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Abstract. In view of the problem that the estimation method of node influence in social network is not com-
prehensive and the Particle Swarm Optimization (PSO) algorithm is easy to fall into the local optimal and the 
local search ability is insufficient. In this paper, we proposed a Neighbor Cognitive Discrete Particle Swarm 
Optimization (NCDPSO) algorithm. Aiming at the problem of influence in social networks, a new node in-
fluence measure method is proposed, the three-degree theory is introduced to comprehensively estimate the 
influence of nodes. In order to improve the global search ability of the PSO, the “neighbor cognition” factor is 
proposed to enhance the breadth of learning; and the following bee strategy is introduced to propose particle 
density and survivability to control the number of elite clones, so as to solve the problem of insufficient local 
search ability of the algorithm. Finally, the validity of the proposed algorithm is verified by testing on real data 
sets and comparing with other algorithms.
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1   Introduction

In recent years, the emergence of complex networks, such as rumor containment, prevention and treatment of in-
fectious diseases, and other issues are closely related to the identification of influence nodes. How to find the most 
influential node set in a complex network, namely influence maximization has become a very important research 
work.

At present, the research algorithms for the maximization of social influence are divided into two categories: 
greedy algorithms and heuristic algorithms. Because heuristic algorithms have higher solution efficiency for 
large-scale networks, they have received extensive attention from researchers, such as Liu et al. [1] proposed a 
new algorithm for MNH combination, namely greedy algorithm with heuristic algorithm. As one of the heuristic 
algorithms, PSO [2] has been widely used in recent years to address the influence of social networks, due to its 
consistency with the dynamic properties of networks. For example, Gong et al. [3] proposed DPSO algorithm, 
and based on the idea that the influence of nodes in the two-hop region accounts for a large proportion of their 
global influence, they constructed a LIE function model of local influence estimation to evaluate the propagation 
capability of each node in the network. Wang et al. [4] proposed a discrete particle swarm optimization algorithm 
to find the ensemble of the maximum fitness function. At the same time, in order to accelerate the convergence, 
a degree-based population initialization method and a local search strategy based on mutation learning are in-
troduced. Yang et al. [5] proposed a multi-objective discrete particle swarm optimization algorithm, which can 
consider individuals and their influences at the same time and can better describe the characteristics of the real 
network. Zhou et al. [6] combined the PSO method of social network GDM based on trust relationship to make 
influence propagate and maximize in trust relationship. Tang et al. [7] proposed ELDPSO, which uses local search 
strategy based on greedy mechanism to improve the optimal solution. Singh et al. [8] proposed a discrete particle 
swarm optimization based on learning automata, which uses local optima to avoid premature convergence and 
produces more efficient seed sets to maximize influence propagation. In addition, other scholars proposed other 
heuristic algorithms to solve the problem of social network influence. For example, Cui et al. [9] used the degree 
drop strategy to select nodes to generate new node sets, and proposed the degree drop differential evolution influ-
ence maximization algorithm based on the differential evolution algorithm. Jiang et al. [10] proposed an expected 
propagation value (EDV) to approximate the influence spread of node combination, and proposed a simulated 
annealing-based influence maximization algorithm. Sankar et al. [11] proposed a swarm intelligence algorithm 
based on the study of bee waddle dance behavior to maximize its influence, and suggested that understanding 
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swarm intelligence in biological society might be a practical method algorithm for maximizing the influence 
of design efficiency. Simsek et al. [12] proposed a joint heuristic strategy to reshape network nodes so that the 
swarm intelligence optimization algorithm can obtain a general slope in the state space of its objective function. 
Qiu et al. [13] proposed a local influence decreasing differential evolution algorithm. In addition, a local influence 
descent search strategy is proposed, which can obtain the set of nodes with relatively large influence of each node. 
The algorithm can generally improve the accuracy and computational efficiency of the swarm intelligence-based 
influence maximization algorithm.

PSO algorithm is used widely, and it also has some achievements in the study of social network influence 
maximization. On the basis of the original algorithm, aiming at the problem of maximizing the influence of so-
cial network, the NCDPSO algorithm for maximizing the influence of social network is proposed. The technical 
achievements of this paper can be summarized as follows.

(1) First of all, in response to the problem of the influence of social networks, this paper proposes a new influ-
ence measurement method based on the “three degrees theory”. For a node, the influence of all nodes within its 
three hops on it is considered, and to better improve its ability to spread its influence.

