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Abstract. With the proliferation of services available on the Internet, network attacks have become one of the 
serious issues. The distributed denial of service (DDoS) attack is such a devastating attack, which poses an 
enormous threat to network communication and applications and easily disrupts services. To defense against 
DDoS attacks effectively, this paper proposes a novel DDoS attack detection method that trains detection mod-
els in an unsupervised learning manner using preprocessed and unlabeled normal network traffic data, which 
can not only avoid the impact of unbalanced training data on the detection model performance but also detect 
unknown attacks. Specifically, the proposed method firstly uses Balanced Iterative Reducing and Clustering 
Using Hierarchies algorithm (BIRCH) to pre-cluster the normal network traffic data, and then explores auto-
encoder (AE) to build the detection model in an unsupervised manner based on the cluster subsets. In order 
to verify the performance of our method, we perform experiments on benchmark network intrusion detection 
datasets KDDCUP99 and UNSWNB15. The results show that, compared with the state-of-the-art DDoS de-
tection models that used supervised learning and unsupervised learning, our proposed method achieves better 
performance in terms of detection accuracy rate and false positive rate (FPR).
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1   Introduction

Recently, the Internet and communication terminals provide users with more convenient and efficient services, 
such as industrial control services, financial transactions, etc., for their works and life. However, more and more 
network attacks also occur frequently, which have posed a serious threat to network security. Distributed Denial 
of Services (DDoS) attack is one of the immense threats to disrupt communication networks and applications. It 
is reported that the total number of DDoS attacks exceeded 7.9 million in 2018 and grew to about 15.4 million by 
2023 [1]. DDoS attack aims to continuously send a large number of traffic packets from multiple puppet machines 
to the target machine, resulting in the denial of normal services to users via exhausting the bandwidth resources 
or material resources of the victim machine, such as CPU or memory. Compared with other types of network at-
tacks, DDoS attacks can hide their illegal traffic, making it a huge challenge to accurately detect such attack traf-
fic.

Intrusion detection system is an effective strategy to detect DDoS attacks, which mainly uses firewalls to con-
trol normal access traffic. However, it is relatively single for detecting complicated DDoS attacks. Therefore, 
the detection technology for abnormal traffic is gradually introduced into DDoS attacks detection. As shown in 
Fig. 1, lots of safety devices recently use access control and abnormal traffic detection together to build the two-
stage protection system. One of the most significant phenomena of a network attack is to generate a large amount 
of abnormal network traffic data, and the common detection method is mainly to perform statistical analysis on 
the features of the network layer such as the length of the network traffic, the average bit of the flow packet, the 
real-time rate of the port, and the throughput of the target machine. Wu et al. [2] proposed a method for detecting 
Low-rate DoS attacks by comparing and analyzing the pulse period, amplitude, and length of the network traffic 
sequence, which verifies that the analysis of network traffic features can achieve efficient detection of network 
attack traffic with different rates. Jing et al. [3] investigated the existing security-related data collection and anal-
ysis to detect network attacks. They firstly divided the relevant network security data into four categories. For 
each type of data, they provided a specific classification and discussed the pros and cons of each traffic feature in 
anomaly detection. And then the extracted traffic features were input into machine learning algorithms and neural 
network models to achieve traffic classification. These studies show that it is indispensable to analyze the patterns 



30

Exploring Unsupervised Learning with Clustering and Deep Autoencoder to Detect DDoS Attack

of traffic data to determine whether a network attack has occurred. This also makes the research on abnormal traf-
fic detection methods become one of the most important research topics in recent years.
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Fig. 1. Two-stage traffic access control and safety protection system

Machine learning-based methods [4] have recently made ideal achievements in anomaly detection. According 
to the datasets required for the training detection model, the existing anomaly detection methods that use machine 
learning can be divided into two categories: supervised learning-based and unsupervised learning-based. The 
methods based on supervised learning can achieve expected detection accuracy when being provided with well-la-
beled datasets. However, these detection methods require a large number of labeled samples that are difficult to 
obtain or high cost of acquisition. In addition, they cannot detect novel and unknown attacks. On the contrary, the 
methods based on unsupervised learning usually use data mining, correlation analysis, and pattern analysis to find 
the minimum subspace between normal data and abnormal data to identify whether the traffic is abnormal or not, 
which does not require labeled data for model training and can also detect unknown attacks. However, the down-
side of it is that these detection methods often require pure single-category training data to accurately learn the 
classification boundary between normal data and abnormal data. It suggests that the patterns of training data used 
for model training have a certain impact on the performance of the detection model. And detection model and 
threshold obtained by using traffic data with complex data patterns and features distribution could not accurately 
identify attack traffic and normal traffic. Therefore, high-quality training data is of great significance to unsuper-
vised learning-based anomaly detection methods, and the inherent differences of the features of traffic data will 
inevitably affect the performance of the detection model.

Normal traffic generated by different software and programs corresponding to different network environments 
has different feature distribution and data patterns. However, the existing methods did not consider the impact 
of the different complex data patterns and features distribution of training data on the detection performance of 
the method based on unsupervised learning. Different from the state-of-the-art unsupervised learning-based at-
tack detection methods, we proposed an improved detection method based on unsupervised learning to avoid the 
problems of using normal traffic data with unbalanced features distribution to the training detection model. In our 
proposed method, we firstly introduce a clustering algorithm to get the pure single-category data with similar fea-
tures for the model training via pre-clustering the normal network traffic captured from the network environment. 
The object of the pre-clustering of the captured traffic data is to ensure the quality of the training data that is input 
into the unsupervised machine learning model, which assists in obtaining a more suitable detection threshold. 
In addition, we design an effective deep autoencoder (AE) neural network by adjusting the model structure and 
parameters. The main function of the deep AE neural network model is to learn the important features of cluster 
subsets so that the original input can be reconstructed to obtain the model output. Then, we obtain the detection 
threshold by calculating the difference between input and output. Through the threshold, the normal traffic and 
abnormal traffic can be distinguished accurately.

