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Abstract. In recent years, rapidly evolving networks have facilitated data interactions between users and 
goods, and recommender systems have emerged due to the needs of the times. Implicit feedback in recom-
mender systems always is divided into the observed item set and unobserved item set. However, items in the 
unobserved set often are treated equally, and the items that are of potential interest to users are not sufficiently 
exploited from unobserved items. In this paper, we come up with a method to solve the problem of the insuf-
ficient exploration of unrated items, and we contribute to the additional alleviation of rating sparseness. To do 
so, we propose a novel Bayesian personalized ranking with the synthesis of multiple users and item classifica-
tion (BPRS). For each user, we divide the items into three categories, which are positive, interest and negative. 
We conduct multiple user classification and item classification to exploit the items that are of interest and gen-
erate the final ranking. Experiments on three real-world datasets demonstrate the effectiveness of our algorithm 
for greatly improving the accuracy of recommendation results and alleviating the cold-start problem.

Keywords: Bayesian personalized ranking, multiple user and item classification, interest item detection, im-
plicit feedback

1   Introduction

Currently, the large amount of information and the large number of various products in modern society can be 
overwhelming to some people and make them hesitate in making choices. While recommender systems can pro-
vide personalized recommendations of users in minutes according to their interests, they may address information 
overload in online e-commerce transactions and social networking platforms. In recent years, recommender sys-
tems have brought huge benefits to major manufacturers, such as Taobao, Netflix, NetEase CloudMusic, Amazon, 
and YouTube [1]. From a practical perspective, the key to a personalized recommender system is to model users’ 
preferences for items based on their past interactions, and the process is known as collaborative filtering [2-3]. 
Among them, matrix factorization is a common method [4] which represents a user or an item by a latent eigen-
vector, and users’ interactions with items are approximated by an inner product of their latent vectors [5]. As a 
representative task in recommender systems, recommendation ranking applies collaborative filtering to provide a 
list of potential items for each user.

Usually, recommendation ranking algorithms are divided into two types, i.e., point-wise and pairwise algo-
rithms [6]. Among them, the purpose of point-wise algorithms is to minimize the loss between the true ratings 
and the predicted ratings [7]. While pair-wise algorithms, such as Bayesian Personalized Ranking (BPR) [8], are 
designed to maximize the difference in the relative preferences between a pair of rated and unrated items. 

Although some progress has been made in collaborative ranking methods based on implicit feedback, we 
believe that current modeling effects of unobserved items and users’ preferences still are unsatisfactory. Recent 
studies have divided unrated items in more detail and demonstrated that further division of unrated items can im-
prove the effectiveness of recommendations, thereby resulting in a better experience for users. However, existing 
research does not adequately describe how to divide unobserved items, and users’ potential interests need suffi-
cient exploration. Observed ratings should be exploited from more perspectives to characterize users’ interests. 
Therefore, the main issue we address is how to solve the distinction between potential interest items and negative 
items in unobserved items. 

Facing the challenges describes above, we focus on implicit feedback in recommender systems. Also, we di-
vide unrated items of each user into two sets, i.e., the potential items in which users may be interested and the 
items in which users have no interest at all. Therefore, items are divided into three subsets, i.e., the rated item set 
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potential interest item set and negative item set. By partitioning a subset of similar items and similar users, we 
can rank different items from multiple aspects. As shown in Fig. 1, we propose a new method of discovering the 
collections of potential interest items with specific processes. 

We explore the potential interests of users in two aspects. For the first aspect, we find similarity relationships 
between users. Then, we set users with similarity greater than  threshold1user as similar users, and then summa-
rize the rated items of similar users into a collection. According to the frequency of the occurrence for each item, 
items with a frequency of occurrence that is greater than  threshold2user are considered as interest items set1 ex-
cavated by threshold2user. For the second aspect, we find similarity relationships between items and set the items 
with similarity greater than threshold1user as similar items. Then, according to each user’s rated items, we summa-
rize a similar item collection. Items with a frequency of occurrence that is greater than threshold2item are consid-
ered as interest items set2. Then, we merge those two sets as interest items. Finally, for each user, we choose rated 
items as positive items, whereas items other than interest items and positive items are regarded as negative items. 
After dividing the three categories, we can learn user preferences and item features through Bayesian inference 
and predict the sort of items. Our contribution is summarized in the following points:

(1) We use user similarity and item similarity to determine whether an unrated item is an interest item. In addi-
tion, we design different similarity thresholds to find similar users and similar items.

(2) We propose a new algorithm of Bayesian recommendation ranking with the synthesis of multiple user and 
item classification (BPRS). We combine similarity of users and similarity of items and filter interest items. Then, 
we synthesize potential interest items obtained from two aspects, and sort them with the Bayesian inference 
framework.

(3) We perform extensive experiments using real-world datasets and compare the results with many state-of-
the-art algorithms. The results show that BPRS improves the accuracy and can alleviate the cold-start problem 
effectively.

The rest of this paper is organized as follows. Section 2 discusses related works about the BPR algorithm and 
introduces improved algorithms based on BPR; it also recommends some methods of calculating user and item 
similarity. Our problem definition and models are introduced in Section 3. Section 4 illustrates the dataset, exper-
imental process, and the analysis of the results. Section 5 presents our conclusions and the directions of our future 
work.

Fig. 1. The procedure of the BPRS model
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2   Related Work

In this section, first, we introduce the BPR algorithm that our work correlates with, then we introduce some BPR-
based algorithms, and finally we summarize the methods that calculate user or item similar relationships.

2.1   Bayesian Personalized Ranking

Rendle et al. proposed the Bayesian Personalized Ranking algorithm in 2009, which predicts rankings based on 
pairwise preferences among two items for a single user. It aims to provide each user with a sorted list of items. 
By changing the prediction of the rating of a single item to a pairwise rating between items, we can alleviate the 
problem of data sparsity to a large extent. 