(2) Secondly, in order to improve the global search ability of PSO, the “neighbor cognition” particle is intro-
duced into the algorithm as the learning object of the current particle, so that individuals do not jump too far so 
that all particles converge to  quickly, which maintains the continuous search ability of the population. Moreover, 
in sociology, people usually consider the experience of others as the basis for decision-making. In addition, based 
on the follower bee theory in the artificial bee colony algorithm, this paper proposes an elite clone strategy for 
neighborhood search to improve the problem of insufficient local space search in PSO. The particle density and 
survivability are defined to control the number of elite clones, which can also improve the quality of the solution.

(3) Finally, experimental results simulated on social network data sets demonstrate the effectiveness and supe-
riority of the proposed algorithm.

The rest of this paper is organized as follows. Section 2 describes the influence maximization, propagation 
models, traditional influence estimation functions, and improves influence estimation. The details of the improved 
algorithm are then presented in section 3. Finally, experimental results and conclusions are made in section 4 and 
section 5, respectively.

2   Related Work

2.1   Influence Maximization

Influence maximization can be defined as a problem on how to select k nodes from the network G so that the in-
fluence spread σ(S) is maximal. Given a graph G = (N, E) and an integer k < |N|, selecting k nodes as the initial 
node set S = { s1, s2, ..., sk|si ϵ N, i = 1, 2, ..., k}, so that the influence spread σ(S) is maximum for a specific spread 
model, which can be formulated as (1).

{ 𝑆𝑆 = arg 𝑚𝑚𝑚𝑚𝑚𝑚 𝜎𝜎(S)
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 |𝑆𝑆| = 𝑘𝑘  .       (1)

2.2   Propagation Model

There are many models that can be used to simulate the diffusion process with maximum influence, such as in-
dependent cascade (IC) models, weighted cascade models, and linear threshold (LT) models. The IC model only 
considers the relationship between the current active node and the inactive nodes in its immediate neighbors, and 
does not consider the influence of other active nodes on the inactive nodes. Therefore, it can well simulate the 
characteristics of social network influence propagation in real situations, so it has received extensive attention and 
research by scholars. Based on the above reasons, in the research process of the influence maximization problem, 
the IC model is used as the model of influence propagation.

2.3   The Traditional Approximate Estimation Model of Influence

At present, researchers have proposed a series of influence estimation functions, such as EDV proposed by Jiang; 
a fast approximation method of influence diffusion proposed by Lee and Chuang [14]; Wang designed an effective 
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fitness function based on local influence to Estimation of influence diffusion, that is, the direct neighbors of the 
seed set are the main factors affecting the spread of integrated circuit models; Qiu [15] proposed LFV to estimate 
the influence value of a single node; Gong proposed LIE and Qiu proposed EDIV, EDIV combines the LFV func-
tion to calculate the two-hop range of local effects, etc. Liu et al. [16] proposed a new centrality metric algorithm, 
which is not only based on the nearest neighbors of a node, but also takes into account the neighbor nodes within 
two and three hops of a node. The methods proposed by EDV, LFV and Lee only calculate the expected number 
of direct neighbor nodes affected by the seed set, without considering the local influence of each node in the sin-
gle-hop area of   the seed set, and LIE calculates the influence diffusion in the two-hop area of   the node. Although 
EDIV uses different parameters to reflect the influence of each hop, it still does not fully consider other influenc-
ing factors of the node. Although these influence estimation functions describe the influence of nodes in different 
ways, and considering the attenuation effect of information propagation in real social networks, some also assign 
different weights to the influence of one hop and two hops. However, most researchers still seldom consider the 
influence of neighboring nodes beyond the node’s second hop on the node, so the research on this issue is worth 
exploring.

2.4   Improved Influence Estimation Function

There are measures based on global and local attributes for calculating influence spread. The node influence 
measurement based on global attributes can better reflect the topological characteristics of nodes, while the mea-
surement based on local attributes is simple, intuitive and less time complexity, which is suitable for large-scale 
networks. However, such indicators only consider the influence of nodes in terms of the number of nodes that 
may affect other nodes, and do not consider the difference between the intensity of influencing other nodes or 
the location of nodes in the entire network. According to the three degree theory proposed by sociologist Fowler 
and others [17], nodes can affect not only neighbor nodes (one degree) but also neighbor nodes (two degrees) of 
neighbor nodes, and even neighbor nodes of neighbor nodes (three degrees) of neighbor nodes, as long as within 
three degrees are strong connections, there is the possibility of triggering behavior. Beyond three degrees, the in-
fluence of the nodes on each other disappears. In addition, the study of communication dynamics [18] shows that 
the spread of influence in social networks follows what we call the rule of three degrees of influence. Based on 
the above analysis, the influence diffusion in the three-hop area of the node set S is used to improve the influence 
spread range. The spread of the three-hop region of the node propagates as (2).