The essence of our method is to employ deep AE to search outliers by determining the difference between 
the input and output of the detection model (defined as reconstruction error in this paper). Our proposed method 
mainly includes the model training phase and the anomaly detection phase. In the model training phase, we use 
the BIRCH algorithm to pre-cluster the captured normal traffic data in an unsupervised way and obtain the clus-
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tering subsets with different patterns. The resulted clustering subsets are respectively input into the deep AE for 
reconstructing the input data through the process of “encoding-decoding” to obtain the average reconstruction er-
ror. Then the obtained reconstruction error is used as the detection threshold. In the anomaly detection phase, the 
test data was fed to the trained model for obtaining the reconstructed output of the input data. Furthermore, we 
use the mean squared error algorithm to calculate the reconstruction error between the input and its reconstruction 
output. When the reconstruction error is higher than the preset threshold, the traffic data is determined to be ab-
normal traffic. Otherwise, it is regarded as normal traffic. 

The main contributions of our work are summarized as follows:
1) We select the appropriate clustering algorithm BIRCH to pre-cluster the captured normal traffic data in a 
way of unsupervised learning and use the cluster subsets with similar patterns as training data. The pre-cluster-
ing of the captured traffic data ensures the quality of the training data that is input into the unsupervised learn-
ing model, which assists in obtaining a more suitable detection threshold. Experiments show that the detection 
performance of the model trained with pre-clustered data outperforms the models trained on unprocessed data.
2) To build an abnormal traffic detection model with high detection accuracy and strong generalization ability, 
we design an effective deep AE neural network with five layers by adjusting the structure and parameters of 
the model. Based on the clustering subsets obtained by two benchmark network intrusion detection datasets 
KDDCUP99 and UNSWNB15, we trained detection models using basic AE, denoising AE and the AE model 
designed respectively. The experimental results show that the anomaly detection model trained with our AE 
model achieved better performance in terms of detection accuracy and FPR.

1.1   Outline

The rest of our paper is organized as follows. Section 2 introduces the existing machine learning-based methods 
for DDoS attacks detection. Then, we introduce the structure of the architecture of the proposed abnormal traffic 
detection model and the corresponding algorithms in section 3. Subsequently, the experimental results and analy-
sis are presented in section 4. In section 5, we conclude the paper and discuss future work.

2   Related Work

In this section, we review some existing DDoS attack detection methods based on machine learning. We classify 
the DDoS detection methods into supervised learning-based methods and unsupervised learning-based methods 
systematically and discuss them separately.

2.1   Abnormal Traffic Detection Methods Using Supervised Learning

The abnormal traffic detection methods based on supervised learning are the classification task of data that use 
supervised machine learning algorithms. Saeed et al. [5] used a particle swarm optimization algorithm to select 
optimal features of traffic data and used a decision tree (DT) classification algorithm to implement a DDoS attack 
detection model. Fan et al. [1] proposed a DDoS attack detection model RF-SVM-IL based on machine learning. 
They used Random Forest (RF) and SVM to classify traffic data twice and utilized an incremental learning algo-
rithm to filter the increased input samples and reduce the amount of data processed by the model. The model can 
effectively filter traffic samples that are easy to be misclassified when faced with massive attack traffic. Doshi 
et al. [6] built detection models based on K-Nearest Neighbors (KNN), RF, and DT to detect abnormal network 
traffic in IoT environments. Aamir et al. [7] firstly used an unsupervised clustering algorithm to label the collected 
traffic dataset, and then used supervised learning algorithms KNN, SVM, and RF to classify DDoS attacks in the 
network. Zekri et al. [8] proposed a classification method using DT based on the C4.5 algorithm to classify the 
DDoS attack traffic in cloud computing environments. Gumaei et al. [9] proposed a correlation-based feature se-
lection (CFS) method to avoid irrelevant features traffic data, which used instance-based learning (IBL) algorithm 
to select optimal features and classify normal traffic and attack traffic based on supervised learning. Alhaidari 
et al. [10] used three kinds of machine learning algorithms (J48, Naive Bayes theorem, RF) to detect the attack 
traffic in Supervisory Control and Data Acquisition (SCADA) systems. Musumeci et al. [11] combined the capa-
bility of machine learning based on supervised learning and P4-enabled data planes to implement real-time DDoS 
attack detection, which achieved great performance regarding the accuracy and precision for all tested machines 
learning algorithms in most cases. Li et al. [12] proposed an intrusion detection system based on Online Sequence 
Extreme Learning Machine (OS-ELM) to detect anomaly traffic in Advanced Metering Infrastructure (AMI). Park 
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et al. [13] used deep denoising autoencoder technology to achieve feature dimensional reduction and capture the 
nonlinear correlation between features, and the results show that the anomaly detection method based on autoen-
coder is superior to other traditional methods. Yuan et al. [14] proposed a DDoS attack detection method based 
on a cyclic deep neural network, which learned patterns from network traffic sequences and tracks network attack 
activities. Shaikh et al. [15] proposed a deep learning framework with autoencoder and recurrent neural network 
(RNN) methods for intrusion detection, which employed autoencoder to pre-classify the dataset and used long-
term memory networks (LSTM) to perform the classification. The results proved that the method can effectively 
reduce false positives. Javaid et al. [16] proposed an intrusion detection method based on sparse autoencoders and 
soft-max regression, which used sparse autoencoders to extract features in an unsupervised way and took soft-
max regression as a classifier to detect network traffic. However, these detection methods based on supervised 
learning require a large number of labeled samples for model training, which are difficult to obtain or high cost of 
acquisition. In addition, these detection methods do not guarantee the performance for detecting unknown attacks 
that do not appear in the training dataset.

