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Abstract. How rescue robots reach their destinations quickly and efficiently has become a hot research topic in 
recent years. Aiming at the complex unstructured environment faced by rescue robots, this paper proposes an 
artificial potential field algorithm based on reinforcement learning. Firstly, use the traditional artificial poten-
tial field method to perform basic path planning for the robot. Secondly, in order to solve the local minimum 
problem in planning and improve the robot’s adaptive ability, the reinforcement learning algorithm is run by 
fixing preset parameters on the simulation platform. After intensive training, the robot continuously improves 
the decision-making ability of crossing typical concave obstacles. Finally, through simulation experiments, it 
is concluded that the rescue robot can combine the artificial potential field method and reinforcement learning 
to improve the ability to adapt to the environment, and can reach the destination with the optimal route.
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1   Introduction

In recent years, natural disasters such as earthquakes and tsunamis, as well as accidents such as chemical, nuclear 
radiation, and poisoning have occurred frequently, and the complexity, severity and diversity of various disasters 
are also increasing. For rescue, 72 hours after the disaster is the golden rescue time. Therefore, how to quickly 
enter the disaster scene and rapid rescue has always been a hot spot in the field of rescue research. Mobile rescue 
robots undertake more and more important rescue tasks in the rescue process of the above complex and danger-
ous situations [1]. Path planning is the calculation process for the robot to complete a reasonable route from the 
starting point to the target point, and it is the key for the robot to achieve autonomous movement. The core of 
path planning is to complete the design of the path planning algorithm [2]. The artificial potential field method is 
a classic and efficient algorithm in the traditional path planning algorithm. The algorithm completes the path plan-
ning by configuring the information of the known environment. It has good real-time performance, strong adapt-
ability to dynamic environments, and smooth planned paths. At the same time, the artificial potential field method 
also has obvious shortcomings, that is, the robot is easy to fall into a local minimum during the navigation process 
using the artificial potential field method, and the manifestation is that the robot stagnates or oscillates nearby af-
ter encountering an obstacle [3].

In order to solve the local minimum problem of the artificial potential field method, many scholars have pro-
posed corresponding improved algorithms. Reference [4] proposes an algorithm for virtual obstacles, which can 
better solve the local minimum problem. Li Qing [5] and others proposed that when the robot meets the local 
minimum point, the robot can get out of trouble by changing the repulsion angle at the local minimum point and 
setting the virtual minimum local area, and at the same time, the genetic algorithm is used to optimize the repul-
sion change angle and the virtual local area. Li Wei [6] proposed a fast search random tree algorithm to complete 
the convergence of the planning space during the path planning process, and then used the artificial potential field 
method to accelerate the convergence speed to improve the speed of obtaining the best route.

In this paper, the traditional artificial potential field method is used to plan the path of the robot to obtain an 
efficient and smooth path. There are generally no dynamic obstacles in the rescue environment of rescue robots, 
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so the focus of this paper is the robot’s ability to avoid obstacles to static obstacles. When the robot encounters a 
concave obstacle in the route planned by the artificial potential field method and generates a local minimum val-
ue, it helps the robot to choose a coping strategy through reinforcement learning. After getting out of trouble, it 
returns to the artificial potential field method algorithm.

2   Artificial Potential Field Method for Path Planning

The artificial potential field method assumes that the gravitational effect of the gravitational potential field of the 
target point in the environment where the robot is located is affected by the repulsive force of the obstacle repul-
sion potential field, as shown in Fig. 1.

2.1   Schematic Diagram of Artificial Potential Field Method 

Fig. 1. Artificial potential field method for path planning

2.2   Expression of Potential Field Function

Suppose the robot target point is a mass point, the current position of the robot is , The target posi-

tion is , so the gravitational field function  is [7]:
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Among them, aλ  is the gravitational coefficient, and  is the Euclidean distance from the robot’s 

current position to the target point. The repulsion field function  generated by the obstacle  in the process 
of traveling is:
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Among them,  is the repulsion coefficient,  is the shortest distance between the robot and the obstacle, 
 is the point in the obstacle  that is closest to the robot’s current position,  is the repulsion range of the 

obstacle, the formula means, when the robot After the distance from the obstacle exceeds the repulsion range, the 
robot will not be affected by the repulsion of the obstacle. The resultant force of the robot in the potential field 
guides the robot to approach the target point, and the negative gradient of the potential field is the force, namely:

                 F U= −∇                                                                                            (4)
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Therefore, the resultant force on the robot is , and the expression is:

             total at reF F F= +                                                                                  (7)

The main reason for the local minimum is the shape of the obstacle. The general model of this obstacle is that 
the point on the connecting line of two points on it is not inside the obstacle, that is, it is a concave obstacle [8].
Therefore, for concave obstacles of various shapes and sizes that may exist in the environment, the robot is easy 
to fall into the local minimum value, and the lack of dynamic environment adaptability problem, the reinforce-
ment learning idea is integrated into it, so based on reinforcement learning, it helps the robot in Make decisions 
when encountering various types of recessed obstacles.

2.3   Algorithmic Transition Condition

The conditions for the robot to transfer from the artificial potential field method to reinforcement learning are [9]:
    

                                                               Condition 1:       ,
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                                                               Condition 2:       A Aq q sβ− <                                                          (9)

When condition 1 or condition 2 is satisfied, the robot is considered to be at the minimum point. Among them, 
ε is a small positive number, indicating that the virtual resultant force of the robot is close to 0.  is a positive 
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number, and ,  is a certain state during the movement of the robot,  is the total distance of the 
robot from  to , when condition 2 is satisfied, the robot has moved a long distance, and The displacement is 
small, and when condition 2 occurs, the robot oscillates near the local extreme point. The robot can then switch to 
a reinforcement learning model to make decisions.