𝜎𝜎3∗(𝑆𝑆) = 𝜎𝜎2∗(𝑆𝑆) ∗
1

|𝑁𝑁𝑆𝑆
(2)\𝑆𝑆|

∑ 𝑝𝑝𝑢𝑢∗𝑢𝑢∈𝑁𝑁𝑆𝑆
(3)\𝑆𝑆 𝑞𝑞𝑢𝑢∗   . (2)

Where, σ2
*(S): the influence spread expectation of the candidate seed set S in its second-order neighborhood. NS

(2): 
the second-order neighborhood node set of the candidate seed set S. N3

(3): the third-order neighborhood node set 
of the candidate seed set S. pu

*: is a small propagation activation probability in a given propagation model. qu
* is 

the number of edges between NS
(2) and NS

(3) .
In summary, the improved influence estimation function LIE is as follows (3).

 

𝐿𝐿𝐿𝐿𝐿𝐿(𝑆𝑆) = 𝜎𝜎0(𝑆𝑆) + 𝜎𝜎1∗(𝑆𝑆) + 𝜎𝜎2∗(𝑆𝑆) + 𝜎𝜎3∗(𝑆𝑆) 

        = 𝑘𝑘 +

(
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𝑞𝑞𝑢𝑢∗)
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*∑ (1 − ∏ (1 − 𝑝𝑝𝑖𝑖,𝑗𝑗)(𝑖𝑖,𝑗𝑗)∈𝐸𝐸,𝑗𝑗∈𝑆𝑆 )𝑖𝑖∈𝑁𝑁𝑆𝑆
(1)\𝑆𝑆   

. (3)

Where, σ0(S) is the k most influential nodes in the seed set, σ1
*(S) is the expected influence spread of one-hop area 

of the seed set. σ2
*(S)  is the expected influence spread of two-hop area of the seed set. σ3

*(S) is the expected in-
fluence spread of three-hop area of the seed set. NS

(1), NS
(2) and NS

(3) represent the S’s one-hop, two-hop and three-
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hop area, respectively. The parameter pu
* is the constant active probability of node i, and it corresponds to p in 

the IC model. du
* is the number of edges of node u within NS

(1) and NS
(2) and qu

* is the number of edges of node u 
within  NS

(2) and NS
(3) , which represent the number of activated probability for node u. pi,j represents the activation 

probability of node i activating j. Obviously, the problem of selecting k most influential nodes in formula (1) to 
maximize their influence propagation range is transformed into the problem of selecting a group of candidate seed 
nodes with a size of k to maximize the adaptive value of the evaluation function of influence propagation expecta-
tion described in formula (3).

3   NCDPSO Algorithm

Through the study of particle behavior in PSO, it is found that particle swarm optimization has the defect that 
it is easy to fall into the local optimum, because sometimes the PSO will miss the global optimal solution in the 
process of subduction. The subduction of the particle in flight makes its search behavior not fine enough, and it is 
not easy to find the global optimal target value, which shows that the particle is at a standstill before the update 
of the optimal particle. Therefore, the neighborhood search method of “neighbor cognition” is introduced, which 
makes the particle search more precise, and enhances the continuous search ability of the population. In addition, 
in order to solve the problem of insufficient local search ability, a neighborhood search operation of elite clone is 
proposed. The method of cloning is carried out by using the Logistics chaotic sequence; the number of clones is 
calculated by the defined survivability.

3.1   Coding

In this algorithm, the position vector xi of each particle in the population is encoded by real value. A set k of nodes 
represents the feasible solution, represented by [x1, x2, …, xk]. Where, the i node in the solution xi is represented 
by the node number in the social network graph. The 0-1 decision-making mechanism can be used to control the 
direction of particles’ flight. For example, Vi = (0, 0, 1, 0, 0) represents the velocity vector of particles i, a 0-1 
decision-making mechanism can be used to control the flying direction of the particle, 1 means that it needs to be 
updated or replaced by other nodes; 0 means that it can be temporarily reserved as a candidate seed node.

3.2   Population Initialization

In order to speed up the convergence of the proposed NCDPSO algorithm, a degree based heuristic method is 
adopted to perform initialization for particles’ position vectors. First select the k nodes in the graph G with the 
highest degree value, denoted as Degree (G, k), and then generate a random number for each element of the po-
sition vector in the interval [0, 1] , if the random number is greater than 0.5, we will randomly select a node from 
the node set N that is different from the other nodes in the position vector and represents Replace(xij, N), with the 
update as shown in (4).