2.2   Abnormal Traffic Detection Methods Using Unsupervised Learning

To address the defects of the supervised learning-based detecting models, the unsupervised learning-based net-
work traffic detection methods were recently proposed to achieve anomaly detection by discovering the correla-
tion between data features and data reconstruction through the mapping of data to a subspace. In the process of 
forming a subspace, the data with large reconstruction errors are identified as abnormal data. The classic Principal 
Component Analysis (PCA) method is a threshold-based anomaly detection algorithm. Novakov et al. [17] used 
hybrid PCA-Haar and wavelet algorithms to separate the high-dimensional space of network traffic data into 
non-intersecting subspaces corresponding to normal and abnormal traffic features and employed PCA and Haar 
Wavelet filtering to describe and analyze the data. Paffenroth et al. [18] used robust principal component analysis 
(RPCA) to detect anomalies, which achieved low FPR on individual packets. The results also further ssupport-
ed the hypothesis that the low dimensional subspace computed by RPCA is more representative of normal data. 
However, the majority of features of traffic data are nonlinear in the actual network environments, and the PCA 
algorithm is difficult to capture the nonlinear relationship between features due to its linear transformation pro-
cess. Ali et al. [19] proposed a DDoS attack detection model that combined multi-layer autoencoders and multiple 
kernel learning (MKL) algorithm, which used nine deep autoencoders to build multiple kernel learning algo-
rithms. Hence, the time overhead for model training and anomaly detection is high. Chen et al. [20] introduced 
a detection method based on unsupervised outlier detection, which achieved ideal detection accuracy. However, 
their method integrates multi-autoencoders to a single model to detect anomaly samples, thus leading to high 
time overhead for model training and anomaly detection. Yang et al. [21] proposed an AE-based DDoS attacks 
Detection Framework (AE-D3F) to learn the features of the training data and reconstruct the input of the model 
for obtaining a detection threshold. In AE-D3F, through the threshold, the normal traffic and abnormal traffic can 
be distinguished. However, the AE-D3F did not consider the impact of the different complex data patterns and 
features distribution of training data on the detection performance. The normal traffic generated by different soft-
ware and programs corresponding to different network environments also has certain differences, such as the av-
erage length of the network traffic, the average bit of the flow packet, and the real-time rate of the port. Therefore, 
the detection model and threshold obtained by using an unsupervised learning-based method that does not con-
sider the different complex data patterns and features distribution of training data is difficult to accurately identify 
attack traffic and normal traffic. Obviously, single-category and high-quality training data are of great significance 
to unsupervised learning-based anomaly detection methods. To solve this issue, we proposed to explore unsuper-
vised learning with clustering and deep AE to accurately detect DDoS attacks. By leveraging the different data 
patterns and features distribution of training data, our proposed method firstly introduces a clustering algorithm 
to get the pure single-category data with similar features for the model training via pre-clustering the normal 
network traffic captured from the network environment. The pre-clustering of the captured traffic data ensures 
the quality of the training data that is input to the unsupervised learning model, which assists in obtaining a more 
suitable detection threshold. In addition, we design an effective deep autoencoder neural network to learn the 
important features of cluster subsets by adjusting the model structure and parameters, through which the original 
input can be reconstructed to obtain the model output. Then, we obtain the detection threshold by calculating the 
difference between the input and output, which can be employed to accurately distinguish between normal traffic 
and abnormal traffic.
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3   Proposed Method

In this section, we present the architecture of our DDoS attack detection method as shown in Fig. 2.
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Fig. 2. Architecture of the proposed detection model in this paper

As can be seen from Fig. 2, our proposed detection model mainly consists of traffic data preprocessing phase, 
detection model training phase, and an anomaly detection phase. In the traffic data preprocessing phase, the cap-
tured normal network traffic datasets first need to be normalized and standardized, and then pre-clustered into 
some clustering subsets with different patterns in an unsupervised way by using the BIRCH algorithm. In the 
detection model training phase, the resulting clustering subsets are respectively fed our deep autoencoder neural 
network for reconstructing the input data through the process of “encoding-decoding” to obtain the average re-
construction error. The final reconstruction error obtained is used as the detection threshold. In the anomaly detec-
tion phase, the test data is inputted into the trained model to get the reconstructed output of the input data. Then, 
the reconstruction error between the input and its reconstruction output was calculated by using the mean squared 
error algorithm. When the reconstruction error is higher than the preset threshold, the traffic data is determined to 
be abnormal traffic. Otherwise, it is determined to be normal traffic.

3.1   Data Pre-processing and Pre-clustering

In this paper, we use the open benchmark intrusion detection datasets KDDCUP99 and UNSWNB15 to perform 
experiments. Because the original dataset contains multiple types of data features, which directly affects the cal-
culation of clustering features and the generation of clustering feature trees. Therefore, we firstly use Min-Max 
techniques [22] to normalize the numerical data in the dataset and transform the raw data linearly. Then, we map 
the normalized data to [0, 1]. The conversion function is expressed as:

' min( )
max( ) min( )

X XX
X X
−

=
−

 .                                                                           (1) 

The principle of the abnormal traffic detection methods based on machine learning is to analyze the features 
of network traffic data. However, network traffic generated by different software and programs corresponding to 
different network environments also has different distribution features. Through analyzing the different patterns of 
normal traffic and abnormal traffic data, abnormal traffic is distinguished from normal traffic effectively. Thus, the 
inherent differences in the features of traffic data will inevitably affect the performance of the detection model. 
Our method firstly uses the BIRCH algorithm to pre-cluster the captured traffic data, through which the data with 
similar patterns will be clustered into clustering subsets. As a result, the clustering subsets are used as train data 
to train detection models, which can avoid the influence of unbalanced training data on the performance of the 
detection model.

