuning 
the previously trained model parameters. High-quality evaluation model. Researchers not only pay attention to 
the application of domain adaptation and domain generalization in image recognition [16-17], but also improve 
the performance of computer vision tasks such as object detection [18-20] and semantic segmentation [21], solve 
the problem of domain discrepancy. In this context, Qiao et al. designed a method of meta learning against the 
enhanced domain. Experimental results show that this method can improve the performance of image recognition 
and semantic segmentation.

3 Algorithm Design
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Chen et al. [3] proposed a stepwise feature alignment network model that can solve the unsupervised domain 
adaptive classification problem by allowing large-scale training of a large number of labeled source domain data 
and a large number of unlabeled target domain data. Sinha et al. [9] defined the worst case outside the source 
domain data distribution through the idea of adversarial training. In order to realize the domain generalization 
outside the source domain data distribution and solve this worst-case problem, it is necessary to train in advance, 
simulate the distribution of data outside the source domain through the data enhanced method, and generalize the 
robustness model to the unknown target domain. The specific form of the worst problem in the semantic space is 
shown in Equation 1:

[ ] ( ){ }
s

min sup ( ;( , )) , , .
s CP s adv

P
E L X Y D p pθθ

θ ρ≤                                (1)

Where sP  and advP  respectively represent the data distribution of the source domain and the unknown do-

main outside the source domain, θ  represents the parameters of the model,  Lc represents the objective function 
of the model, Dθ  represents the distance measurement of the two probability distributions sP  and advP , and ρ  
represents the distance of the domain offset. At the computational level, ρ  is very difficult to determine the deep 
neural networks. therefore, considering the difference of data distribution, after Volpi et al. [11] reconstruction, 
this problem can be effectively solved by using the form of Lagrange relaxation. Therefore, the worst problem 
can be transformed into Equation 2:
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Where λ  is a hyper-parameter. In order to further solve the worst problem and improve the generalization 
performance of the model, an improved domain generalization model is constructed by combining multi-level 
parallel attention mechanism, generative adversarial network and adversarial training. The structure diagram of 
AGADG model is shown in Fig. 1. The model is composed of feature extraction network, discriminator network 
and generative adversarial network. In addition, because the image can only extract local features after convolu-
tion operation, and the attention mechanism plate can obtain detailed edge features and give different weights to 
different information, the MLPA model is fused in the feature extraction network and the generative adversarial 
network, and finally give weight association to different levels of feature information, so as to improve the ro-
bustness of the model. The multi-level parallel attention mechanism model will be introduced in Section 3.1, and 
the weight dependence of different information will be established; In Section 3.2, a data mixing algorithm is de-
signed to realize data divergence, improve the performance of classifier and enhance the robustness of model; In 
sections 3.3, adversarial data enhanced is introduced respectively. Realize adversarial training by combining task 
models and generative adversarial networks, more unknown data distributions related to the source domain are 
generated, and the worst problem is optimized to achieve maximum domain transportation.

Fig. 1. The overall structure of AGADG model



174

Image Domain Generalization Method based on Solving Domain Discrepancy Phenomenon

3.1 Multi-Level Parallel Attention

In order to make full use of the multi-level feature information of image features, obtain the high correlation 
information between pixels and significant parts, and establish the dependence of global features, MLPA model 
is designed. MLPA model can dynamically give weights to different levels of features, so as to obtain relatively 
large weights for boundary key feature information, reduce the weight parameters of irrelevant features, and final-
ly output a more accurate prediction feature map. The specific structure of MLPA model is shown in Fig. 2.

Fig 2. Structure diagram of multi-layer parallel attention model

The MLPA model is composed of multiple branches. The input of the MLPA model is the characteristic dia-
gram output through convolution operation of convolution layer. At the same time, the input feature map is pro-
cessed in multi branch parallel, and finally the feature vectors of different branches are fused to obtain the output 
prediction feature map. Suppose the characteristic diagram of the input MLPA model is /2* *C H WM R∈ , where C , 
H  and W  represent the number, height and width of channels of the input characteristic diagram M  respective-
ly.