𝑥𝑥𝑖𝑖𝑖𝑖 ← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥𝑖𝑖𝑖𝑖, 𝑁𝑁)    𝑖𝑖𝑖𝑖 𝑟𝑟𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 > 0.5 . 

𝑥𝑥𝑖𝑖𝑖𝑖 ← 𝑥𝑥𝑖𝑖𝑖𝑖                                𝑟𝑟𝑜𝑜ℎ𝑅𝑅𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑅𝑅 . (4)

3.3   “Neighbor Cognition” Factors

For the problem of insufficient global search ability in PSO, a “neighbor cognition” factor is defined to expand 
its search space. Based on the mechanism of communication within the flock, biologists and physicists consider 
the range of individual interactions to be within a certain distance. As in [19] shows that a bird interacts with six 
or seven birds on average in order to maintain a balance between energy conservation and close communication. 
Similar to the influence of social networks, the influence of friends and family on the self is a more common phe-
nomenon. And many studies have shown that individuals who are affected in many aspects have more influence 
than individuals who are affected in only one or two aspects. The learning strategy combined with “neighbor cog-
nition” can explore more search space and improve the global search ability of the algorithm to avoid premature 
convergence, because any particle stuck in local optima can learn from other particles and eventually escape local 
optima. The modified velocity update formula is as follows (5).
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𝑉𝑉𝑖𝑖 = 𝜔𝜔𝑉𝑉𝑖𝑖 + 𝑐𝑐1𝑟𝑟1(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 − 𝑋𝑋𝑖𝑖) + 𝑐𝑐2𝑟𝑟2(𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑋𝑋𝑖𝑖)+𝑐𝑐3𝑟𝑟3(𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑋𝑋𝑖𝑖) 
 

. (5)

Neighbor cognition Nbest is defined as the average value of 7 neighbor particles, which is expressed as (6).

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 1/7∑𝑝𝑝𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖
7

𝑖𝑖=1
 . (6)

3.4   Elite Cloning

Elite clone operation has been widely used in various heuristic algorithms. For example, in order to improve the 
mining and exploration ability of DE algorithm, Wu [20] added clone and mutation mechanism of elite group, and 
adopted dynamic selection method to determine elite group, which effectively enhanced the global search ability 
of the algorithm. Xiao [21] proposed the elite genetic algorithm of quantum cloning, which combined the concept 
of quantum revolving gate in quantum computing and cloning in biology to avoid the algorithm falling into local 
optimal, and adopted the elite strategy to accelerate the algorithm convergence. Therefore, in view of the insuffi-
cient local search ability of particle swarm optimization algorithm, the oscillation phenomenon, easy to disperse, 
difficult to obtain accurate results and low search efficiency phenomenon. Through the follower bee theory in the 
artificial bee colony algorithm [22], that is, the follower bee searches for new food sources near the food source 
based on the information transmitted by the lead bee, and when a good food source is found, the corresponding 
lead bee is notified to update its food source, and the following bees can improve the accuracy of the solution. 
Based on the follower bee theory, this paper proposes an elite cloning operation.

Definition 1. Particle density PPii. Set a radius rr, calculate the number of particles in this radius mm, mm and the to-
tal number of particles NN ratio that is density, such as (7).

     Pi = m/ N  .     (7)

Definition 2. Survivability SSii. The survivability SSii of a particle is the weight of the distance between any parti-
cle and the optimal particle and the particle density, such as (8).

𝑆𝑆𝑖𝑖 = r1 ∗ 1
𝑑𝑑𝑖𝑖,𝑃𝑃𝑃𝑃

+ 𝑟𝑟2 ∗ 1
𝜌𝜌𝑖𝑖

. (8)

Where, r1, r2 ϵ [0, 1], di,Pg = |xi − xPg| in the formula, di,Pg, Pi are between 0 and 1,  1/ di, Pg the larger, that is, the 
closer the particle to the optimal value, the higher the particle fitness; Pi the larger, that is, the higher the number 
of particles clustered around the particle, the higher the density, continuing the search will result in local optima, 
so explore other areas. For the survivability Si  of the particle, the larger of Si, the more adaptive it is, and vice 
versa, so the survivability of the cloning operation determines the number of clones.

The number of clones Nc is calculated from the following (9).

𝑁𝑁𝑐𝑐 = ∑ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑆𝑆𝑖𝑖𝑟𝑟/𝑖𝑖 + 𝑏𝑏)𝑛𝑛
𝑖𝑖=1  . (9)

Where, n the number of randomly selected elite particles, Si ϵ [0, 1], in order to avoid the number of clones less 
than 0 so the addition b, b is an integer greater than or equal to 1, round is the integer function.