There are two assumptions in the BPR algorithm. One is that the ratings of user u on different items are inde-
pendent of each other, which means, the ratings of user u on items i and j have nothing to do with other items. 
The other assumption is that the ratings of user u on items i and j have nothing to do with other users.

Then, the likelihood of the BPR algorithm for all users can be expressed as:
  

𝐵𝐵𝐵𝐵𝐵𝐵 = ∏ ∏ ∏ 𝐵𝐵
𝑗𝑗∈𝐼𝐼\𝐼𝐼𝑢𝑢

+
(𝑟𝑟𝑢𝑢𝑢𝑢 > 𝑟𝑟𝑢𝑢𝑗𝑗) (1 − 𝐵𝐵(𝑟𝑟𝑢𝑢𝑗𝑗 > 𝑟𝑟𝑢𝑢𝑢𝑢))

𝑢𝑢∈𝐼𝐼𝑢𝑢
+𝑢𝑢∈𝑈𝑈

 . (1)

where U is the user set, Iu
+

 is the set of positive items that have been rated by user u, and rui represents user u’s rat-
ing on item i.

2.2   BPR-related Algorithm

In recent years, many people have proposed relevant algorithms based on BPR. Studies have shown that most 
of collaborative filtering algorithms based on matrix decomposition are improved mainly in the following, i.e., 
weighting, sampling mode, the loss function, and constraint terms [9]. For the improvement of BPR, these aspects 
also are included, and new strategies are introduced to alleviate various problems, such as data sparsity and cold 
start.  

The group preference-based Bayesian personalized ranking algorithm (GBPR) [10] linearly blends individual 
preferences with group preferences. The ranking method with a fast adaptive and context-dependent sampling 
algorithm (AOBPR) [11], accelerates the convergence rate, especially with long-tail effects. Social Bayesian 
Personalized Ranking (SBPR) [12] considers the impact of real-life relationships and introduces social trust 
relationships into the recommendation process. Group Bayesian Personalized Ranking with Rich Interactions 
(GBPR+) [13] changes pair-wise levels between individual items in GBPR to pair-wise relationships between 
group items. Trinity Preference-based Bayesian Personalized Ranking (TBPR) [14] further alleviates the sparse-
ness of item information by dividing items into four sets based on user-related location information and the 
strength and weakness of interactions. BPR for heterogeneous implicit feedback (BPRH) [15] considers user 
auxiliary actions as well as deletion actions as implicit feedback. By using these user actions, BPRH increases the 
accuracy of item recommendations.

In recent years, various scholars also have made some efforts to alleviate the sparsity of data, and solve the 
cold-start problem. Double Bayesian Pairwise Learning (DBPL) [16] synthesizes new pair-order preference rela-
tionships through a preference between two pairs of items. Rating Bayesian Personalized Ranking (RBPR) [17] 
combines the matrix decomposition [18] with the BPR algorithm, thereby improving the effect to some extent in 
consideration of implicit feedback and display feedback.

2.3   Similarity Calculation

In recent years, similarity characteristics of users and items have been applied extensively to recommender sys-
tems in collaborative filtering. The most popular similarity metrics are Cosine, Pearson correlation coefficient 
(PCC), Constrained Pearson Correlation Coefficient (CPCC), Jaccard, etc. 
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Among these, the PCC considers a linear correlation between two rating vectors, which is defined as:

𝑆𝑆𝑆𝑆𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝(𝑎𝑎, 𝑏𝑏) =
Σ𝑗𝑗∈𝐼𝐼𝑎𝑎∩𝐼𝐼𝑏𝑏(𝑅𝑅𝑎𝑎,𝑗𝑗 − �̅�𝑅𝑎𝑎)(𝑅𝑅𝑏𝑏,𝑗𝑗 − �̅�𝑅𝑏𝑏)

√Σ𝑗𝑗∈𝐼𝐼𝑎𝑎(𝑅𝑅𝑎𝑎,𝑗𝑗 − �̅�𝑅𝑎𝑎)2√Σ𝑗𝑗∈𝐼𝐼𝑏𝑏(𝑅𝑅𝑏𝑏,𝑗𝑗 − �̅�𝑅𝑏𝑏)2
 . (2)

where j is a collection of items jointly evaluated by users a and b; �̅�𝑅𝑎𝑎 is the average rating given by users a; Ra,j 

is the rating of item j given by user a. PCC is used extensively to measure the degree of correlation between two 
variables, with values between -1 and +1.

CPCC, based on the PCC, we use the median of the rating to represent the boundary of user interest, which is 
defined as:

𝑆𝑆𝑆𝑆𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎, 𝑏𝑏) =
Σ𝑗𝑗∈𝐼𝐼𝑎𝑎∩𝐼𝐼𝑏𝑏(𝑅𝑅𝑎𝑎,𝑗𝑗 − 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚,𝑎𝑎)(𝑅𝑅𝑏𝑏,𝑗𝑗 − 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚,𝑏𝑏)

√Σ𝑗𝑗∈𝐼𝐼𝑎𝑎(𝑅𝑅𝑎𝑎,𝑗𝑗 − 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚,𝑎𝑎 )
2√Σ𝑗𝑗∈𝐼𝐼𝑏𝑏(𝑅𝑅𝑏𝑏,𝑗𝑗 − 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚,𝑏𝑏 )

2
 . 

(3)

where Rmed,a  is the median rating given by users a, and Ra,j  indicates that user a’s rating on item j.
Many scholars also are innovating constantly on this basis. A new item similarity based on the α-divergence 

method [19] is calculated based on the probability density distribution of ratings, which greatly reduces the de-
pendence on co-rated cases. The method also considers the influence of scores and the ratio of co-rated cases on 
the results, which effectively improve the accuracy of recommendations. In addition, a new method derived from 
the subspace clustering approach was proposed to construct the neighbor user tree, and a new similarity method 
was used to find similar users. Triangle multiplying Jaccard (TMJ) similarity [20] considers the length and angle 
of rating vectors and non-co-rating users. Improve_CF [21] consists of three parts, i.e., Jaccrd, CPCC, and CF-
Coefficient [21], to further improve the effect. 