Firstly, in the three branches ( )A M , ( )B M and ( )C M , the 1 * 1 convolution operation is performed on M
, and their channel dimension C is reduced to the original 1/2. The dimensions of the new characteristic graph are 

/2* *C H W
AM R∈ , /2* *C H W

BM R∈  and /2* *C H W
CM R∈  respectively. Secondly, reshape the feature maps AM  and 

BM  to obtain * * /2
1

H W C
AM R∈  and * * /2

1
H W C

BM R∈ , then transpose 1AM  and perform matrix multiplication with 

1BM  to obtain the final pixel correlation feature map ABM , where the expression of ABM  is shown in Equation 
3:
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Where [1, ]i N∈ , MAB ϵ RH*W*H*W.  MAB is subjected to Softmax normalization processing and MC ϵ RC/2*H*W is 
subjected to matrix multiplication operation, and the normalization operation is performed again, and finally the 

feature map MABC ϵ RC/2*H*W. The specific calculation of MABC is shown in Equation 4.
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The characteristic diagram ABCM  carry out 1 * 1 convolution operation and restore to the original number 

of channels C . So far, the output characteristic diagram * *
1

C H W
FM R∈ of three branches ( )A M , ( )B M and 

( )C M  is obtained. In branch ( )D M , firstly, the global pooling operation is performed on the input character-

istic graph M , and the characteristic graph m is compressed into *1*1C
DM R∈ . then, through the dimensionality 

reduction operation of the full connection layer, the number of channels C  is reduced to / 16C , and the ReLU 
activation function is used for nonlinear processing. In order to ensure that the size of the output feature map is 
equal to that of the input feature map, it is up sampled through a full connection layer to restore the number of 
channels of the output feature map to the original size C . Therefore, the dimension of the final feature map of the 

branch is * *
2

C H W
FM R∈ .

Through the above operations, the characteristic diagrams of each branch ( )D M  are weighted and fused. 
Therefore, the form of the predicted characteristic diagram output by the MLPA model is shown in Equation 5:

1 2 .F F FF F FM MM Mβα γ+ +=                                                  (5)

Among them, Fα 、 Fβ  and Fγ  are the weight coefficients of features, and the weight size is gradually updat-
ed in the continuous learning of the model, so that the MLPA model can be associated with more feature informa-
tion by establishing the dependence of weight.

3.2 Data Mixing Algorithm

When the data distribution is divergent, it is conducive to expand the data distribution to the field outside the 
source domain and realize the maximum domain transmission. A data mixing algorithm is designed. Each batch 
of data input into the network is processed by fusing the source domain and the generated virtual enhanced do-
main, and finally the consolidated domain data obtained from different domains are fused to realize the diver-
gence of image input. The specific implementation is shown in Algorithm 1.

Algorithm 1. The process of data mixing

Input:  Source domain { , }i iS x y∈ , [1, ]i N∈ , Virtual enhanced domain advkS ,
BatchSize bs

Output:Consolidated domain cbkS
Initialize:  cbkS ← S , sC ← bs
for  k  in K  do:

Cs = bs / (k + 1)

Cadvk = bs − Cs

End for
Return cbkS

The domain exactly the same as the source domain S  is constructed as the initial consolidated domain cbkS

. Therefore, before generating the virtual enhanced domain advkS , the data cbkX  sampled by the consolidated do-

main cbkS  is the data sX  of the source domain S . Suppose that the source domain dataset has several batches, 
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where bs  represents the BatchSize, K represents the number of current virtual enhanced domains, and the initial 

value is 0. The composition of each batch of cbkS  data bsX is shown in Equation 6:

{ }1, , .bs s sjX X X= …                                                               (6)

Among [1, ]j bs∈ , as advkS  is generated iteratively, the data of the source domain and the virtual enhanced do-

main need to be fused to form a consolidated domain cbkS . At this point, the sampling cbkX  of each batch of the 

consolidated domain will come from S  and advkS  generated by the current iteration. Therefore, after iteratively 

generating advkS , the composition of each batch of data bsX  in cbkS  will become as shown in Equation 7:

{ }1 1, , , , , .bs s sj advk advkmX X X X X= … …                                              (7)