The cloning method is as follows: select a few elite particles at random, and conduct random and regular clon-
ing with Logistic sequence, such as (10).

𝑋𝑋𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑋𝑋𝑖𝑖 + (𝑋𝑋𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑋𝑋𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛)/𝑙𝑙 ∗ 𝑈𝑈𝑟𝑟+1 . (10)

Where, Xi
max is the most influential particle in the area of elite particle density and Xi

min is the smallest particle in 
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the area of elite particle density. l is a constant, depending on the specifi c problem. Ur+1 is a chaotic sequential 
Logistic, where Ur+1 the map of Logistics is a chaotic sequence is as follows (11).

                          Ur+1 = µUr (1−Ur)  . (11)

Where, r = 0, 1, 2, ..., 0 < U0 < 1, µ is the state control parameters of the system, it has been proved that when 
µ=4, the initial value U0∉ (0.25, 0.5, 0.75, 1), the system represented by the above formula is completely in a 
chaotic state, Ur+1 traversing the (0,1) range. 

3.5   Selection Operations for Equivalence Partitioning

After the above operation between the population particles, the number of the population has already exceeded 
the set value, need to carry out further selection of particles in the population. The selection process of particles is 
as follows, using the equivalent partition strategy to ensure the diversity of the population. Suppose the number of 
particles in a population is N, the infl uence function is sorted from large to small, and all particles are divided into  
n disjoint intervals and recorded as N1, N2, ..., Nn, then a particle is randomly selected in each interval to form a 
new population, for the next search, eff ective guarantee of the selection of individuals more uniform.

3.6   Particle Update Rules

1) Update rule for velocity: the updating rule of the velocity vector is redefi ned in a discrete as follows (12).

𝑉𝑉𝑖𝑖 ← 𝐻𝐻(𝜔𝜔𝑉𝑉𝑖𝑖 + 𝑐𝑐1𝑟𝑟1(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 ∩ 𝑋𝑋𝑖𝑖) + 𝑐𝑐2𝑟𝑟2(𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∩ 𝑋𝑋𝑖𝑖)+𝑐𝑐3𝑟𝑟3(𝑁𝑁𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∩ 𝑋𝑋𝑖𝑖)) . (12)

Where, ω is the inertia weight, c1c2c3 are the cognitive factors, which is a constant.r1r2r3 are the random numbers 
between [0, 1].

The operator “∩” in (12) is defi ned as a similar intersection operation. A detailed illustration for this operator 
is shown in Fig. 1. The position vector of particle i is Xi,  Pbesti represents the personal best position of particle i
and Gbest is the global best position in the swarm, Nbest is the neighbor average best position of particle i. Firstly, 
intersect vector Xi and Pbesti mathematically and the same elements in both two vectors can be obtained. Then 
the corresponding elements in Vi

Pbest are set to 0, which denotes that those directions may be potential and tends to 
be reserved. Conversely, the other elements in Vi

Pbest are set to 1, which indicates that those directions are not good 
choice and they need to be adjusted. In a similar way, then Vi

Gbest and Vi
Nbest can be also computed. The two posi-

tion vectors fi nally get a velocity vector through position intersection operation. The essence of the “∩” operator 
is to guide the particles in the population to learn from Pbesti, Gbest and Nbest. Through the position intersection 
operation, the particles can clarify how to change their current position to obtain a more accurate solution.

Fig. 1. Discrete evolutionary rules

H(.) is a velocity decision function to calculate velocity Vi, which consists of three 0-1 vectors. Assuming that 
the parameter is Xi, the function H(Xi) it can be represented as H(Xi) = (h1(xi1), h2(xi2), ..., hk(xik)) and hi(xij)(1 ≤ j 
≤ k) is defi ned as a threshold function shown in (13).
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ℎ𝑖𝑖(𝑥𝑥𝑖𝑖𝑖𝑖) {
0    𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖 < 2
1    𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 2  . (13)

For example, supposing that c1r1 = 0.8, c2r2 = 1.3, c3r3 = 0.9, according to the discrete evolution rule of the Fig. 
1, it can be obtained Vi = H(0.8 * (1, 0, 1, 0, 1) + 1.3 * (0, 0, 1, 1, 0) + 09 * (1, 0, 0, 0, 1)) = H ((1.7, 0, 2.1, 1.3, 
1.7)) = (0, 0, 1, 0, 0).

2) Update rule for position: the position vector Xi of the particle is updated by (14).