3   Recommendation with The Synthesis of Multiple User and Item Classification

In this section, first we elaborate on our problem and explain the variables we used. Then, we provide a concrete 
approach on how to find a collection of interest items. Finally, we introduce the new recommendation algorithm, 
BPRS, and detail its partitioning process. The entire process of BPRS is shown in Section 1, Fig. 1.

3.1   Problem Definition

For each user u, in addition to rated items, numerous unknown items include the items which user may like po-
tentially and the items users do not like. Based on this, for each user u, we divide the remaining items into two 
categories, i.e., potential interest and negative items. Hence, we can define that: 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖 ∈  𝐼𝐼𝑢𝑢
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑗𝑗 ∈  𝐼𝐼𝑢𝑢

𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑘𝑘 ∈  𝐼𝐼𝑢𝑢
𝑖𝑖𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

 

where 𝐼𝐼𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  refers to rated items of user u,  𝐼𝐼𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 refers to potential interest items of user u, and 𝐼𝐼𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛   

refers to negative items of user u. Then, we use i > u  j to represent that user u prefers item i to item j, and we de-
fine i > u  j,  j > u k. Because of the transitivity of  > u , we can get i > u k. Since we can differentiate positive items 
based on the rating data, our model mainly extracts the interest items in the intermediate layer. After dividing the 
interest items, we will choose the remaining items as negative items.

We define U as the set of users, and I as the set of items. Users and items constitute the interactions with a 
matrix R, where we assume there are M users and N items, and therefore, we have R ϵ RM×N.  Then, we define the 
user-related matrix P as an M×f  matrix PM×f and the item-related matrix Q as an N×f  matrix QN×f where f is the 
number of latent factors [22]. In addition, we define the global preference on items is b1×N, and each element in 
the interaction matrix R as rui, representing user u’s rating on item i. In building the model, we use u ϵ [1, M] to 
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represent a user and i ϵ [1, N] to represent an item. Our goal is to predict the hidden matrix �̂�𝑃𝑀𝑀×𝑓𝑓  , the  �̂�𝑄𝑁𝑁×𝑓𝑓   and 
the global preference b1×N through existing rating information in order to obtain the predicted rating matrix. And 
for each user u we have �̂�𝑅𝑢𝑢1×𝑁𝑁 = �̂�𝑈𝑢𝑢1×𝑓𝑓 × 𝐼𝐼𝑓𝑓×𝑁𝑁 + 𝑏𝑏1×𝑵𝑵  .

3.2   Dividing the Intermediate Layer with Multiple User and Item Classifi cation

It is obvious that, in the unrated items, there are still many items that are of interest to users. Therefore, for each 
user, we divide all items into three categories, i.e., a set of positive items, a set of items of interest, and a set of 
negative items. 

To extract the intermediate layer of items, we have to analyze which items users might like. First, user u pre-
fers items purchased by users who have similar characteristics of its own interests. Therefore, we can think that 
user u may buy the items that are similar to the similar users’ interests. Meanwhile, users also will purchase the 
items with similar characteristics to the items they have already purchased. Therefore, we will divide the middle 
layer by dealing with both  similar users and purchased items. First, we should judge the relationship between 
two users or two items. In that case, we choose CPCC similarity to measure the similarity relationship between 
two users or two items. Then, we select the users or items that have similarities greater than a certain threshold. 
Considering that the interests of diff erent users are independent, and the number of similar users per user varies 
greatly, we delineate similar users with a single threshold, so that the numbers of similar users for diff erent users 
are diff erent. At the same time, since there maybe common similarities and universalities between items, the num-
ber of similar items per item is close, and then we select the same number of similar items for each rated item. To 
do so, the similarity threshold of each item should be diff erent and unique. Then, we use two methods to get the 
appropriate thresholds. We designate the threshold for dividing similar users as threshold1user and the threshold for 
dividing similar items as threshold1item.  For the calculation of threshold1user, fi rst we rank the calculation results of 
each user’s similarities with all of the other users, so that we can get a ranked similarity matrix, which we refer to 
as the similarranked-user matrix. Note that, in this ranked similarity matrix, each column belongs to one user, and, in 
each column, her/his similarities with other users are ranked among the highest to the lowest. Then, we average 
the similarity value of the T1 th row in the similarranked-user matrix to obtain threshold1user, as shown in Fig. 2. The 
calculation process is as follows:

𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑜𝑜𝑜𝑜𝑑𝑑1𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = ∑ 𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟(𝑇𝑇1,𝑠𝑠)𝑁𝑁𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟
𝑖𝑖=1

𝑀𝑀  .  (4)

where M is the number of users, i is the index of a user, T1,  is the row number of the similarranked-user matrix, and  
similarranked-user (T1, i) is the value of the T1th row and ith column in this matrix. Then, we select users whose simi-
larities are greater than thereshold1user as similar users.

Fig. 2. The calculation process of threshold1user

For the calculation of threshold1item, we also rank the calculation results for each item by similarity values, so 
that we can get the similarranked-item matrix, where each column belongs to one item, and the similarities in each col-
umn are ranked from the highest to the lowest. Then, for each item, we choose the value of the T2th row in each 
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column of the similarranked-item matrix as threshold1item. N ote that threshold1item is a one-dimensional array, which 
means each item has its unique threshold, as shown in Fig. 3. The calculation process is as follows:

𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑑𝑑1𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖) =  𝑟𝑟𝑖𝑖𝑠𝑠𝑖𝑖𝑜𝑜𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑇𝑇2, 𝑖𝑖) .  (5)

where i is the item index, threshold1item(i) is the unique threshold of item i, and similarranked-item (T2, i) is the value of 
T2th row and the ith column in the matrix. Then, we select items whose similarities are greater than thereshold1item

as similar items.

