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Abstract. In this paper, we propose a new Multi-view Re-weighted Sparse Subspace Clustering with Intact 
Low-rank Space Learning (ILrS-MRSSC) method, trying to find a sparse representation of the complete 
space of information. Specifically, this method integrates the complementary information inherent in multiple 
angles of the data, learns a complete space of potential low-rank representation, and constructs a sparse infor-
mation matrix to reconstruct the data. The correlation between multi-view learning and subspace clustering 
is strengthened to the greatest extent, so that the subspace representation is more intuitive and accurate. The 
optimal solution of the model is solved by the augmented lagrangian multiplier (ALM) method of alternating 
direction minimal. Experiments on multiple benchmark data sets verify the effectiveness of this method.
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1   Introduction

The increasing development of information technology has caused rapid growth of data on the internet, and the 
complexity of large-scale data has also brought certain difficulties to data analysis. Subspace clustering is an 
effective means to achieve large-scale data clustering, and is widely used in machine learning, computer vision, 
image processing and other fields [1-4].

The main idea of the subspace clustering method is to assume that high-dimensional data can be linearly rep-
resented by multiple independent low-dimensional subspace data, and find the coefficient representation matrix 
to achieve subspace segmentation. For example, Sparse Subspace Clustering (SSC) [5] analyzes the similarity 
relationship of each data point individually, imposes l1norm constraints on the optimization objective, and obtains 
a sparse coefficient matrix. Low Rank Representation (LRR) [6] imposes a nuclear norm constraint on the opti-
mization objective, aiming to jointly find the lowest rank representation of a vector set, which can better capture 
the global structure of the data. Non-negative Low Rank and Sparse (NNLRS) [7] adds a non-negative constraint 
on the coefficient matrix, and strengthens the connection between subspaces from the global perspective of the 
data. Lu et al [8] added a mandatory block diagonal condition for the coefficient matrix. Ming et al [9] introduced 
the riemannian geometric structure to enhance the anti-noise ability of the algorithm. The above methods are 
all unsupervised subspace methods, which only look for similar relationships between data points from the data 
itself. However, the data itself may carry some prior information, and the commonly used prior information in-
cludes label information [10] and pairwise constraint information [11]. Therefore, introducing a semi-supervised 
framework into subspace clustering and using prior information to guide the construction of the coefficient matrix 
can improve the subspace learning performance. Huang et al [12] introduced spatial information and label infor-
mation to improve the connectivity of similarity matrix. Zhang et al [13] restricted the weight coefficient between 
unconnected data to 0 through pairwise constraint information, which enhanced the algorithm’s anti-noise ability 
and robustness. 

At present, the research on subspace clustering mainly focuses on the design of data regularization term, the 
design of fast algorithm, the introduction and practical application of semi-supervised learning and so on. In fact, 
for single-view data, the subspace methods described above can usually yield good clustering results. Single-view 
data usually describes the object from a single or fixed angle, and cannot obtain comprehensive information about 
the object. However, in practical applications, real data is often composed of information from different perspec-
tives, that is, multi-view data. Unlike single view, multi-view data can describe the same object from different 
perspectives. For example, web page data may contain textual information, visual information, and hyperlink 
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information. For example, if we photograph the same person from multiple angles, we can get image data from 
different angles. The front image can obtain clear face information relative to the back image or the side image. 
The single-view subspace method performs clustering analysis from the single-view data itself, without consider-
ing that the complete data information of the object may exist in different view data, which makes the clustering 
effect of the single-view subspace method on multi-view data often insignificant. In order to solve the problem of 
poor clustering performance of multi-view data subspace methods, the introduction of multi-view learning frame-
work into subspace methods is a new solution in recent years. 