The BIRCH algorithm [23] accomplishes high-quality clustering of large datasets with limited memory re-
sources and is also more sensitive to abnormal data, which is conducive to the elimination of abnormal traffic 
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data. In addition, the BIRCH algorithm uses cluster feature (CF) and CFTs to summarize a cluster and represent 
clustered hierarchies respectively. This enables clustering methods to operate on large databases with greater 
speed and scalability and also work well for incremental dynamic clustering.

CF and CFTs are the core of the BIRCH algorithm. A cluster feature consists of a triple group containing 
cluster information. Given a cluster that contains N d-dimensional traffic data { }iX , in which 1,2,...,i N=

, and N represents each feature of network traffic. The CF of the cluster is defined as ( , , )CF M LS SS= , where 

M is the number of samples in a cluster, 
M

i
i

LS = X∑  is the linear summation of N data and 
M

2
i

i
SS X= ∑  is the 

sum of the squares of M data. The additivity of CF is defined as follows: suppose that 1 1 1 1( , , )CF M LS SS=  and 

2 2 2 2( , , )CF M LS SS=
 
are the different CF of two independent clusters, the additivity of two CFs can be represent-

ed as:

1 2 1 2 1 2 1 2( , , )CF CF M M LS LS SS SS+ = + + +  .                                            (2)

CFs can not only effectively reduce the storage space of data but also efficiently calculate all the indicators that 
form clustering decision in the BIRCH algorithm. For example, the distance between any two clusters can be ex-
pressed by CF as:

2(2 * 2 ) ( )D M SS LS / M M - 1= −  .                                                  (3) 

By using D  indicator, the BIRCH algorithm can achieve great clustering results. The phase of data prepro-
cessing is presented in Algorithm 1.

Algorithm 1. Data preprocessing and pre-cluster
Input: normal traffic data normalDS  and the cluster number range N
Output: clustering subsets trainDS

1:
 

' min( ) ,  X
max( ) min( ) normal

X XX DS
X X
−

← ∃ ∈
−    

# Normalize the dataset using Min-Max technique

2: _temp score Infinity←    # _temp score  is defined as initial value of Davies-Bouldin Index and is 
initialized to infinity

3: For n in N do    # Calculate the optimal number of clusters
4:       '_ _ _  ( , )DB score Davies Bouldin score X n←

5:   If _ _DB score temp score<

6:       _ _temp score DB score←

7:       _n cluster n←

8:     End If
12: End For
13: '_ ( , _ )cluster subsets BIRCH X n cluster←    # Cluster the data 'X  using BIRCH algorithm

14: _trainDS cluster subsets←    # Cluster subsets are saved as training data
15: Return trainDS

In the algorithm 1, we use Min-Max technique to normalize and standardize the original dataset normalDS  and 

obtain the result 'X  (line 1). In the phase of data pre-cluster, we get the optimal number of clusters _n cluster

(line 2 to line 12) by calculating the corresponding Davies-Bouldin score. Then, 'X  and _n cluster  are inputted 
into the BIRCH algorithm as parameters to pre-classify the dataset (line 13 to line 14). Finally, we obtain cluster-
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ing subsets with different sample sizes and label them with different IDs for subsequent model training.

3.2   Anomaly Detection Model Based on AE 

AE is an unsupervised artificial neural network algorithm [24], which aims to extract the hierarchical features of 
high-dimensional input data to obtain high classification results. To effectively learn the data features of the clus-
tering subsets obtained by the BIRCH algorithm and reconstruct the input data, we design a deep AE neural net-
work model. Through the deep AE neural network model training, we obtain the minimized reconstruction error 
by which our method accurately distinguishes between normal traffic and malicious traffic. The framework of our 
deep AE neural network model is shown in Fig. 3.
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Fig. 3. The structure of the deep autoencoder neural network 

As can be seen from the Fig. 3, our deep AE model consists of the encoding layer, hidden layer and decoding 
layer, which object is to find the minimized reconstruction error between input data 1{ }   Rn n d

i ix x ×
== ∈  and its re-

constructed data ' '
1{ }   Rn n d

i ix x ×
== ∈ . To this end, we use MSE (mean square error) to calculate the reconstruction 

error θ:

' ' 2

1

1( , ) ( )
n

i i i i
i

L x x x x
n

θ
=

= = −∑  .                                                                  (4)

The process of encoding is to reduce the dimension of a high-dimensional feature and compress a given input 
data into a specified dimension which is equal to the number of units of the hidden layer. The mapping function Z 
of the input data x to hidden layer is expressed as: 

1
( ) ( )

n
input input

i ij j i
j

z f x s W x b
=

= = +∑  .                                                            (5)

Where x is the input vector, W is the weight matrix of the encoding layer, b is the bias matrix, and s is a non-
linear activation function. In our method, we use Relu function as the activation function, which is expressed as 

( ) max(0, )f x x= . Correspondingly, the process of decoding is mainly to reconstruct the input data and decode 
the low-dimensional data of the hidden layer to the size of the original vector space. The mapping function of the 
decoding layer can be expressed:

'    

1
( ) (  )

n
hidden hidden

i ij j i
j

x g z s W z b
=

= = +∑  .                                                                     (6) 

Where z is the output vector, W is the weight matrix of the hidden layer, b is the bias matrix, and s is a nonlin-
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ear activation function. The process of the deep AE model training is shown in Algorithm 2. 