Fig. 3. The process of calculating threshold1item

Next, we s ummarize the rated items of each similar user and record the frequency of occurrence for these 
items. If the frequency of occurrence for an item is greater than threshold2user, we identify the item as an interest 
item explored in the user aspect, as shown in Fig. 4. F or the calculation of threshold2user, w e multiply the number 
of similar users by a specifi c percentage, β1 to get threshold2user. The calculation process is as follows:

𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑑𝑑2𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑢𝑢) = 𝑁𝑁𝑢𝑢𝑠𝑠𝑠𝑠−𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑢𝑢) × 𝛽𝛽1 .  (6)

where  Nsim−user  is the number of similar users, and u is the index of a user.

Fig. 4. Collection of items of interest from the user perspective

In the same way, we summarize the set of similar items for all the rated items of user u, and we record the fre-
quency of occurrence for each item. If the frequency of occurrence for an item is greater than threshold2item, we 
identify the item as an item of interest explored in the item aspect, as shown in Fig. 5. Also, we calculate thresh-
old2item in a similar way, and we multiply the number of similar items by a specifi c percentage, β2, to get thresh-
old2item. The calculation process is as follows:
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𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑑𝑑2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖) = 𝑁𝑁𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑟𝑟−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑢𝑢) × 𝛽𝛽2 .  (7)

where Nrated-item (u) is the number of user u’s rated items.

Fig. 5. Collection of interest items in the item aspect

To summarize the process, we combine the items explored from the user aspect with the items explored in the 
item aspect, so that we can get the set of items of interest. Then, items other than the items of interest and positive 
items are treated as negative items. Generally, for each user, u, total items can be divided into three sets of items 
as follows:

• 𝐼𝐼𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 : Rated items

•  𝐼𝐼𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 : Interest items

• 𝐼𝐼𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  : Negative items

We calculate ratings of items by matrix decomposition and they are estimated as follows: 

�̂�𝑟𝑢𝑢𝑢𝑢 = 𝑏𝑏𝑢𝑢 + 𝑝𝑝𝑢𝑢
𝑇𝑇𝑞𝑞𝑢𝑢.  

�̂�𝑟𝑢𝑢𝑢𝑢 = 𝑏𝑏𝑢𝑢 + 𝑝𝑝𝑢𝑢
𝑇𝑇𝑞𝑞𝑢𝑢 . 

�̂�𝑟𝑢𝑢𝑢𝑢 = 𝑏𝑏𝑢𝑢 + 𝑝𝑝𝑢𝑢
𝑇𝑇𝑞𝑞𝑢𝑢 . 

(8)

Among them,  bi, bj, bk are the inherent biases of item i, j, and k, respectively. Each user u is associated with the 
latent vector pu ϵ Rf×1, and item i, j and k are related to the vectors qi, qj, qk ϵ Rf×1. Hence, each rating is based on 
the inner product of these two vectors, so missing values in the dataset can be predicted.

3.3   Sorting Algorithm

For an individual user u, the set of items is divided into three parts, which are the positive item set, the interest 
item set, and the negative set, so the item-set group for each user is given by

𝐺𝐺(𝑢𝑢) = {(𝑖𝑖, 𝑗𝑗, 𝑘𝑘)|𝑖𝑖 ⊆ 𝐼𝐼𝑢𝑢
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝐼𝐼𝑢𝑢

𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝, 𝐼𝐼𝑢𝑢
𝑖𝑖𝑝𝑝𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝} .  (9)

Therefore, we use a multi-layer Bayesian personalized rank model to represent the hierarchical relationships 
among items of diff erent grades. We defi ne that

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑢𝑢, 𝑖𝑖) ≻ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑢𝑢, 𝑗𝑗) ≻ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑢𝑢, 𝑗𝑗)  

 
Based on the above conditions, because the posterior probability is proportional to the likelihood function, the 

posterior probability of all user preferences can be written as the following likelihood function:
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∏ ∏ 𝑝𝑝(�̂�𝑟𝑢𝑢𝑢𝑢 > �̂�𝑟𝑢𝑢𝑢𝑢 > �̂�𝑟𝑢𝑢𝑢𝑢|𝜃𝜃)
(𝑢𝑢,𝑢𝑢,𝑢𝑢)∈ℐ𝑢𝑢∈𝑈𝑈

 

= ∏ ∏ 𝑝𝑝(�̂�𝑟𝑢𝑢𝑢𝑢 > �̂�𝑟𝑢𝑢𝑢𝑢|𝜃𝜃) ⋅ 𝑝𝑝(�̂�𝑟𝑢𝑢𝑢𝑢 > �̂�𝑟𝑢𝑢𝑢𝑢|𝜃𝜃)
(𝑢𝑢,𝑢𝑢,𝑢𝑢)∈ 𝐺𝐺(𝑢𝑢)𝑢𝑢∈𝑈𝑈

 . 

(10)

Among them, we have

𝑝𝑝(𝑖𝑖 >𝑢𝑢 𝑗𝑗|𝜃𝜃) ≔ 𝜎𝜎 (�̂�𝑟𝑢𝑢𝑢𝑢𝑢𝑢(𝜃𝜃)) .  (11)

At the same time, it holds true that

𝜎𝜎 (�̂�𝑟𝑢𝑢𝑢𝑢𝑢𝑢(𝜃𝜃)) = 1

1+𝑒𝑒−(�̂�𝑟𝑢𝑢𝑢𝑢𝑢𝑢(𝜃𝜃))
 .  (12)

�̂�𝑟𝑢𝑢𝑢𝑢𝑢𝑢(𝜃𝜃) = �̂�𝑟𝑢𝑢𝑢𝑢(𝜃𝜃) − �̂�𝑟𝑢𝑢𝑢𝑢(𝜃𝜃) .  (13)

where �̂�𝑟𝑢𝑢𝑢𝑢𝑢𝑢(𝜃𝜃) 
 

 

 

 

 

 represents the preference between two items of an individual user, and θ represents the variables 
that have to be optimized.