𝑋𝑋𝑖𝑖 ← 𝑋𝑋𝑖𝑖 ⊕ 𝑉𝑉𝑖𝑖 . (14)

“⨁” is the arithmetic operation between the position vector and the velocity vector. We defi ne it as a “replacement” 
operator. Assuming that Xi

' = xi
'
1, xi

'
2, ..., xi

'
k elements in the new position Xi

' can be updated by (15).

𝑥𝑥𝑖𝑖𝑖𝑖
, = {

𝑥𝑥𝑖𝑖𝑖𝑖                              𝑖𝑖𝑖𝑖 𝑣𝑣𝑖𝑖𝑖𝑖 = 0
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥𝑖𝑖𝑖𝑖, 𝑁𝑁)     𝑖𝑖𝑖𝑖 𝑣𝑣𝑖𝑖𝑖𝑖 = 1 . (15)

Where, N is the node set of the targeted network G. And Replace(xij, N) is a function that can replace the element  
xij with a random node in the node set N and it can guarantee that there is no repeated node in Xi after the replace-
ment at the same time.

Fig. 2. Positional substitution rule

For example, the substitution operation between the position vector and the velocity vector can be described 
in Fig. 2, where Vi = (0, 0, 1, 0, 0), so the elements xi1, xi2, xi4, xi5 of the position vector Xi do not need to be re-
placed, while the elements xi3 are randomly replaced.

3.7   Frame the Proposed Algorithm

Algorithm 1 gives the whole framework of the proposed neighborhood-based particle swarm optimization to 
solve the maximizing infl uence.

Algorithm 1.  NCDPSO for infl uence maximization
1. Input: Graph GG = (VV, EE), the number of iterations gmax, the size of particle swarm NN, the inertia weight ww, 

the learn factors cc11, cc22 and cc33, the size of the seed set kk.
2. Step 1: Initialization:
3.    Step 1.1: Initialize iterator g g = 0= 0;
4.    Step 1.2: Initialize position vector: X ←← Initialization ((GG, , kk,, N N));
5.    Step 1.3: Initialize PbestPbest vector: PbestPbest ←  ← Initialization ((GG, , kk, , NN));
6.    Step 1.4: Initialize velocity vector: VV ←← 0;
7. Step 2: Select out the initial global best position vector GbestGbest* according to the LIELIE value of each xxii;

      8. Step 3: Begin cycling
 9.         Step 3.1: groups evolution: Gbest'Gbest' ←← Neighborhood search (GbestGbest*);
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10.        Step 3.2: Update the velocity vector VV according (12);
11.        Step 3.3: Update the position vector XX according (14);
12.        Step 3.4: Compare and update the GbestGbest*: GbestGbest* ←← max (GbestGbest*, Gbest'Gbest');
13.        Step 3.5: Update the PbestPbest of the current generation;
14. Step 4: Stop criteria: if gg = ggmaxmax, stop the algorithm, otherwise, let gg ← gg + 1+ 1 and go to Step 3.1;
15. Output: Output the GbestGbest** as the seed set SS.
The function Neighborhood search (GbestGbest*) (Neighborhood search, as in section 3.4); and the function max 

(GbestGbest*, Gbest'Gbest') is the particle that selects the larger LIE value of the influence function.

3.8   Algorithm Complexity Analysis

The degree-based initialization method in step 1 requires O(N . k) basic operations. Step 3.1 needs O(d . k)  basic 
operations, where d is the network average. Step 3.2 requires O(k . logk . N) basic operations. Step 3.3 and 3.5 
need O(N . k)  basic operations, and step 3.4 requires O(1) basic operations. Therefore, the worst case time com-
plexity is O(k . logk . N) + 4O(N . k) + O(d . k) + O(1). In addition, the time complexity of the influence spread 
expectation LIE is O(d 2 . k). Assuming that the operation time of the other steps need a unit, according to the 
rules of the symbol O, in the worst case, the complexity of the proposed NCDPSO is O(k2 . logk . N . d 2 . gmax).

4   Experiments

The proposed NCDPSO algorithm is compared with other algorithms in terms of running time and influence 
spread in four real networks. The purpose of the experiment is to illustrate the difference of efficiency and effec-
tiveness between our proposed algorithm and other algorithms.

4.1   Experimental Environment and Data Set

All the program code is written in Python, and the running computer is configured as Intel (R) Core (TM) i5-4590 
CPU 3.30 GHZ, 8 GB of memory.