Multi-view learning mainly explores the complementary information between different views and tries to find 
the underlying complete information [14]. According to the work of literature [15-17], we can know that multi-
view learning can be divided into three types, including late integration, intermediate integration and early inte-
gration. Late integration is to analyze the clustering algorithm for each view separately, and then combine the re-
sults. Greene et al [18] integrated the clustering results of different views into a matrix and then passed non-neg-
ative matrix factorization to obtain the final result. Xia et al [19] recover a shared low-rank transition probability 
matrix from a single view. Compared with late integration, intermediate integration calculates the similarity 
matrix on different views and generates a fused pairwise representation, that is, using multiple single-view data 
to learn a common data graph information. However, there is a problem. For clustering tasks, due to the different 
information carried between each view, the weight coefficients assigned to different views should also be different 
[20-22]. Parameter Free Auto Weighted Multiple Graph Learning (AMGL) [23] automatically learns the weight 
coefficients of a single view by re-adjusting the standard spectrum learning mode. Self-weighted multi-view clus-
tering (SwMC) [24] learns the similarity matrix of individual views to automatically assign weight coefficients 
and learn a common similarity matrix. Multi-View Clustering and Semi-Supervised Classification with Adaptive 
Neighbors (MLAN) [25] learns the local manifold structure of a single view and integrates all views by automati-
cally assigning weight coefficients. Exclusivity Consistent Regularized Multi-View Subspace Clustering (ECMC) 
[26] introduces multi-view learning into sparse subspace methods that fully consider multi-view complementary 
information between. 

In this research, we focus on multi-view learning based on early integration. The purpose of early integration is 
to find a complete representation of multi-view data, that is, to fuse each view information into a comprehensive 
view and perform data analysis on the comprehensive view. One of the representative works is Multi-view Intact 
Space Learning (MISL) [27]. MISL integrates the encoded complementary information into all views to restore 
the complete latent representation (as shown in Fig. 1). This is a new idea, which assumes that the multi-view 
data is derived from the projection data from different perspectives of the complete latent representation. Multi-
view Subspace Clustering with Intactness-Aware Similarity (MSC_IAS) [28] learn an intact space by integrating 
encoded complementary information, which enforces the constructed similarity to have maximum dependence 
with its latent intact points by adopting the Hilbert Schmidt Independence Criterion (HSIC). Latent Multi-view 
Subspace Clustering (LMSC) [29] introduces the learned latent complete space into the subspace method, and 
performs data reconstruction on the basis of the latent space.

Fig. 1. Intact space learning schematic diagram [27]
(Mining a potential complete space through the complementary information of multi-view data can describe the underlying structure of multi-

view data more comprehensively.)
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In this paper, we propose a new model to explore the relationship between multi-view data and subspace meth-
ods. Assuming that the single-view data is the projection data of the potentially complete data under different 
viewing angles, there is complementary information between multiple views. Different from other methods, we 
believe that there may be redundant information between different views, and achieve data reconstruction by im-
posing different constraints, eliminating redundant data information, and simultaneously finding sparse represen-
tations of potentially complete data. Specifically, our main contributions can be summarized as follows: 

(1) We propose a novel multi-view subspace clustering model, namely Multi-view Re-weighted Sparse 
Subspace Clustering with Intact Low-rank Space Learning. Unify subspace methods and multi-view learning in 
one framework, and jointly optimize to improve clustering performance.

(2) We fully consider the information correlation between multiple views. Through the low-rank property of 
the nuclear norm, we minimize redundant information between multiple views, and at the same time reconstruct 
the data through a subspace approach, ensuring that the recovered potentially complete data is clean and noise-
free as much as possible.

(3) Through experiments on multiple benchmark datasets, we demonstrate the effectiveness of our proposed 
framework and outperform the state-of-the-art alternatives.

The rest of this paper is organized as follows. In Section 2, we introduce classical models with related back-
grounds. In Section 3, we introduce the proposed Multi-view Re-weighted Sparse Subspace Clustering with Intact 
Low-rank Space Learning (ILrS-MRSSC) algorithm for clustering, providing a new ALM-based optimization 
scheme. In Section 4, we conduct experimental analysis on benchmark datasets to evaluate the performance of the 
algorithm. Finally, Section 5 presents the conclusion of this paper. 

2   Related Work

This section aims to introduce the classic model with relevant background, mainly introduces the optimization 
model of complete space learning and reweighted subspace method.