Where [1, ]m bs∈ , sjX  and advkmX  represent each batch data of cbkS  samples j  images from the S  and m  

images from the current advkS . When iteratively generating the virtual enhanced domain, the data distribution of 
the source domain will not quickly spread outside the source domain, so it is necessary to input more source do-
main data to give certain restrictions. With the increase of the number of virtual enhanced domains, the data dis-
tribution of the enhanced domain can gradually simulate the data distribution of more unknown domains, and the 
dependence on the data of the source domain will be reduced. Let k  be the number of virtual enhanced domains 

generated. Therefore, the expressions for selecting the number of data in each batch constituting cbkS  from S  and 

advkS  are shown in Equations 8 and 9 respectively:

/ ( 1).sC bs k= +                                                             (8)

.advk sC bs C= −                                                               (9)

3.3 Adversarial Data Augmentation

The task model T  of AGADG model consists of feature extraction network F  and classifier ( )C • . After the 
class label information is known in the source domain data, the convolution layer combines with the MLPA mod-
ule to extract the features, and then the supervised learning can be realized directly through ( )C • . Through cat-
egory determination, the extracted features are more sensitive to category information, which is conducive to the 
establishment of decision boundary. The objective function is shown in Equation 10:

( ) ( ) ( )( ), ~ , s
1

( ) y, log .
s s s sT sx y X Y

n

i
L x y E C F x

=

= − ∑                                          (10)

Where sX  represents the input image of the source domain, sY  represents the category label of the source 
domain data, and F  represents the feature extraction network model of image recognition. After the MLPA mod-
el is incorporated into the convolution calculation, the task model T  used in the digital recognition datasets is 
shown in Fig. 3.
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Fig. 3. Structure of feature extraction and image recognition model F

Because the process of domain generalization does not need to access the data of the target domain, and the 
number of data in the source domain is limited, the method of data enhanced in the source domain must be ad-
opted to enhance the distribution of data. The model combined with the generative adversarial network and ad-
versarial training can reconstruct and learn the image more efficiently, so as to obtain more unknown data distri-
bution outside the source domain and simulate more data distribution different from the source domain. Semantic 
consistency is achieved at both feature level and sample level to improve the transplantation performance of the 
model. The generative adversarial network is defined as W , and its parameter is wθ . W  is composed of self-en-

coder and a discriminator ( )D • . the self-encoder is composed of encoder ( )|E e x  and decoder ( )|G x e , where 
x  represents the input image and e  represents the embedded feature. After the encoder convolution operation, 
the weight dependence is constructed through the MLPA module, and the relationship between features is estab-
lished from the underlying texture features of the image, so that the network can learn to produce more features 
of decision boundary, which is very important to the prediction effect of features. advkX  is generated in the virtual 

enhanced domain advkS  through iteration. Although the method of relaxing the data distribution of the source 
domain and enhanced domain designed by Qiao et al. can expand the domain transmission, it has an adverse 
impact on the semantic consistency of the virtual enhanced domain. Therefore, based on the work of Qiao et al., 
the restriction conditions are improved by combining the generation of generative adversarial network and adver-
sarial training. At the same time, constraints are carried out at the feature level and sample level to maximize the 
domain transfer from the source domain to the virtual enhanced domain.

The network model based on convolution operation alone can not establish the dependence between key infor-
mation, resulting in the generation of fuzzy depth sample map, resulting in the lack of edge detail feature infor-
mation. Taking the source domain image sX  as the input, the MLPA model is integrated into the convolutional 
self-encoder for generative adversarial network, so that the image edge detail information can be fully utilized, 
which can overcome this problem.

Firstly, the generative adversarial network W  is pre-trained, and the maximum reconstruction loss of the gen-
erated virtual enhanced domain is fixed. In the process of model training, first complete the feature mapping of 
the source domain data sX , and then realize the category mapping of the source domain. Then, advkS is generated 
step by step in an iterative way, the feature mapping of the virtual enhanced domain is carried out, and the domain 
training working model is combined to judge whether the feature distribution of the generated virtual enhanced 
domain is outside the source domain distribution, and the parameters of the model are constantly updated, so as to 
achieve the purpose of maximizing domain transportation and domain generalization.