Algorithm 2. Training the detection model
Input: normal traffic dataset trainDS
Output: the detection model _AE model  and the threshold T
1: _ 256batch size ←

2: 1epochs ←
3: 0T ←    # Threshold is initialized to 0.
4: While =10epochs <  do
5:            ( ) / _trainsteps len DS batch size←

6:            0loss ←    # Loss is initialized to 0.
7:     For step  in range (0, steps ) do
8:           [ * _ , ( 1)* _ ]trainX DS step batch size step batch size← +     # Select the dataset that needs to be put into 

the model for each step  from trainDS .
9:         _ _ . ( )X batchEn AE model encoder X←

   # Encoding of data.
10:        '

__ . ( )X batchX AE model decoder En←
   # Decoding of data.

11:        '( , )l L X X← # Calculate the reconstruction error.
12:        loss loss l← +
13:     End For
14:     /T loss steps←    # Set detection threshold.

15:     +1epochs epochs←

16: End While
17: Return _AE model , T

In algorithm 2, the _batch size , epochs  and threshold T  are initialized (line 1 to line 3). Then the clustering 

result trainDS  is inputted into the proposed AE model for model training. Finally, the minimized average recon-
struction error of train data can be obtained by the process of “encoding-decoding” (line 4 to line 16). Once the 

_AE model  is trained, we save the trained model and determine the obtained reconstruction error of the train 
data as detection threshold T which is a minimized mean reconstruction error based on the mean square error 
function (line 14). Then we use test samples to evaluate the performance of the anomaly detection model. The de-
tection phase is shown in Algorithm 3.

Algorithm 3. Testing the detection model
Input: test data testDS , trained model _AE model  and threshold T
Output: detection result _Detection result

1: While testX  in testDS  do

2:     ' _ ( )test testX AE model X←

3:     '( , )test testL X Xθ ←    # Calculate the reconstruction error.
4:     If Tθ >    # Detected as anomaly traffic.
5:         _ testabnormal traffic X←

6:         _ _Detection result abnormal traffic=

7:     Else   # detected as normal traffic.
8:         _ testnormal traffic X←

9:         _ _Detection result normal traffic=
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10:     End If 
11: End while
12: Return _Detection result

In Algorithm 3, we firstly input the test data testDS  into the trained model _AE model  to get its output (line 1 
to line 2) and calculate the reconstruction error θ  between the input and the output based on the reconstruction 
error function '

1( , )iL x xθ =
 
(line 3). Then, we detect the test sample by comparing the θ  with the predetermined 

detection threshold T. If the θ  is higher than the threshold T, the test sample is detected as abnormal traffic data, 
otherwise, it is detected as normal traffic data (line 4 to line 10).

4   Experimental Analysis and Results

In this section, we evaluate the performance of our method by performing comprehensive experiments on the 
intrusion detection datasets KDDCUP99 and UNSWNB15. We first evaluate the detection models based on 
un-clustered datasets and the clustering subsets respectively and then evaluate the performance of each detection 
model. Subsequently, we use basic AE and denoising AE to train the detection models for evaluating the perfor-
mance of detection models that use different autoencoders. The basic AE consists of a single hidden layer, which 
aims to learn a model by extracting the representative data features using one hidden layer to reconstruct the 
original input data under specified constraints. The idea of denoising AE [25] is to train an autoencoder model 
to produce a robust input feature representing by reconstructing the original input after partially destroying the 
original input. It makes the trained model have better generalization ability. The corrupting process is generally 
to randomly select and replace the features in the input data with zeros at a certain proportion, or to add a certain 
noise to the input data. In addition, we compared our method with the recently supervised learning-based DDoS 
detection methods including Random Forest (RF) [6-7], Naive-Bayes (NB) [10], C4.5 DT (C4.5 Decision-Tree) 
[8], and RF-SVM-IL [1], and unsupervised learning-based DDoS detection methods including robust principal 
component analysis (RPCA) [18] and DDoS attacks Detection Framework (AE-D3F) [21].

4.1   Introduction of the Datasets

The KDDCUP99 dataset [26] from Columbia University’s IDS Labs, contains 488,734 training data for 23 differ-
ent types of attacks. Each sample has 38 features including source IP, source port, destination IP, destination port, 
transaction protocol, status, duration, and attack category. We select 92256 samples labeled with ‘Normal’ from 
the KDDCUP99 dataset as train data. To test the performance of the model, we select 10000 samples as test data 
which includes 5000 normal samples and 5000 DoS attack samples for testing the detection model.

The UNSWNB15 dataset [27] was collected by the Australian Cyber Security Centre (ACSC) using the IXIA 
Perfect-storm tool, which consists of 174,701 samples. Each sample has 49 features including source IP, source 
port, destination IP, destination port, transaction protocol, status, duration, and attack category. And its labels are 
classified into ‘Normal’ and ‘DoS’. We select 93590 samples labeled with ‘Normal’ as train data, and 10000 sam-
ples as test data which includes 5000 normal samples and 5000 DoS attack samples.

4.2   The Experimental Results

The reasonable structure and hyper-parameter settings are indispensable for AE to obtain the good performance 
of the model. To this end, we perform comprehensive experiments to obtain an optimal hyper-parameter setting. 
The AE model of our method consists of a single input layer, a single output layer, and three hidden layers which 
correspond to n , / 2n , / 3n , / 2n , n  units, where n is the number of features of the train data. The batch size 
is set to 256, and the epoch is set to 10 (which is determined by experimental results). In addition, we use Relu as 
an activation function. The optimization algorithm is Adam with a 0.0001 learning rate. The loss function uses the 
mean square error (MSE) function. For basic AE, except that it contains only one hidden layer, the other param-
eter settings of the model are the same as our AE model. For denoising AE, the denoise parameter is set to 0.1, 
which means 10% of the input data is randomly replaced to zero. The other parameter settings of the denoising 
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AE model are the same as our AE model.
We compare the BIRCH clustering algorithm with the current mainstream clustering algorithms K-means and 

DBSCAN on the normal network traffic dataset (KDDCUP99). DBI (Davies-Bouldin Index) and CHI (Calinski-
Harabasz Index) are used as the evaluation indicators of clustering performance. The DBI is used to evaluate the 
merits of clustering algorithms and also is known as a classification fitness indicator. Typically, the smaller the 
indicator, the better the clustering effect. CHI is mainly used to calculate the ratio of the dispersion between the 
clusters and the dispersion within the clusters, and it is an unsupervised evaluation indicator. Typically, the larger 
the CHI, the more dispersed and tighter the cluster, which means the better the clustering effect. Both indicators 
are respectively defined as equations (7) and (8):
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Where is  is the average distance from each point in cluster i to the cluster center, ijd
 is the distance between 

the center of the cluster i and the center of the cluster j, n is the number of clusters, ( )itr B  represents the trace of 

the deviation matrix between clusters, and ( )itr W  represents the trace of the deviation matrix within clusters. The 
experiment results are shown in Table 1.