2.1   Intact Space Learning

As mentioned in the work [27-28], in the complete space learning, assuming that there is a latent complete space 
d nX R ×∈ , the information of a single view v dv nF R ×∈ can be obtained through the projection matrix v dv dW R ×∈

of different perspectives (as shown in Fig. 1), note 1,2... ,v V= dv represents the dimension of the view vF , d
represents the dimension of the space X , and n is the number of data. At the same time, in order to stabilize the 
model and improve the accuracy, regularization constraints on the complete space X  and the projection matrix 
X  are added. Specifically, the square of the Frobenius norm is used for the complete space X , and the additional 

constraint 2
1v

iW ≤  is used for the projection matrix vW , so the complete the spatial learning model: 
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Where γ is the regularization parameter.

2.2   Re-weighted Sparse Optimization Framework

The SSC algorithm use the sparse representation of vectors lying on a union of subspaces to cluster the data 
into separate subspaces. In order to obtain the sparse representation of each data point, the re-weighted l1 norm 
minimization is used to perform convex relaxation. At the same time, in practical problems, data points are of-
ten mixed with sparse singular values and noise. In addition, the data are often distributed on the union of affine 
subspaces rather than linear subspaces. So a re-weighted sparse [30] optimization framework is established as 
follows:
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Where n nW R ×∈  is a re-weighted diagonal matrix. In reference [16], re-weighted matrix updating formula is 
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3   Research of this Paper

3.1   Proposed Approach

In this work, assume that different views all come from a common latent representation, as shown in Fig. 1. We 
can observe that view 1F  contains part of the same information and different information (complementary infor-
mation) compared to view 2F , we call this part of the same information redundant information. In complete spa-
tial learning, we should retain complementary information as much as possible and eliminate redundant informa-
tion. Therefore, we use the low-rank characteristics of the kernel norm to eliminate the redundant features of the 
data, and at the same time we use more standard regularization constraints on the projection matrix. Our complete 
spatial learning model can be simplified to:
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We know that due to the complementarity of multiple views, the potential complete space describes the data 
more comprehensively than a single view. At the same time, considering that learning a sparse coefficient ma-
trix can usually obtain good performance and reduce the computational burden of subsequent processing [31], 
we choose to perform re-weighted sparse subspace learning on X. On the other hand, we consider that the above 
subspace model [5-11] is usually solved by the Augmented Lagrange Multiplier (ALM) method, which requires 
a large number of iterations and high complexity. Therefore, we use the subspace of the quadratic programming 
to carry out the data of the potential complete space refactoring. Multi-view Re-weighted Sparse Subspace 
Clustering with Intact Low-rank Space Learning can be described as: 
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Fig. 2 shows the main framework of the proposed method.

Fig. 2. Multi-view re-weighted sparse subspace clustering with intact low-rank space learning framework diagram
(The model integrates all multi-view information {F1, F2, ... , Fv} to learn Intact Low-rank Space Learning X, and completes data reconstruc-

tion through Re-weighted Sparse Subspace to form a unified sparse coefficient matrix A, and then uses normalized cut and other spectral 
clustering algorithms to The learned similarity is clustered, and the final clustering result is obtained.)
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3.2   ILrS-MRSSC Solve by ALM

Rewrite eq. (4) as a lagrangian multiplier function through the ALM method, note X=Z, A=J:
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1. X-subproblem: By leaving only terms in (5) that depend on X, we obtain:
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Taking the derivative with respect to X and setting it to zero, we get:

( )2T1
3

1

T1
1

         
2with 2

2       

V
v v

v

v v

PX XB C

P W W I B I A
V

C W F Y Z
V

λ
µ λ

λ
µ

=

+ =

 = + = − 
 
 = − + 
 

∑ ，
.                                           (7)

The above equation is a Sylvester equation, work [32] gives the solution method.
2. Z-subproblem: By leaving only terms in (5) that depend on Z, we obtain:

( ) 2
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According to work [6], we get:
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3. A-subproblem: By leaving only terms in (5) that depend on A, we obtain:
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Taking the derivative with respect to A and setting it to zero, we get:
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4. J-subproblem: By leaving only terms in (5) that depend on J, we obtain:
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Get the analytical formula according to the soft threshold function:
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5. W-subproblem: By leaving only terms in (5) that depend on W, we obtain:

2
min

s.t.

v

v v

FW
vT v

F W X

W W I

λ −

=
.                                                                                     (14)

According to work [33], the optimal solution is T TvW UV= , where U and V are left and right singular values 
of SVD decomposition of TvXF .