To reduce the complexity of the computations, we use log likelihood and finally obtain the following equation:

max
Θ

𝐹𝐹 = ∑ ∑ 𝛼𝛼 ln 𝜎𝜎 (�̂�𝑟𝑢𝑢𝑢𝑢𝑢𝑢(𝜃𝜃))
𝑢𝑢,𝑢𝑢𝑢𝑢

+ ∑ ∑(1 − 𝛼𝛼) ln 𝜎𝜎 (�̂�𝑟𝑢𝑢𝑢𝑢𝑢𝑢(𝜃𝜃))
𝑢𝑢,𝑢𝑢𝑢𝑢

 . 

 

 

 

 

 

 

(14)

Among them, Θ = {𝒑𝒑𝑢𝑢, 𝒒𝒒𝑖𝑖, 𝒒𝒒𝑗𝑗, 𝒒𝒒𝑘𝑘, 𝒃𝒃𝑖𝑖, 𝒃𝒃𝑗𝑗, 𝒃𝒃𝑘𝑘, 𝑢𝑢 ∈ 𝑼𝑼, 𝑖𝑖, 𝑗𝑗, 𝑘𝑘 ∈ 𝑰𝑰} 
 

 

 

 

 

, α is the weight parameter, which is used to con-
trol the weight of the impact of the first and second terms. To avoid overfitting, we add the regularization term to 
obtain the final objective function.

max
Θ

𝐹𝐹 = ∑ ∑ 𝛼𝛼 ln 𝜎𝜎 (�̂�𝑟𝑢𝑢𝑢𝑢𝑢𝑢(𝜃𝜃))
𝑢𝑢,𝑢𝑢𝑢𝑢

+ ∑ ∑(1 − 𝛼𝛼) ln 𝜎𝜎 (�̂�𝑟𝑢𝑢𝑢𝑢𝑢𝑢(𝜃𝜃))
𝑢𝑢,𝑢𝑢𝑢𝑢

 

+ ∑ ∑ 𝜆𝜆
2

𝑢𝑢,𝑢𝑢,𝑢𝑢
(‖𝒑𝒑𝒖𝒖‖2 + ‖𝒒𝒒𝒊𝒊‖2 + ‖𝒒𝒒𝒋𝒋‖2 + ‖𝒒𝒒𝒌𝒌‖2 + 𝑏𝑏𝑢𝑢

2 + 𝑏𝑏𝑢𝑢
2 + 𝑏𝑏𝑢𝑢

2)
𝑢𝑢

 . 

 

 

 

 

(15)

3.4   Learning Model

We find the parametric optimal solution by using stochastic gradient descent. But to learn the set of parameters 
Θ = {𝒑𝒑𝑢𝑢, 𝒒𝒒𝑖𝑖, 𝒒𝒒𝑗𝑗, 𝒒𝒒𝑘𝑘, 𝑏𝑏𝑖𝑖, 𝑏𝑏𝑗𝑗, 𝑏𝑏𝑘𝑘} 

 

 

 

 

that maximize the posterior probability, we use a stochastic gradient rise approach:

𝜃𝜃 = 𝜃𝜃 + 𝜂𝜂 Δ𝜃𝜃 . 
 

 

 

(16)

where η is the learning rate, and Δθ is a differential of the model parameters. The final calculation yields the fol-
lowing results:
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𝑏𝑏𝑖𝑖
1 = 𝑏𝑏𝑖𝑖

0 + 𝜂𝜂 (𝛼𝛼 1
1 + 𝑒𝑒�̂�𝑟𝑢𝑢𝑢𝑢𝑢𝑢

− 𝜆𝜆 𝑏𝑏𝑖𝑖) . 

 

 

(17)

𝑏𝑏𝑗𝑗
1 = 𝑏𝑏𝑗𝑗

0 + 𝜂𝜂 (𝛼𝛼 −1
1 + 𝑒𝑒�̂�𝑟𝑢𝑢𝑢𝑢𝑢𝑢

+ (1 − 𝛼𝛼) 1
1 + 𝑒𝑒�̂�𝑟𝑢𝑢𝑢𝑢𝑢𝑢

− 𝜆𝜆 𝑏𝑏𝑗𝑗) . 

 𝑏𝑏𝑘𝑘
1 = 𝑏𝑏𝑘𝑘

0 + 𝜂𝜂 ((1 − 𝛼𝛼) −1
1 + 𝑒𝑒�̂�𝑟𝑢𝑢𝑢𝑢𝑢𝑢

− 𝜆𝜆 𝑏𝑏𝑘𝑘) . 

𝑝𝑝𝑢𝑢
1 = 𝑝𝑝𝑢𝑢

0 + 𝜂𝜂 (𝛼𝛼 1
1 + 𝑒𝑒�̂�𝑟𝑢𝑢𝑢𝑢𝑢𝑢

 (𝑞𝑞𝑖𝑖 − 𝑞𝑞𝑗𝑗) + (1 − 𝛼𝛼) 1
1 + 𝑒𝑒�̂�𝑟𝑢𝑢𝑢𝑢𝑢𝑢

(𝑞𝑞𝑗𝑗 − 𝑞𝑞𝑘𝑘) − 𝜆𝜆 𝑝𝑝𝑢𝑢) . 

𝑞𝑞𝑖𝑖
1 = 𝑞𝑞𝑖𝑖

0 + 𝜂𝜂 (𝛼𝛼 1
1 + 𝑒𝑒�̂�𝑟𝑢𝑢𝑢𝑢𝑢𝑢

 𝑝𝑝𝑢𝑢 − 𝜆𝜆 𝑞𝑞𝑖𝑖) . 