Table 1. Performance comparison of different clustering algorithms on DBI and CHI
Indicators K-means DBSCAN BIRCH

DBI 0.9625 1.2094 0.8871
CHI 48666 23012 48266

As can be seen from Table 1, the BIRCH algorithm achieves the lowest DBI value which is followed by 
K-means and DBSCAN. For the CHI, the K-means gets the highest value 48666, BIRCH also gets 48266, and the 
DBSCAN only gets 23012. This is because it is difficult for DBSCAN to adjust the parameters of the global rep-
resentation density, and when the amount of dataset increases, more memory support is required. Overall, we find 
that BIRCH and K-means have shown better performance. In the K-means algorithm, K is needed to be given 
in advance, and the selection of K is very difficult. Whereas, the BIRCH algorithm can determine the number of 
classification clusters after unsupervised learning. Therefore, we choose the BIRCH algorithm to pre-cluster the 
normal network traffic data.

In order to get a better clustering subset for model training, the dataset needs to be pre-processed by Min-Max 
techniques firstly. Then, we determine the best number of clusters by using the DBI score. The results are shown 
in Fig. 4.

Fig. 4. Davies-Bouldin-Score
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In Fig. 4, we adopt a different number of clusters to get different DBI scores on KDDCUP99 and UNSWNB15 
datasets. It is observed that when the number of clusters is set to 3, the best clustering effect can be obtained. This 
is because the Davies-Bouldin indexes on both datasets are the smallest (0.9735 and 0.8871 respectively). Based 
on the optimal number of clusters, we use the BIRCH algorithm to pre-cluster the original normal traffic datasets. 
The results are shown in Table 2.

Table 2. Clustering results for the normal traffic data in KDDCUP99 and UNSWNB15
Datasets Normal ID 0 ID 1 ID 2

KDDCUP99 92256 69708 13096 9452
UNSWNB15 93590 40746 29070 23774

As can be seen from Table 2, for pre-clustering KDDCUP99, we categorize the original dataset from different 
data patterns and get three subsets of clusters with different sample sizes. Three subsets are labeled ID 0 (69708 
samples), ID 1 (13096 samples), and ID 2 (9452 samples) respectively. For pre-clustering UNSWNB15, we also 
get three subsets of clusters with different sample sizes. Three subsets are labeled ID 0 (40746 samples), ID 1 
(29070 samples), and ID 2 (23774 samples) respectively. All above six subsets will be used as train data to build 
the detection models respectively, and we select the model with optimal performance as our final detection model.

In our method, we choose the MSE of train data as the threshold to detect anomaly traffic. To verify the reason 
for our deep AE neural network model, we take the obtained six clustering subsets as train data to build detection 
models and use the test sample to calculate the distribution of reconstruction errors for normal traffic and abnor-
mal traffic. Through the experiment, we predetermine the minimized training loss of the model as the detection 
threshold. In the detection phase, we input the test sample into the trained model to get its output and calculate the 
reconstruction error between the output and the original input of the model. The distributions of reconstruction 
errors of test samples are shown in Fig. 5, where the y-axis represents the reconstruction error corresponding to 
each traffic data, and the x-axis represents the type of traffic data.

Fig. 5. Distribution of reconstruction errors for test samples
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It is observed from Fig. 5 that the reconstruction error of abnormal traffic data is higher than that of normal 
traffic data. The reason for this phenomenon is that the test data that are similar to the training data will be re-
constructed well, and thus have small reconstruction errors. On the contrary, the test data that are different from 
training data will have larger reconstruction errors because they are different from what the model was trained to 
reconstruct. So that the detection threshold obtained from the proposed model can effectively distinguish abnor-
mal data and normal data. That means if the reconstruction error of the test data is higher than the predetermined 
detection threshold, the data is marked as abnormal traffic data. Otherwise, it is marked as normal traffic data.

To evaluate the overall performance of the detection model, Accuracy and FPR are used as evaluation indica-
tors to compare the different methods. Both indicators can be obtained by the equations (9) and (10):

TP FNAccuracy
TP TN FN FP
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 ,                                                            (9)
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In which TN (True Negative) is used for normal traffic to be detected as normal traffic. FN (False Negative) 
is used for abnormal traffic to be detected as normal traffic. TP (True Positive) is used for abnormal traffic to be 
identified as abnormal traffic. FP (False Positive) is used for normal traffic to be detected as abnormal traffic. We 
build the detection models using un-clustered data labeled with ‘Normal’ and clustering subsets (ID 0, ID1, and 
ID 2) based on KDDCUP99 and UNSWNB15. For each method, we take the average results of ten experimental 
as the final results. The experimental results are shown in Table 3.