6. Updating Multipliers: We update the multipliers by:
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7. Updating H: We update the multipliers by:

1H
A ε

=
+ ,                                                                                                 (16)

note 0ε ≥ .

Algorithm 1. Eq.(4) solve by ALM
Input: Data vF , Parameter 1 2 3, , ,λ λ λ ε , intact space feature d

initialization 
5
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1.	  while not converged do 
2.	  Z update by Eq.(9)
3.	  H update by Eq.(16)
4.	  J update by Eq.(13)
5.	  A update by Eq.(11)
6.	  X update by Eq.(7)
7.	  W update by Eq.(14)
8.	  Multipliers update by Eq.(15)
9.	  Check convergence conditions:

X Z α
∞

− ≤  and A J α
∞

− ≤

10.	end while
Output: Optimal solution X and A

3.3   Complexity Analysis

The ILrS-MRSSC method is solved by the ALM method, and the complexity of the algorithm is mainly con-
centrated on the iterative process of alternating related variables. The complexity of the variable ( )1, ,Z X Y is 

( )3O tdn , where d and n represent the dimensions of the variable, and t is the number of iterations; the complex-

ity of the variable ( )2, , ,A J Y H is ( )24O tn ; the complexity of the variable vW
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the dimension of the variable, and V represents the number of views number; the complexity of the parameter µ

is t . So put together, the complexity of the overall algorithm is 23 4
V

v
O tdn tn tdvd t + + + 
 

∑ .

4   Experiments

In this section, we conduct some experiments to compare the performance of the algorithm through common real 
data sets, and choose two mainstream evaluation indicators, Clustering Accuracy (ACC) [14] and Normalized 
Mutual Information (NMI) [14] to observe performance of this algorithm. 

We selected five real data for the experiment. The specific information is shown in Table 1. These data NUE-
WIDE, MSRC-v1, 3-Sources, Yale and COIL-20 come from the literature [14, 28]. In terms of comparison meth-
ods, we chose AMGL [23], SwMC [24], ECMSC [26], MSC_IAS [28], LMSC [29], and the parameters of the 
comparison algorithm are set to the optimal parameters mentioned in the literature.

Table 1. Data set information
Data set numbers classes views

NUS-WIDE 1600 8 6
MSRC-v1 210 7 5
3-Sources 169 6 3

Yale 165 15 3
COIL-20 1440 20 3

4.1   Performance Comparison Experiment

In this section, we conduct algorithm performance comparison experiments. It is set to run all algorithms 10 
times, and the average value is used as the clustering result. Table 2 shows the parameter settings of the algorithm 
in this paper. 

Table 2. Parameter settings for this method
Data set d λ1 λ2 λ3 ε

NUS-WIDE 9 15 0.01 0.01 1.6
MSRC-v1 30 10 0.01 0.01 1.6
3-Sources 5 10 0.01 0.01 1.6

Yale 15 1.5 0.01 0.01 3.5
COIL-20 13 15 0.01 0.01 3.5

Table 3 and Table 4 report the performance results of different algorithms on different datasets, where the best 
results have been bolded and underlined. It is confirmed that our method achieves good performance in most 
scenarios. This is because the complete low-rank space learning can capture the complementary information of 
a single view and remove the redundant information, thereby obtaining a clean, noise-free latent complete space 
that satisfies the requirements of subspace learning. At the same time, the reweighted sparse subspace learning 
is unified into a complete spatial learning model, which strengthens the connection between multi-view data and 
subspace segmentation. The obtained coefficient matrix can describe the data information more comprehensively 
and improve the accuracy of subspace clustering. 