The newly generated advkS  and S  are processed by data mixing algorithm. Combined with the feature ex-
traction network containing MLPA and the generative adversarial network for iterative adversarial training, classi-
fier ( )C •  is easier to expand the distribution of source domain S  through data. Generate more virtual enhanced 

samples through iterative process, and advkX  simulates the distribution of target domain. Input the source domain 
data into the generative adversarial network to obtain the target domain. The generation loss function about the 
generator is shown in Equation 11:
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The classification loss function about the discriminator is shown in Equation 12:

( )( )( ) ( )( )( )~ ~max log log 1 .
s s advk advkD D x X s x X advkEL D E x E D G x= + −             (12)

Wassersein distance is used as the distance measure of generative data loss, and whether advkS  has the same 

data distribution as S  is judged. At the same time, it maximizes the reconstruction error, ensures that the gen-
erative image and the original image can spread to the data distribution outside the source domain at the sample 
level, and realizes the maximum domain transmission. The data relationship between the calculation input and 
generation using Wasserstein distance as measurement is shown in Equation 13:

( ) 2
n .mi W advk advr kL x W x= −                                                         (13)

Although the above generative loss can realize domain transfer at the sample level, it has an impact on seman-
tic consistency, resulting in misclassification of generative samples. The loss of semantic consistency at the de-
sign feature level can effectively solve this problem.

Adversarial training makes the generator and discriminator sensitive to disturbance information. The classifier 
( )C •  after model feature extraction is regarded as a discriminator in the virtual enhanced domain. Through the 

iterative process, the two discriminators can ensure the consistency of sample semantics. In the training process, 
the features of the virtual enhanced domain are sent to ( )C •

 for classification and discriminator ( )D •
 to judge 

whether it is true or false. ( )C •  determines whether its data distribution conforms to the category of the current 
data distribution, in other words, whether the virtual enhanced domain has been extended to the unknown dis-
tribution outside the source domain. At the same time, the function of ( )D •  is the same as that of the ordinary 
generative adversarial network to judge the authenticity of the image. Through iterative adversarial training, 
adversarial training can effectively ensure semantic consistency. Wasserstein distance is used as the distribution 
distance between virtual enhanced domain feature advkz  and consolidated domain data feature cbkz . The specific 
form is shown in Equation 14:

2

2

1
2

.con cbk advkL = −z z                                                               (14)

Therefore, combined with the above-mentioned parts, the source domain S  is used to train the model, and 

then the virtual enhanced domain advS  is iteratively generated to gradually optimize the model parameters. The 
adversarial training iteration process is actually to maximize the generation of data that can simulate the distribu-
tion of the target domain, as shown in Equation 15:

( ) ( ) ( ){ }argmax ; , ( ; ) ; ; .T D wad r cok n w
x X

vX x y L xL L x L zθ α θ β θ γ θ
∈

∈ + + −                   (15)

Where α , β  and γ  represent three penalty term parameters respectively, and the values are 1, 1 and 2000 
respectively according to the experiment. The implementation process of AGADG model is shown in detail in 
Algorithm 2.
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Algorithm 2. The implementation process of AGADG model

Input:  Source domain { , }i iS x y∈ , [1, ]i N∈ , Number of synthetic domains K
Output: Learned model parameters θ
Initialize: cbkS ← S , sC ← bs
for time in iteration do:

Generate advkS
Append advkS  to advS
According to the formula (7)-(9) to get cbkS
  for i in Tadv do
    Samples cbkX  from cbkS

According to the formula (11)(12) to train W
According to the formula (15) to train T

for j in k  do

    Update θ  using
End for
Return θ

4 Experiment and Result Analysis

In order to verify the effectiveness of the model, the test performance of AGADG model is compared with the 
previous research work on domain generalization. In order to compare the experimental results obviously, two 
kinds of image recognition datasets are used for experiments. One group is five classical digital datasets MNIST 
[22], MNIST-M [23], SVHN [24], SYN [23] and USPS [25]. The number of iterations of the experiment is 105, 
the BatchSize is 32, and Adam optimizer is used at the same time, and the learning rate is 0.0001. Another group 
of experiments used CIFAR-10 [26] and CIFAR-10-C [27] datasets, with 105 iterations, BatchSize is 128, SGD 
optimizer which learning rate is 0.001 and linear decay learning rate is 0.1. First, use the source domain data to 
pre-train the generative adversarial network. After the pre-training is completed, input the source domain data 
into the task model and the generative adversarial network to obtain the characteristics of the source domain data 
and the generated virtual enhanced domain data, which are obtained through the data mixing algorithm combine 
domains and adversarial training task models and generative models to obtain data with unknown target domain 
data distribution, and finally obtain a model that can realize cross-domain generalization. The two groups of ex-
perimental results show that the portability of AGADG model is greatly improved compared with the previous 
models, which verifies the feasibility of AGADG model. Section 
4.1 introduces the datasets used in the experiment, the evaluation indicators of the experimental results and the 
display of the experimental results. Section 4.2 analyzes the experimental results and summarizes the perfor-
mance of the model.