Table 1 shows the information of four real datasets used in the experiment.Where, Karate club network http://
www-personal.umich.edu/mejn/netdata/. Viki and Facebook from the http://snap.stanford.edu/data/, Viki datasets 
are the network of who votes for who in Wikipedia. The data set NetHEPT comes from http://www.arXiv.org, all 
of which are the cooperative relationship between the authors in the paper. NetHEPT contains data from the High 
Energy Physics-Theory part. The nodes all represent authors, and the edges represent the paper collaboration rela-
tionship between authors. The active probability of the IC model is 0.01 and 0.05 respectively.

Table 1. Statistics for datasets
Number Data set Node|V| Edge|E| Mean degree<k>

1 Karate 34 78 4.558
2 Facebook 4039 88234 43.69
3 Viki_Vote 7115 103687 26.6
4 NetHEPT 15235 31399 4.12

4.2   Comparison Algorithm and Experimental Parameter Setting

We compare our NCDPSO algorithms with four widely used comparison algorithms. The list of four comparison 
algorithms in our experiment is as follows.

(1) CELF [23]: The algorithm uses the sub-model of the marginal revenue function to dynamically update the 
marginal revenue of network nodes by maintaining a priority queue, and adopts the “Lazy-Forward” strategy 
to select the node with the largest marginal revenue to add to the seed set. And it has the same performance as 
greedy algorithm in the range of influence.

(2) DPSO [3]: The algorithms all use intelligent optimization algorithms to solve the problem of maximizing 
influence, and they are all very advanced algorithms in terms of time efficiency.

(3) Random [24]: Random is a baseline algorithm randomly selecting a group of k nodes as a seed set.
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(4) Degree Discount [25]. The algorithm based on the idea that nodes with large discount-degree have large 
influence spread. When a node is selected as a seed node, the predecessor nodes of this node will lose a part of 
influence. This is because the influence of these predecessor nodes is cut off by the selected nodes. Therefore, this 
algorithm outperforms other degree-based algorithms in terms of accuracy.

In the CELF algorithm, Monte Carlo simulation needs to be set to 10,000 times, but in this setting, the ordinary 
computer needs to run dozens of hours to get 50 seeds. In order to improve the running speed of the algorithm, 
the simulation times of Monte Carlo are set to 100 in this experiment at the expense of the influence spread of the 
loss algorithm. In order to approximate the average influence spread range of the seed node set selected by other 
algorithms, the corresponding simulation times are all set to 1000 times. For Karate network, since there are only 
34 nodes in the network, the maximum k value is set to 20; for other networks, the corresponding maximum k 
value is 50. DPSO and NCDPSO algorithm, parameters c1, c2, c3, w, iteration number and population size is set 
to: 2,2,2,0.8,100,100, respectively. All the algorithms except CELF are run 30 times to average the results.

4.3   Experimental Results and Analysis

4.3.1   Influence Spread

The influence spread refers to the number of active nodes in the network after the information transmission pro-
cess. The larger the influence spread of seed set, the better the effect of the algorithm. Fig. 3 shows the influence 
spread of the algorithms on Karate, Facebook, Vivk-vote, and NetHEPT over four datasets when the influence 
probabilities are 0.01 and 0.05, respectively. The abscissa represents the size of the seed set, and the ordinate rep-
resents the influence spread of the seed set.
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Fig. 3. IC model for the propagation range of 5 algorithms over 4 networks

According to the experimental results in Fig. 3, the performance of NCDPSO and CELF are very similar un-
der two active probabilities in four data sets, and they have better performance than other contrast algorithms. In 
addition, NCDPSO outperforms DPSO, Degree Discount, and Random. Focusing on DPSO, we can find that as 
the number of nodes in Fig. 3(g) increases, the search ability of DPSO becomes worse because the search space 
increases with the size of the seed set. In contrast, the NCDPSO with the local search strategy following the bee 
theory has more stable search performance. When the seed set k=30, the propagation accuracy of NCDPSO was 
better than that of DPSO, Degree Discount and Random algorithm on Facebook (p=0.01), 7.84%、10.64% and 
23.53% respectively. On Vivk-vote (p=0.01) 8.65%, 12.26% and 30.10% respectively. On the NeTHEPT dataset 
(p=0.05), 6.67%, 14.29% and 34.29% respectively. Obviously, the performance of the NCDPSO algorithm ben-
efits from the increase of particle’s neighborhood search method, through this strategy, the algorithm can search 
for nodes in the network with greater marginal revenue. The Random algorithm randomly selects nodes without 
considering its influence spread, so the performance has always been the worst.