Table 3. Performance results of multiple algorithms based on ACC indicators
Data set AMGL SwMC MSC_IAS ECMSC LMSC Ours

NUS-WIDE 0.2469 0.2256 0.2687 0.3040 0.3106 0.3177
MSRC-v1 0.7476 0.8514 0.6481 0.7910 0.7971 0.8105
3-Sources 0.3354 0.3513 0.6491 0.3395 0.6136 0.6574

Yale 0.4138 0.3646 0.8369 0.7108 0.5446 0.8691
COIL-20 0.8825 0.7216 0.8401 0.8605 0.8010 0.8664

Table 4. Performance results of multiple algorithms based on NMI indicators
Data set AMGL SwMC MSC_IAS ECMSC LMSC Ours

NUS-WIDE 0.1360 0.1538 0.1605 0.1897 0.1595 0.2037
MSRC-v1 0.6676 0.7629 0.6471 0.7229 0.6133 0.8105
3-Sources 0.0635 0.0693 0.4308 0.0725 0.4433 0.5765

Yale 0.3757 0.3516 0.8343 0.7276 0.5095 0.9630
COIL-20 0.7652 0.7406 0.9501 0.8102 0.9100 0.9569
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4.2   Visualization Experiment

In the work [12, 24], we know that the data sets Yale, MSRC-v1 and COIL-20 can directly display the clustering 
performance through visualization methods. In order to verify the performance of the method in this paper, we 
choose to perform re-weighted sparse subspace learning on a single view of the data, and visually display the ob-
tained coefficient matrix and the coefficient matrix learned in this paper.

Fig. 3 to Fig. 5 show the similarity matrices of our method and the single-view subspace method on the Yale, 
MSRC-v1, and COIL-20 data sets. We can see from Fig. 3(b), Fig. 3(c) and Fig. 3(d) that the single-view data 
obtained from a better fixed angle can reflect the comprehensive information of the data to a certain extent. At 
this time, the single-view subspace, the method can learn a coefficient matrix with a relatively clear structure. 
However, (a) shows that the ILrS-MRSSC method can synthesize information from different views, making the 
block-diagonal structure of the coefficient matrix clearer. 

                                                (a) Our method                                                                 (b) View1

                                                (c) View2                                                                        (d) View3
Fig. 3.  Visualize the coefficient matrix based on Yale data 

We can see from Fig. 4(b), Fig. 4(c) and Fig. 4(d) that when the single-view data has less information, the 
diagonal structure of the coefficient matrix block learned by the single-view subspace method is not obvious, it 
is difficult to describe the similarity relationship of the data. From the results in Fig. 4(a), it can be known that 
the ILrS-MRSSC method can restore a potential complete space by utilizing the complementary information of 
different views, thereby enhancing the block-diagonal structure stability and distinguishability of the coefficient 
matrix. 

                                                (a) Our method                                                                 (b) View1
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                                                (c) View4                                                                        (d) View5
Fig. 4. Visualize the coefficient matrix based on MSRC-v1 data 

The results in Fig. 5 further verify our conclusion. Since the data information of a single view is not compre-
hensive enough, the diagonal structure of the coefficient matrix is not obvious, and it is difficult to reflect the 
overall structure of the real data. The complete low-rank space learning can avoid the problem of poor subspace 
learning performance caused by insufficient single-view information, and our method can well reveal the underly-
ing diagonal block structure, which is also required for clustering methods based on re-weighted sparse subspac-
es, which further validates the advantages of our unified model. 

                                                (a) Our method                                                                 (b) View1

                                                (c) View2                                                                          (d) View3
Fig. 5. Visualize the coefficient matrix based on COIL-20 data 

5   Conclusion

In this paper, we propose a novel multi-view subspace learning method. Unlike most subspace learning methods, 
our method takes full advantage of the complementary information between multiple views in subspace learning. 
Specifically, we first reconstruct the latent complete space using multi-view information and low-rank features of 
nuclear norm, and then sparsely reorganize the data based on the latent complete space. The learned sparse coeffi-
cient matrix describes the underlying structure of the data more comprehensively, and has stronger discrimination 
and reference value. Finally, we formulate the whole problem as a unified optimization framework and jointly 
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optimize by ALM method. Experimental results on benchmark datasets verify the superior performance of our 
proposed scheme. In the next stage, we consider how to adaptively determine the parameters based on the data 
structure to reduce tuning work.
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