4.1 Experimental Results

In order to eliminate the unforeseen errors between the datasets used in the experiment, first ensure that the num-
ber of pixels and channels of the image in the source domain and the test target domain are consistent, avoid the 
contingency of the experiment, preprocess the MNIST datasets of single channel participating in the training, turn 
the datasets images into RGB three channel images with 32 * 32 pixels, and use four sets of SVHN, MNIST-M, 
SYN and USPS as the target domain to test the cross-domain generalization and robustness of the model. As an 
improved algorithm model, AGADG model has a great correlation with previous work, so it directly uses the re-
sult data of the original work to compare with the experimental results. The average recognition accuracy of the 
model in the four sets of target domain data sets is used as an index to evaluate the cross-domain generalization 
performance of the model. The experimental results show that the recognition accuracy of the proposed AGADG 
model on the four digital data sets has been improved, and the average recognition accuracy has increased by 

𝜃𝜃 ← 𝜃𝜃 − 𝛼𝛼∇𝜃𝜃𝐿𝐿𝑇𝑇(𝜃𝜃; 𝑋𝑋𝑆𝑆⋃𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎, 𝑌𝑌𝑆𝑆⋃𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎) 
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2.5%, compared with the previous work. The specific experimental results of four digit recognition test sets are 
shown in Table 1. 

Table 1. Comparison of experimental results on digit recognition datasets
Method SVHN MNIST-M SYN USPS Avg.
d-SNE 0.2622 0.5098 0.3783 0.9316 0.5205
ERM 0.2783 0.5272 0.3695 0.7694 0.4929
GUD 0.3551 0.6041 0.4532 0.7726 0.5462

MADA 0.4255 0.6794 0.4895 0.7853 0.5949
AGADG 0.4457 0.7006 0.5073 0.8290 0.6206

CIFAR-10-C is a new datasets formed in the original CIFAR-10 datasets, which first ensures that the images 
are RGB three channels and the pixels are 32 * 32, and processes all pictures in different categories and levels 
without affecting the categories. In order to be consistent with the experimental process of the previous work, 
CIFAR-10 is also used as the training set training model, twelve different types of image processing in four main 
forms of Noise, Blur, Weather and Digital are selected as the test set, and the accuracy of each test set is recorded. 
Finally, the average accuracy of twelve groups of test results is selected as the discrimination index of the experi-
mental results. The specific experimental results of CIFAR-10-C dataset recognition are shown in Table 2.

Table 2. Comparison of experimental results on CIFAR-10-C datasets
d-SNE ERM GUD MADA AGADG

Fog 0.6599 0.6592 0.6829 0.6936 0.6930
Snow 0.7546 0.7436 0.7675 0.8059 0.7590
Frost 0.6225 0.6157 0.6994 0.7666 0.7432
Zoom 0.5847 0.5997 0.6295 0.6804 0.6854

Defocus 0.5371 0.5371 0.5641 0.6118 0.6568
Glass 0.5048 0.4944 0.5345 0.6159 0.6214

Speckle 0.4530 0.4131 0.3845 0.6088 0.7645
Shot 0.3993 0.3541 0.3687 0.6058 0.7621

Impulse 0.2795 0.2565 0.2226 0.4518 0.6104
Jpeg 0.7020 0.6990 0.7422 0.7714 0.7849

Pixelate 0.3846 0.4107 0.5334 0.5225 0.5589
Spatter 0.7340 0.7536 0.8027 0.8062 0.8055
Avg. 0.5696 0.5615 0.5826 0.6559 0.6871