Table 3.  Performance of detection models based on different train datasets

Datasets ID Accuracy (%) FPR (%) Threshold

KDDCUP99

Normal 83.843 16.254 0.008636
ID 0 92.938 8.966 0.241008
ID 1 94.550 9.067 0.716162
ID 2 99.157 0.373 1.173011

UNSWNB15

Normal 93.510 6.884 0.376727
ID 0 96.700 3.541 0.419427
ID 1 92.969 6.624 0.754252
ID 2 93.014 6.483 0.349527

As can be seen in Table 3, for the KDDCUP99, the performance of the detection model trained with ID 2 is 
more efficient. The detection Accuracy and FPR are 99.157% and 0.373% respectively, and the corresponding 
values of the model based on un-clustered traffic data (Normal) are 83.843% and 16.254%. Especially, the de-
tection accuracy and FPR of the model based on clustering subset ID 2 are 15.304% higher and 15.881% lower 
respectively than that of the model trained with the un-clustered data. Therefore, it is obvious that the detection 
threshold obtained based on ID 2 achieves better detection performance, which is selected as the final threshold 
to detect anomaly traffic. On UNSWNB15, the performance of the detection model trained with ID 0 is more 
efficient, the detection Accuracy and FPR are 96.700% and 3.541% respectively. Therefore, we use the threshold 
obtained based on ID 0 as the final threshold to detect anomaly traffic. Through the experimental results, we ob-
served that the detection models trained with clustering subsets perform greater performance than the detection 
models trained with un-clustered data. This is because the detection model trained on pure single-category data 
with similar features is more sensitive to abnormal data. If the test data is a little different from training data, the 
detection model cannot reconstruct the test data well, thus leading to a larger reconstruction error. As a result, the 
obtained detection threshold cannot effectively distinguish between abnormal data and normal data. Besides, from 
the distribution of the detection threshold of all experimental results, we observed that the model with a larger 
threshold achieves better detection performance. Because the threshold is too small, the model will misjudge 
normal traffic as abnormal traffic. On the contrary, if the threshold is too large, the model will misjudge abnormal 
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traffic as normal traffic. This means it is critical to determine a suitable threshold for detecting anomaly traffic.

A   Performance of Detection Models Trained with Different AEs

To evaluate the performance of the detection model based on our deep AE model, we compare our deep AE mod-
el with basic AE and denoising AE on the six clustering subsets. The experimental results are the average of the 
ten experimental results corresponding to the six clustering subsets, shown in Table 4.

Table 4. Performance of detection models trained with different AE on KDDCUP99 and UNSWNB15 datasets

Datasets Subsets Models Accuracy (%) FPR (%) Threshold

KDDCUP99

ID 0
Our method 92.938 8.966 0.241008

Basic AE 87.403 14.095 0.004609
Denoising AE 88.409 11.741 0.005672

ID 1
Our method 94.550 9.067 0.716162

Basic AE 86.546 14.744 0.015498
Denoising AE 76.807 23.659 0.003953

ID 2
Our method 99.157 0.373 1.173011

Basic AE 93.539 10.850 0.017281
Denoising AE 77.309 22.767 0.003953

UNSWNB15

ID 0
Our method 96.700 3.541 0.419427

Basic AE 88.299 11.776 0.019681
Denoising AE 82.562 17.514 0.003322

ID 1
Our method 92.969 6.624 0.754252

Basic AE 85.172 14.924 0.023540
Denoising AE 79.630 20.503 0.010530

ID 2
Our method 93.014 6.483 0.349527

Basic AE 84.715 15.374 0.025460
Denoising AE 81.894 18.224 0.012008

As can be seen from Table 4, our deep AE model achieves the best Accuracy and FPR of three comparison 
AE models on both datasets. For example, on KDDCUP99, the detection accuracy of our deep AE model trained 
using ID 0 achieves 92.938%, and the corresponding FPR achieves 8.966%. On UNSWNB15, the detection ac-
curacy of our deep AE model trained using ID 0 achieves 96.700%, and the corresponding FPR achieves 3.541%. 
The reason for this phenomenon is that the higher model complexity of our deep AE model can accurately cap-
ture more heterogeneous patterns, instead of simply averaging between normal and abnormal patterns. Besides, 
the detection threshold of our AE models is slightly higher than that obtained by other comparison AE models 
on both datasets, which indicates our method achieves more appropriate reconstruction for normal traffic data, 
and the detection threshold obtained by the deep AE model is more appropriate for detecting anomaly traffic. In 
addition, it can be seen that the basic AE model achieves better Accuracy and FPR than the denoising AE model. 
For example, on KDDCUP99, the detection accuracy of the basic AE model trained using ID 1 achieves 86.546% 
which is 9.739% higher than that obtained by denoising AE model, and the corresponding FPR achieves 14.744% 
which is 8.915% lower than that obtained by denoising AE model. On UNSWNB15, the detection accuracy of 
the basic AE model trained using ID 1 achieves 85.172% which is 5.542% higher than that obtained by denoising 
AE model, and the corresponding FPR achieves 14.924% which is 5.579% lower than that obtained by denoising 
AE model. However, on ID 0 of KDDCUP99, the denoising AE model achieves slightly better Accuracy and FPR 
than the basic AE model, the reason for this exception might be the differences in the features that determine the 
data category in ID 0 of KDDCUP99 are more obvious than other datasets. Therefore, the operation of adding 
noise to the training data not only did not affect the detection accuracy of the model but instead improved the ro-
bustness of the model, resulting in a slight increase in the detection accuracy.
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B   Performance Comparison and Analysis

Table 5 shows the comparison of the average accuracy and FPR of our proposed method with two recent unsuper-
vised learning-based DDoS attack detection methods RPCA [18] and AE-D3F [21]. We train RPCA and AE-D3F 
models by using normal samples of the KDDCUP99 and UNSWNB15, respectively.