3   Reinforcement Learning Model Building

As an important branch of artificial intelligence algorithms, reinforcement learning has been widely used in the 
autonomous decision-making process of robots. Reinforcement learning is a machine learning method with a 
reward mechanism. When facing obstacles, the robot does not need to be guided by a priori data with labels, 
but through continuous trial and error, it continuously accumulates the decisions made to obtain the maximum 
reward, so as to obtain the maximum reward. Continuously optimize the robot selection strategy. The ability of 
robot environment adaptability and self-learning is improved.

By constantly exploring and trying to maximize the accumulated reward, learn the optimal action to take in 
different states. When using the artificial potential field method, the robot encounters the problem of a local min-
imum value after the path planning. The reinforcement learning method is used to make decisions, that is, when 
the minimum value is encountered, the rotation angle and the minimum range for escape are selected. Different 
concave objects have different choices. Through reinforcement learning, the robot’s avoidance ability when en-
countering concave obstacles is continuously improved. Design action spaces, action-value functions, and rein-
forcement learning for search angle and search range policies.

3.1   Reinforcement Learning Modeling

In reinforcement learning, the problem to be solved is often described and modeled by a Markov Decision 
Process (MDP) [10]. For a certain state, if this state only depends on the current state and has nothing to do with 
the past historical state, the Markov process formula is as follows:

( ) ( )1 1 2| | , ,...,t t t tP S S P S S S S+ =                                               (10)

In the formula,  represents the state at time t. The Markov decision process includes five elements: state set 
, action set , state transition probability , reward function , discount factor , so they are carried out 

separately. design.
(1) State set : The state set experienced by the robot. Contains the current speed of the robot, the size infor-

mation of the obstacle itself, etc.
(2) Action set : The set of actions that the robot can take. Contains the random rotation angle θ of the robot, 

and the movement step  of the robot during the principle local minima.
(3) State transition probability : the probability of the robot transitioning from state  to  after taking ac-

tion .
(4) Reward function : After the robot takes action , the reward obtained by transitioning from state  to 
.
(5) Discount factor : It is used to control the importance of the current reward and the future reward. It is also 

a factor introduced mathematically to facilitate the solution of the Markov decision process, within the range of  
γ ∈ (0, 1).

Therefore, the robot obtains the state  at time , and according to the strategy π, performs the corresponding 
action  and then reaches the new state , and then obtains the reward . The ultimate goal is to obtain the 
optimal strategy , so the Sum of awards received:
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where η is the discount coefficient, η ∈ (0, 1), and the state value function can be expressed as the expected 
value of the reward:

( ) ( )1 1t t tV S E r V Sη+ += +                                                           (12)

Among them,  is the mathematical expectation. Therefore, if the optimal strategy  determines the execu-
tion of the highest reward strategy, the Bellman equation is used to represent the highest reward value function:
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3.2   Algorithm Training Process

In order to improve the computing efficiency and avoid the randomness in the process of robot exploration and 
learning, the real action space model of the robot is approximated, and an effective action space model is selected 
according to the environmental information around the robot, so as to reduce the consumption of computing re-
sources and improve the learning rate. Finally, a strategy that is closer to the optimal is found. The Q-learning al-
gorithm based on approximate action model strategy selection is adopted, and its design process is shown in Fig. 
2:

Fig. 2. Training program design process
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3.3   Simulation Training Results and Analysis

Usually, the rescue robot moves on a two-dimensional plane, and the obstacles are generally static obstacles, 
which are unstructured environments, and the global map information is unknown. The robot is modeled by lidar 
scanning. The simulation environment platform used in this paper is Stage [11], and the main speed commands 
used by the rescue robot studied in this paper include linear speed and angular speed. In order to speed up the 
collection of data in the simulation environment, this paper sets up multiple types of U-slot static obstacles to 
enhance the robot’s ability to avoid obstacles, as shown in Fig. 3 and Fig. 4. The parameters of the experiment 
are set as follows: the learning rate , the discount factor , the maximum number of episodes is 5000, 
and the maximum number of execution steps is 500. And take the angle θ as ± 15°, ± 30°, ± 45°, ± 60° and ± 75° 
respectively. At this time, in order to ensure that the phenomenon of returning to the local minimum does not oc-
cur again, the local escape radius  should be larger, where  is taken as a fixed value of 0.

Fig. 3. The first U-groove environment

Fig. 4. The second U-groove environment

The hardware platform used for training in this section is NVIDIA GTX1080Ti, and the CPU is Intel i5 8th 
generation series. It takes about 48 hours to train for 4000 iterations.
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Fig. 5. Convergence result of the first U-groove environment

Fig. 6. Convergence result of the first U-groove environment

The path planning simulation results show that for the first U-shaped groove, it is obvious that the trained mo-
bile robot can reach the target point from the starting point without collision, and find a nearly optimal path with a 
path length of 42.4m and a total of 53 steps. The optimal path length obtained by the second U-slot robot is 44m, 
and a total of 55 steps are performed. In the early stage of training, the environmental information is unknown, so 
the training success rate is low. As shown in Fig. 5 and Fig. 6.

4   Conclusion

In this paper, aiming at the unstructured environment faced by rescue robots, an improved artificial potential field 
method based on reinforcement learning is proposed. The problems of stagnation and oscillation are solved by 
changing the repulsion angle and setting the virtual local minimum area. The simulation study of two sizes of 
U-shaped grooves is mainly used to illustrate that the algorithm proposed in this paper has the following charac-
teristics: (1) The traditional artificial potential is maintained. Some of the advantages of the field method are that 
the algorithm is simple and the path safety and smoothness are good; (2) it overcomes the shortcomings of the 
traditional artificial potential field method with local minimum; (3) the self-learning and self-adaptation of rein-
forcement learning.
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