4.2 Result Analysis

During the model training, in order to ensure that the trained model is more convincing in the experimental com-
parison, five experiments are carried out on the number recognition experiment, and the accuracy of different test 
sets is recorded in the five experiments. At the same time, the results of each test set are displayed. The specific 
experimental results of four groups of digital datasets for five times are shown in Fig. 4. The trained AGADG 
model is transplanted to different test sets. The comparison between the model and the previous model on the 
four sets of digit recognition datasets is shown in Fig. 5(a). The evaluation of the average recognition accuracy of 
these models in the digit recognition experiment is shown in Fig. 5(b). It can be clearly seen that compared with 
the previous models, the AGAGG model has a significant improvement in the cross-domain recognition general-
ization performance of the digit recognition experiment. The recognition accuracy can reach 62.06%, which is at 
least 2.5% higher than previous models

As shown in Fig. 4, five experiments show in terms of model stability, the result curve of five tests of AGADG 
model on SVHN datasets fluctuates, while the prediction results on MNIST-M, SYN and USPS datasets basically 
tend to be stable. The stability of the model for SVHN dataset needs to be improved. In terms of accuracy distri-
bution, the model performs best on the USPS datasets, which can reach 82%, which is the most improved com-
pared with the other three groups of test sets. This is because the data distribution of USPS is similar to MNIST, 
the difference between USPS and MNIST domain is small, and it is easier to be simulated.



181

Journal of Computers Vol. 33 No. 3, June 2022

Fig 4. Results of multiple experiments on the digital recognition datasets

As shown in Fig. 5, comparing the test results of four groups of digital datasets through AGADG model with 
the prediction results of previous d-SNE [28], ERM [29], GUD [13] and MADA [2], it can be seen that the accu-
racy of ADAGD model is higher than the experimental results of previous models. At the same time, the test set 
SVHN, the accuracy improvement ratio of MNIST-M and SYN is significantly higher than that of USPS datasets. 
Compared with MADA, although AGADG model improves the accuracy of USPS datasets, it is still lower than 
d- SNE. This is because d- SNE only makes a lot of improvement on the recognition accuracy of USPS datasets. 
d- SNE performs poorly in the transplantation performance of the other three groups of datasets, and the accuracy 
of AGADG model is much higher than that of d- SNE model in these three groups of data results.

(a) Comparison of accurary of different models on  four digit datasets
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(b) Comparison of average accurary of different models on digit recognition experiment
Fig. 5. Comparison of average accuracy of different models

When training the model on CIFAR-10 datasets, the feature extraction part uses a 16 layer wide residual net-
work [30] with a width of 4, add the MLPA mechanism model to the first layer of each residual block. Selects 12 
different processing categories in CIFAR-10-C as the test set for testing, lists 4 types of data samples as shown in 
Fig. 6. 

The comparison results between the test results of each test set and the previous model are shown in Fig. 7(a). 
As shown in Fig. 7(a) histogram, the experimental results of AGADG model in Speckle, Shot and Impulse test 
sets are more than 15% higher than those of MADA model, and the recognition accuracy of Defocus, Jpeg and 
Pixelate test sets is also significantly improved. However, the performance on fog, snow and frost is poor, which 
is slightly lower than the test results of MADA model. It can be clearly seen from the histogram in Fig. 7(b). the 
average recognition accuracy of this model in the CIFAR-10 recognition experiment is at least 3% higher than 
that of previous models. It can be seen that AGADG model is more robust than previous models for cross-domain 
generalization.

Fig. 6. On the left is the original image of CIFAR10, on the right are four corrosion types of CIFAR-10-C samples
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(a) Comparison of accurary of different models on  CIFAR-10-C datasets

(b) Comparison of average accurary of different models on CIFAR-10 recognition experiment
Fig. 7. Comparison of accuracy of different models

Conclusion

In this paper, a method of attention generative adversarial domain generalization is proposed. This method uses 
the multi-level attention mechanism model to fully extract the detailed features of the image, and then increases 
the loss limit of the generative adversarial network on the basis of ensuring the semantic consistency of the sam-
ple level and the feature level to generate the virtual enhanced domain, and finally combines the data mixing al-
gorithm to obtain the merge The domain is used for adversarial training. Use the source domain to train the model 
and transfer the model to multiple target domains. The two sets of experimental results show that the AGADG 
model can perform higher average recognition accuracy than previous models, and effectively solve the problem 
of domain shift.

Future work needs further research: exploring more effective limiting methods for expanding the source do-
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main distribution, optimizing the stability of the model, in order to improve the generalization effect of the model.
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