Fig. 3(a) and Fig. 3(b) shows that all five algorithms perform equally well in small-scale networks with fewer 
nodes. As shown in Fig. 3(a), Fig. 3(c), and Fig. 3(e), the influence spread of NCDPSO is similar to that of CELF, 
and the influence of nodes is mainly concentrated in its neighborhood under the condition of low probability of 
propagation, it also shows the efficiency of NCDPSO in solving the problem of maximizing influence. The Fig. 
3(c) and Fig. 3(d) diagram in Fig. 3 not only shows that the Random algorithm is the worst performing, but also 
shows instability. In Fig. 3(e) to Fig. 3(h), when k<10, almost all the other four algorithms, except Random algo-
rithm, have the same expectation of influence spread and show efficient performance. When k>10, the NCDPSO 
outperforms DPSO, Degree Discount, and Random. In addition, DPSO and Degree Discount have different per-
formance for different data sets under different probabilities. For example, DPSO outperforms Degree Discount in 
Fig. 3(f) and Fig. 3(g), and when k>40 in Fig. 3(e) and Fig. 3(h), Degree Discount performs just as well as DPSO. 
Overall, our proposed NCDPSO algorithm is able to closely match the CELF algorithm and outperform other al-
gorithms.

4.3.2   Running Time Analysis of Algorithms
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The active probability is p=0.01 when different algorithms select k=30 (Karate, k=20) seeds from four data sets. 
The experiment results are shown in Fig. 4. The abscissa gives different data sets, the ordinate represents the run-
ning time of the algorithm.

Fig. 4. Comparison of running times of algorithms

As can be seen in Fig. 4, the CELF is the most computationally expensive, since the CELF requires a suffi-
cient number of simulations of the IC model in order to obtain an accurate average sphere of influence. The time 
complexity of the simulation process is linear with the network size, resulting in lower simulation efficiency on 
networks with more nodes and edges. As the network size increases, the running time of CELF increases signifi-
cantly. In these four datasets, for large-scale networks like Viki-vote and NetHEPT, CELF takes tens of thousands 
of seconds to complete the selection of 30 seed nodes. In comparison, the running time of NCDPSO and DPSO 
is relatively stable, and DPSO is slightly better than NCDPSO. Compared with DPSO, NCDPSO needs more 
running time because the influence of three-hop spread and elite clone operation should be considered when cal-
culating the influence of nodes. In addition, the running time of NCDPSO and DPSO in each network is nearly 
two orders of magnitude faster than CELF. The proposed NCDPSO algorithm is only faster than CELF algorithm 
in running time, because the proposed fitness function improves the accuracy at the cost of efficiency. In addition, 
the heuristic Degree Discount is much faster than the NCDPSO for each diffusion model in all networks, because 
the heuristic only considers the degree of the node to select the seed node. Random combination algorithm pro-
duces seed node set. Although the time efficiency is the best, the performance is the worst in the range of spread 
influence.

5   Summary

Influence maximization is still an unsolved problem in the fields of social network analysis and virus marketing, 
so it is necessary to study the algorithm with lower time complexity. In order to maximize the influence, this pa-
per proposes a discrete particle swarm optimization to optimize the neighborhood search. In order to improve the 
propagation range of influence, we propose a new influence measure method, which considers the influence prop-
agation of all neighbor particles within three hops of a node. We carefully analyze the sensitivity of a particle’s 
neighbor to its influence, and introduce a “neighbor cognition” learning strategy to enable the particle to explore a 
larger search space, so as to improve the global search ability of the algorithm to avoid premature convergence. In 
order to improve the ability of local search, the strategy of elite cloning is used to expand the scope of searching 
for the better solution. The experimental results and the comparison with other algorithms verify the optimization 
ability of the proposed algorithm, although the simulation results show that the NCDPSO algorithm does not 
exceed the CELF algorithm in the propagation range, however, compared with the original DPSO algorithm, the 
improved algorithm achieves better LIE values in different scale social networks.

In this work, we have considered the degree information for influence estimation only. Therefore, this work can 
be extended for the influence maximization in dynamic structured large networks such as networks with various 
node attributes and edge attributes. With the continuous expansion of the network scale, the problem of maximiz-
ing influence is still a huge challenge. Heuristic algorithms have higher practicability and flexibility in actual pro-
duction and life, and it can efficiently solve problems with characteristics of different fields. Therefore, heuristic 
algorithm to solve the problem of social network influence is still a research hotspot in the future. In addition, the 
influence of network topology on nodes is a popular research method at present, but the influence of a single node 
not only depends on the positional relationship of the node in the network, but also depends on the node’s own 
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attributes in the social network, such as the node’s interest preference, active factor index, etc. Therefore, it is also 
a future research direction to consider comprehensively analyzing the influence of nodes from multiple aspects.
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