𝑞𝑞𝑗𝑗
1 = 𝑞𝑞𝑗𝑗

0 + 𝜂𝜂 (𝛼𝛼 −1
1 + 𝑒𝑒�̂�𝑟𝑢𝑢𝑢𝑢𝑢𝑢

 𝑝𝑝𝑢𝑢 + (1 − 𝛼𝛼) 1
1 + 𝑒𝑒�̂�𝑟𝑢𝑢𝑢𝑢𝑢𝑢

− 𝜆𝜆 𝑞𝑞𝑗𝑗) . 

𝑞𝑞𝑘𝑘
1 = 𝑞𝑞𝑘𝑘

0 + 𝜂𝜂 ((1 − 𝛼𝛼) −1
1 + 𝑒𝑒�̂�𝑟𝑢𝑢𝑢𝑢𝑢𝑢

 𝑝𝑝𝑢𝑢 − 𝜆𝜆 𝑞𝑞𝑘𝑘) . 

The algorithms are shown in Table 1 as follows:

Table 1. Learning in the proposed algorithm BPRS

Algorithm 1. Learning in the proposed algorithm BPRS
Input: user set U, item I, ratings R, the dimension of feature space f, regularization parameters λθ, weight parame-
ter α, learning rate η.

Output: 𝛩𝛩 ∈ {𝒑𝒑𝑢𝑢, 𝒒𝒒𝑖𝑖, 𝒒𝒒𝑗𝑗, 𝒒𝒒𝑘𝑘, 𝒃𝒃𝑖𝑖, 𝒃𝒃𝑗𝑗, 𝒃𝒃𝑘𝑘} 
1. Randomly generate training set and test set from the dataset

2. Do item classification

3. Initialize the parameters Θ ~ N (0, 0.001)

4. for iterations do

5.    for training sample do

6.       Randomly sample a user u ϵ U

7.       Randomly sample an event i ϵ 𝐼𝐼𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

8.       Randomly sample an event j ϵ  𝐼𝐼𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

9.       Randomly sample an event k ϵ 𝐼𝐼𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  
10.       pu ← pu + η Δ pu

11.       qi ← qi + ηΔ qi

12.       qj ← qj + η Δ qj

13.       qk ← qk + η Δqk

14.       bi ← bi + η Δbi

15.       bj ← bj + η Δbj

16.       bk ← bk + η Δbk

17.    end

18. end

19. return Θ
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3.5   Complexity

The computational complexity of BPRS consists of three main parts, i.e., pre-classification, training the model, 
and rating the prediction. The complexity of the classification is equal to  𝛰𝛰(∑ |𝐼𝐼�̅�𝑢|𝑢𝑢 ) , where |𝐼𝐼�̅�𝑢|  is the number 

of items that are not rated by each user. The total number of unrated items for all users is equal to  |�̅�𝑅| . In this sec-
tion, we use two methods to classify the items, so the complexity of the pre-classification is  𝑂𝑂(2|�̅�𝑅|) . The com-
plexity of the process of training the model can be divided into three parts. In every iteration, the computational 
complexity of pu is O(f ∙ |R|, where f is the dimension of the feature space for the user and the item and |R| is the 
number of training ratings. And the computational complexity of bi, bj, bk is O(3 ∙ f ∙ |R| , and the computational 
complexity of  qi, qj, qk is O(3 ∙ f ∙ |R|). Then the complexity of the second part is O(7 ∙ f ∙ |R| ∙ N), where N is the 
number of iterations. For the rating prediction, the complexity is O(m ∙ n ∙ f), where m is the number of users, and  
n is the number of items. Therefore, according to the steps of the algorithm, the time complexity of our algorithm 
is O( 7 ∙ f ∙ |R| ∙ N + m ∙ n ∙ f + 2 |�̅�𝑅| ). 

4   Experimental Setup

In this section, we describe our experimental setup and analyze the results. In addition, in order to show the supe-
riority of our algorithm, we compare our model with other algorithms.

4.1   Dataset

In this part, we evaluate the effectiveness of our model on three real-world datasets of our experiments. The three 
datasets we selected are Movielens 100k (ML-100K), Movielens 1M(ML-1M), and Epinions. Among them, 
Movielens is published by Grouplens Lab [23], and Epinions.com is a well-known creative common site and re-
view site, where users can review items and assign the ratings in the range of 1 to 5 [24]. The statistics of these 
datasets are shown in Table 2. Movielens 100k, which includes 100,000 ratings, consists of 943 users and 1,682 
items. Movielens 1M includes 1,000,209 ratings, with 6,040 users and 3,706 items. Epinions consists of 276,116 
ratings, and it has 7,411 users and 8,728 items. All of the scores are integers in the range of 1 to 5, and the higher 
scores indicate higher preferences. 

For each dataset, we list items rated 1-5 as positive items for users. In this experiment, we used 5-fold 
cross-validation with five cross-validations per dataset, and we use the average as the experimental result. 

Table 2. Details of the dataset

Dataset Movielens 100K Movielens 1M Epinions

User 943 6040 7411

Item 1682 3706 8728

Ratings 100,000 1,000,209 276,116

Sparsity 93.7% 95.5% 99.6%

Average number of ratings per user 106 166 37

Average number of ratings per item 25 253 32

For the evaluation of the models, we use three traditional and general methods, i.e., precision [25], recall [26], 
and F1 [27], to evaluate the effect of our ranking results, top-N. 

For, precision, recall, and F1, the algorithm is defined as follows:

𝑃𝑃@𝐿𝐿 = 1
𝑚𝑚 ∑ 𝐷𝐷𝑢𝑢(𝐿𝐿)

𝐿𝐿

𝑚𝑚

𝑢𝑢=1
 . (18)
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𝑅𝑅@𝐿𝐿 = 1
𝑚𝑚 ∑ 𝐷𝐷𝑢𝑢(𝐿𝐿)

𝐶𝐶𝑢𝑢(𝐿𝐿)

𝑚𝑚

𝑢𝑢=1
 . 