Table 5. The experimental results compared with the methods based on unsupervised learning

Datasets Methods Accuracy (%) FPR (%)

KDDCUP99
Our method 99.157 0.373

RPCA 96.436 3.126
AE-D3F 94.475 4.728

UNSWNB15
Our method 96.700 3.541

RPCA 92.542 9.490
AE-D3F 92.339 7.094

From Table 5, we can see that our method is better than both RPCA and AE-D3F models in terms of the 
Accuracy and PPR on two datasets. On the KDDCU99 dataset, our method achieves 99.157% accuracy and 
0.373% FPR. The accuracy of our method is 2.822% and 4.956% higher than that of RPCA and AE-D3F, the 
FPR of our method is 5.949% and 3.553% lower than that of RPCA and AE-D3F, respectively. Similarly, on the 
UNSWNB15 dataset, the accuracy of our method is 4.493% and 4.723% higher than that of RPCA and AE-D3F, 
the FPR is 62.687% and 50.099% lower than that of RPCA and AE-D3F respectively.

This is probably because we use the BIRCH cluster algorithm to pre-classify network traffic data with similar 
distribution features captured from the network environment. The pre-clustering of the captured traffic data en-
sures the quality of the training data that is input into the unsupervised learning model. Based on the clustering 
subsets, we design a deep autoencoder to train the detection model, which can learn the high-dimensional features 
of the pre-clustered subsets and assist in obtaining a more suitable detection threshold. Thus, we achieve better 
performance in terms of detection accuracy and FPR.

In Table 6, we compare the proposed method with the recently supervised learning-based DDoS attack de-
tection methods (NB [10], RF [6-7], C4.5_DT [8], and RF-SVM-IL [1]). Because the mentioned methods need 
labeled data samples to train the detection model. Therefore, we use KDDCUP99 and UNSWNB15 datasets with 
labels to train NB, RF, C4.5_DT, and RF-SVM-IL models, respectively. For the method proposed in this paper, 
we use the experimental results obtained based on ID 2 of KDDCUP99 and ID 0 of UNSWNB15 as the compari-
son.

Table 6. The experimental results compared with the methods based on supervised learning
Datasets Indicators NB RF C4.5_DT RF-SVM-IL Our method

KDDCUP99 Accuracy (%) 93.188 94.647 97.101 97.471 99.157
FPR (%) 9.648 7.118 3.886 2.774 0.373

UNSWNB15 Accuracy (%) 84.945 92.482 93.621 94.852 96.700
FPR (%) 14.510 7.034 6.445 5.038 3.541

From Table 6, we can see that our method achieves the optimal performance among all the comparison meth-
ods with regard to the accuracy and FPR on both datasets. For example, on the KDDCUP99 dataset, the detection 
accuracy of our method is the highest, at 99.157%. Correspondingly, the accuracy of NB, RF, C4.5_DT, and RF-
SVM-IL are 93.188%, 94.647%, 97.101%, and 97.471%, respectively. And the FPR of our method achieves 
0.373% which is lower than that of NB, RF, C4.5_DT, and RF-SVM-IL. Similarly, on the UNSWNB15 dataset, 
our method achieves the best detection accuracy of 96.700%. Correspondingly, the accuracy of NB, RF, C4.5_
DT, and RF-SVM-IL are 84.945%, 92.482%, 93.621%, and 94.852%, respectively. And the FPR of our method 
achieves 3.541% which is lower than that of LR, NB, C4.5_DT, and RF-SVM-IL.

We can conclude that our method is more effective than other methods. Meanwhile, the RF-SVM-IL and 
C4.5_DT achieve greater performance than NB, RF. Tt is because RF-SVM-IL used Random Forest and SVM to 
classify traffic data twice and effectively filter traffic samples that are easy to be misclassified. Similarly, C4.5_
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DT improved the decision algorithm in the feature selection stage. Therefore, the optimal features can be selected 
to divide the decision boundary to obtain better classification results, and it also proves that the preprocessing of 
the training data directly affects the detection performance of the model. Indeed, the methods based on supervised 
learning are essentially a kind of classification method which need large amounts of high-quality data training 
data with labels for building detection model. Especially, these methods can achieve expected detection accuracy 
when being provided with well-labeled datasets. However, our method uses deep AE to learn the high-dimension-
al features of the pre-clustered subsets through the processes of “encoding” and “decoding”, and uses an appropri-
ate threshold for detecting anomaly traffic. As a result, our detection model reduces the probability of classifying 
normal traffic as abnormal traffic and guarantees higher detection accuracy and lower FPR. Besides, our method 
is based on unsupervised learning, which does not need to label the training samples. Thus, our method not only 
saves a lot of costs for labeling data but also can detect unknown attacks.

5   Conclusion

This paper design an improved DDoS attack detection model based on unsupervised learning, which aims to 
achieve more accurate and efficient DDoS attack detection in the network communication system. To this end, 
our method firstly uses the BIRCH algorithm to cluster network traffic data with similar features and utilizes a 
greater cluster subset as training data. Then, we train the detection model using deep AE in an unsupervised way 
and use the minimized reconstruction error of training data as a threshold to detect abnormal traffic. We compare 
our method with recent DDoS detection methods based on supervised learning and unsupervised learning, and 
the experiments on KDDCUP99 and UNSWNB15 show that our method is superior to the comparison methods 
in terms of accuracy and FPR. In addition, our method provides a practical guideline for developing network in-
trusion detection systems based on autoencoder and significantly contributes to the exploration of unsupervised 
learning techniques for various network intrusion detection systems.

The method proposed in this paper also has limitations and needs to be further improved to adapt to a more 
extensive and complex network environment: (1) our method cannot detect the specific type of network attack. 
Next, We intend to design an abnormal traffic detection method based on semi-supervised learning that can both 
detect specific types of attacks as well as unknown attacks; (2) to improve the generalization capability of the 
model, we will consider adjusting our detection model according to different network traffic with various rates in 
different environments; and (3) to achieve the usability of the method, we are going to build a real-time and adap-
tive network attack detection software based on the algorithm proposed in this paper.
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