(19)

𝐹𝐹1@𝐿𝐿 = 2𝑃𝑃𝑃𝑃𝑃𝑃@𝐿𝐿 × 𝑅𝑅𝑃𝑃𝑅𝑅@𝐿𝐿
𝑃𝑃𝑃𝑃𝑃𝑃@𝐿𝐿 + 𝑅𝑅𝑃𝑃𝑅𝑅@𝐿𝐿  . (20)

where L is the length of the recommendation list, m is the total number of users, Du(L) represents the number of 
recommendation results verified in the test set, and Cu(L) indicates the number of items selected by the user u in 
the test set.

4.2   Baseline

To compare the superiority of the algorithms, we compare our algorithm with the existing state-of-the-art algo-
rithms. Therefore, we select five baseline algorithms and implemented them through librec or the open-source 
code on github, including BPR, AOBPR, EALS, GBPR, PNMF, NMFItemItem, and BUIR, which are described 
as follows:

BPR [8]: The algorithm transforms the original rating of a single user on a single item into a pair sort between 
items within a single user, thereby optimizing the sorting of the product preferences of each user.

AOBPR [11]: The algorithm accelerates the convergence of SGD mainly by non-uniformly sampling the 
non-implicit feedback data, and it avoids long-tail effects.

EALS [4]: The algorithm is based on an element alternating least squares algorithm that can effectively opti-
mize the matrix decomposition model with variable weighted missing data.

GBPR [13]: The algorithm proposes group preferences between users, applying the SGD algorithm to train the 
model. 

PNMF [28]: The algorithm combines NMF and conventional SVD or PCA decomposition to have better ma-
trix orthogonality and sparsity.

NMFItemItem [29-30]: The algorithm differs from the original non-negative matrix decomposition in that it 
uses a decomposition of the item-item matrix, which is much easier to use for fast online recommendations with a 
lot of new or fast-changing users.

BUIR [31]: The algorithm proposes a novel OCCF framework, which does not require negative sampling.
Since there are many parameters in the recommended algorithm, its selection will greatly affect the effect of 

the algorithm. In our experiments, we modulate the parameters of the algorithm appropriately before compari-
son. In addition, we set the number of hidden features f for the user and the item to 50, and for the BPR, AOBPR, 
EALS, GBPR, PNMF, and NMFItemItem we set the learning rate to 0.1, and the regularization coefficient for the 
user and the item to 0.01. For BUIR, we set the learning rate to 0.001 and the regularization coefficient for the 
user and the item to 0.0001. For the GBPR, we set the group size to 3. For the AOBPR, we set the distribution to 
5.

In our model, we use different parameters for different datasets. We set T1 to 51 and T2 to 280 in three data-
sets. For α, we set it to 0.24 in ML 100K and Epinions, we set it to 0.3 in ML 1M. For β1, we set it to 0.20 in 
ML-100K, 0.14 in ML-1M, 0.013 in Epinions. For β2 , we set it to 0.15 in ML-100K, 0.18 in ML-1M, 0.35 in 
Epinions. All test results were obtained using five-fold cross-validation.

4.3   Analysis of the Experimental Results

In this section, by analyzing the experimental results, we prove the superiority of our model over other algo-
rithms, and we prove that it has better cold-start capability.

4.3.1   The Effect of Parameters

To test the performance of our model, we conduct experiments to assess the following parameters, i.e., the length, 
L, of the recommended list, the threshold, T1, selected by similar users, and the weight factors, α.

Fig. 6 shows the trend of the accuracy of our algorithm with the recommended list length L, and in our exper-
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imental results, we can find that precision values decrease and recall values increase, because as L increases, pre-
cision predicts correct items are limited; the precision denominator grows rapidly, while the recall denominator 
test set length remains unchanged and molecular predicts correct items. But for the different datasets, we find that, 
as the datasets became sparser, the precision and recall values became correspondingly lower. For example, for 
epinions, the model predicts poorly. But for the two datasets of movielens, our model performed better because it 
had more data. In the following experiments, we set the value of L to 10 for convenience.

Fig. 6. Impact of the length of the recommendation list

Our model also will be affected by the hyper-parameters of the model, in which the settings of the threshold 
and the parameter α have a large impact on the model. Therefore, Fig. 7 shows the effect of the threshold value of 
T1, and Fig. 8 shows the effect of the α.

When performing experiments to test the effect of the threshold T1, we set T2 to 280 and α to 0.24, and Fig. 5 
shows the results of the experiment. By changing T1, we find that the accuracy increases and then decreases or 
basically remains unchanged as T1 changes, while the most suitable values of T1 generally do not exceed 100. At 
the same time, we find that too few users will reduce the accuracy because too little user data is obtained, which 
is not much help to the model, and too many similar users will add too much noise, thus including more negative 
items in the potential interest item. From Epinions experiments, we find that selecting appropriate similar users 
can improve the accuracy of the data significantly with large sparsity. This is because the original dataset is very 
sparse, and by adding user similarities, the sparseness can be significantly improved, allowing the discovery of a 
large number of items of interest. For the Movielens 100k and Movielens 1M, because we chose the value of T2  

to be 280, we have screened a part of the items, so, although the accuracy of the prediction is improved by chang-
ing the value of T1, it is not improved significantly.

Fig. 7. Impact of T1
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When performing experiments to test the effects of α, we set T1 to 51, and we set T2 to 280. The results of the 
experiment are shown in Fig. 8, and it is apparent that the recommended accuracy increases first and then de-
creases as α increase. This phenomenon is evident in all three datasets. This is because we divide all the items 
into three categories, i.e., positive items, potential interest items, and negative items. For these three sets of items, 
users have similar attitudes to positive items and potential interest items, and far better attitudes to potential in-
terest items than negative items. Therefore, for the objective function, we should add more weight to the second 
term, the pairwise between the user potential interest item and the negative items. However, if α is too large, it 
means that the whole weight is added to the latter term. Blindly expanding the pair-wise relationship between 
interest items and negative items will ignore the priority of positive items, thereby increasing the priority of some 
incorrect items of interest, resulting in the introduction of more noise, and affecting the ranking.

Fig. 8. Impact of  α

4.3.2   Comparison with Baselines

To illustrate the performance of BPRS, we compare our model with various baselines. Table 3 shows the results 
of our experiments on three real-world datasets, and by analyzing the experimental results, we can draw the fol-
lowing conclusions:

• BPRS has achieved good results on our evaluation indicators, which are precision, recall, and F1. Its main 
contribution is to obtain each user’s hidden interest items by simultaneously using the similarity between 
users and items, further alleviating the sparseness of data and including a large number of hidden interest 
items in the rating items.

• BPRS performed well under all conditions, and BPR-based algorithms also performed well. GBPR further 
improved the effect by exploiting group preferences between users. AOBPR mainly speeds up the conver-
gence, but it has little effect on improving accuracy. In addition, we also find that PNMF has lower accu-
racy, because simply using PNMF dimensionality reduction will cause data points to overlap between low 
dimensions, which will affect the calculation of similarity. Although NMFItemItem also uses a non-nega-
tive matrix decomposition, it decomposes the item matrix into the inner product of the two matrices, tak-
ing into account the user’s current purchase situation and predicting the next purchase. To some extent, the 
accuracy rate has been improved.

• In addition, we find that BPRS has greatly improved BUIR for two main reasons. First, BUIR is better at 
recommending sparse matrices that contain large numbers of users, such as user-item systems with both 
users and items greater than 10,000. Second, BUIR did not conduct a negative sample, but randomly gen-
erated negative items from items that had never been rated. BPRS generates and grades negative items 
based on existing data, thus making the hierarchical relationship of items within each user more reason-
able.

• Based on the dataset, the performance of the two datasets of ML is similar due to the similarity of the fea-
tures. For epinions, the results are low because the dataset is very sparse. In conclusion, BPRS improved 
by 11.7% on M L-1M, 15.7% on M L-100K over BPR, and 33.1% on epinions.
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Table 3. Performance evaluation of different recommendation algorithms

ML-100k ML-1M Epinions

R @10 P @10 F1 @10 R @10 P @10 F1 @10 R @10 P @10 F1 @10

BPR 0.2028 0.3028 0.2429 0.1407 0.3053 0.1926 0.0657 0.0443 0.0529

AOBPR 0.1875 0.2866 0.2266 0.1248 0.2865 0.1738 0.0660 0.0456 0.0539

EALS 0.1799 0.2539 0.2105 0.1476 0.2818 0.1937 0.0681 0.0439 0.0534

GBPR 0.2198 0.3326 0.2646 0.1359 0.3070 0.1884 0.0667 0.0445 0.0534

PNMF 0.1705 0.2674 0.2082 0.1031 0.2563 0.1470 0.0461 0.0335 0.0388

NMF-
Item-Item 0.1949 0.3026 0.2371 0.1122 0.2616 0.1570 0.0627 0.0410 0.0496

BUIR 0.2041 0.3144 0.2475 0.1332 0.2898 0.1825 0.0774 0.0485 0.0590

BPRS 0.2338 0.3522 0.2810 0.1572 0.3384 0.2147 0.0932 0.0565 0.0704

4.3.3   Results on Cold-start Users

One of the most common problems of recommender systems is their cold-start problem. For a user group, new 
users must join, but among new users, explicit feedback, such as purchase behavior, and implicit feedback, such 
as click-through, are very sparse.

In order to verify the ability of our model to solve cold-start problems, we select users who operated on less 
than γ to evaluate their ability to solve users’ cold-start problems by analyzing the effect of model processing and 
comparing it with baseline algorithms. Considering the sparseness and scale of different datasets, we set γ to 26 
in ML-100K and Epinions and 16 in ML-1M. It is important to note that our cold-start users exist in the entire 
user-item dataset, so during the training of the model, we put all of the users together into the model for training. 
Finally, users with fewer than γ interactions are filtered as cold-start users, and the precision and recall of their 
prediction ranking will be calculated as the recommended accuracy of cold-start. The result is shown in Fig. 9.

(a) Result in Epinions
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(b) Result in ML-100K

(c) Result in ML-1M
Fig. 9. Results of different algorithms for cold-start users in different datasets

As shown in the Fig. 9, the accuracy of the cold-start users is reduced due to their lack of data. It shows that 
BUIR works better for the datasets with large sparsity, and EALS performs well when the dataset is less sparse 
and not large. Its practical effect in the Movielens 1M is not much lower than BPRS. For BPRS, the similar rela-
tionship between similar items and similar users is calculated in advance according to the existing data. By divid-
ing the collection of forecast items into three levels, we can reduce the impact of the scarcity of data to a certain 
extent.

5   Conclusion and Future Work

To better utilize unobserved items and distinguish potential interest items from negative items, we propose a 
novel ranking model BPRS, which synthesizes the hidden items from user classification and item classification. 
Starting from the existing rating data, we explore the interest item set1 by user similarity from the user aspect and 
the interest item set2 by item similarity from the item aspect, and we synthesized both sets to expand the original 
sparse score set and explore the hidden items of users.

By running different baseline algorithms on the same dataset, we compare the accuracy of our model with 
the most advanced algorithms, and the results further proved the superiority of our algorithm. At the same time, 
through repeated experimental verifications, we can clearly find that the algorithm model we designed can solve 
the user’s cold-start problem mentioned above to a great extent. This also can reflect the universality of our algo-
rithm to a certain extent.
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In addition, in our future work and research, we hope to further verify the implicit topological relationship that 
may exist in the actual social network in combination with the graph neural network, and we hope to conduct ex-
periments on real datasets of different sizes, so that we can further solve the user cold-start problem and sparsity 
problem of the recommender system in the actual situation, enhance the robustness of the recommender system, 
and improve the accuracy of user personalized recommendation.
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