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Abstract. The existing wireless communication interference methods rely heavily on the characteristics of 
the target signals obtained in communication reconnaissance, require complex prior knowledge, and have 
problems in keeping up with the dynamic changes of relevant parameters. This paper proposes a GAN-based 
technology of generating spoofing-jamming I/Q signals. The jammer will be able to deceive and interfere with 
op-ponents through GAN by generating spoofing-jamming I/Q signals highly correlated to real I/Q signals 
without prior knowledge. This paper first introduces the principle of GAN and  the GAN model to be adopt-
ed; uses a software radio system composed of LabView and NI USRP software and hardware plat-forms to 
simulate real communication scenarios to collect real I/Q signal data; generates spoofing-jamming I/Q signals 
through GAN model; uses t-SNE algorithm to perform dimensionality reduction on both the real and the 
spoofing-jamming I/Q signal data to visualize their distributions; finally, tests the spoofing-jamming I/Q sig-
nals on receiver’s pre-trained classifier. The experimental results show that GAN provides an effective method 
for generating high-quality spoofing-jamming I/Q signals.
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1   Introduction

Being an important part in communication countermeasure, spoofing-jamming signals can effectively suppress 
and destroy the communication process, to eventually achieve the goal of weakening or even disabling the com-
munication of opponents. Therefore, the research on generation of high-performance spoofing-jamming signals 
has always been a hotspot. 

Currently, game theory [1] and nonconvex optimization [2] are widely used in spoofing-jamming signals 
generation. For example, S. Shafiee et al. [3] propose a method that the jammer adds linear interference to the 
intercepted signals through mutual information games and adjusts its transmitting power to deceive the receiver, 
provided that the jammer knows the channel characteristics of the opponents in advance. Xu et al. [4] propose a 
method to design spoofing-jamming signals via exploiting the symbol-level relationship between each original 
constellation point of the transmitter and the expected constellation point of the jammer, and optimize the spoof-
ing-jamming signal design and power allocation under BPSK and QPSK modulations. However, this method 
requires prior knowledge on the transmitter in advance, such as fading channels, modulation modes. The spoof-
ing-jamming using traditional methods often needs to master the relevant parameters of the target signals and 
require complex prior knowledge; On the other hand, in a real communication countermeasure scenario, the op-
ponents will dynamically adjust the relevant parameters according to the change of radio frequency environment. 
Once the parameters change, the jammer needs to re-obtain the parameters and adjust the spoofing-jamming sig-
nals with spending a lot of resources.

In recent years, with artificial intelligence being more and more widely used, the intelligence level of the wire-
less communication systems is continuously improving [5-6]. Correspondingly, in order to combat the intelligent 
wireless communication systems, the jammer is also trying to improve its own intelligence level, and relevant 
research has attracted attention. For example, Hui et al. [7] uses genetic algorithm to screen interference strate-
gies and save individuals according to decision rules, and Nasir et al. [8] propose strategies like reinforcement 
learning. The purpose of these methods is to replace the manual search for the optimal deception and interference 
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strategy. However, to achieve the above goals, it is still necessary to obtain the relevant parameters of the target 
signals in advance. These methods will not work when the opponents’ parameters change dynamically. 

Adversarial learning is a new direction in the field of artificial intelligence. And GAN (Generative Adversarial 
Network) being the main subject [9], its powerful generative ability provides a new framework for data genera-
tion [10]. At present, GAN research has developed from the initial field of computer vision [11] to the fields like 
natural language processing [12], communication, and so on. The communication field mainly includes signal 
data generation [13-16], signal enhancement [17-18], RFID [19-20], and channel modeling [21], etc. For exam-
ple, Zhu et al. [22] propose a method of radar signal data enhancement based on GAN. The radar signals are gen-
erated through GAN, which enhance the dataset, to improve the training effect of the neural network model and 
the accuracy of target recognition; Song et al. [23] propose a GAN-based HRRP (High Resolution Range Profile) 
data enhancement method. HRRP is scarce but more HRRP data can be generated through GAN to provide data 
support for the next work. 

Considering that GAN has been widely used in the generation of communication signal, this paper proposes a 
novel method using GAN to generate spoofing-jamming I/Q signals. Compared with the traditional methods, it 
doesn’t require obtaining relevant parameters of the target signals in advance and the spoofing-jamming signals 
with high authenticity can be generated directly through GAN. This reduces the process of human intervention in 
decision-making, and solves the dynamic changes of opponents’ parameters.

The structure of this paper is as follows: 
1. A GAN model suitable for communication signal is designed based on the analysis of the basic principle of 

GAN and the characteristics of communication signal. The model structure is displayed in detail in the section 
2.1;

2. A real communication scenario is simulated by using the software radio system composed of LabVIEW and 
NI USRP (National Instruments Universal Software Radio Peripheral) software and hardware platform, to collect 
real I/Q signal data [24]; one-dimensional convolutional neural networks (1D-CNN) is used at the receiver to pre-
train a classifier [25] for the receiver having certain discrimination ability; 

3. Three validations are designed to verify that the spoofing-jamming I/Q signals generated through GAN are 
highly correlated with the real I/Q signal: 

- Compare the spoofing-jamming I/Q signal data with the real I/Q signal data in images;
- Use t-SNE (t-Distributed Stochastic Neighbor Embedding) [26] algorithm to perform dimensionality reduc-

tion on spoofing-jamming I/Q signal data and real I/Q signal data to visualize their distributions, and calculate the 
KL divergence value between them;

- Use the pre-trained classifier of receiver to classify the signals.
The three validations jointly verify the feasibility of the method proposed in this paper.

2   GAN Principle and GAN Model

2.1   GAN Principle

GAN consists of two antagonistic neural network models: a generator model with random noise as input that out-
puts fake data consistent with the real data dimension, and a discriminator model with real and fake data as input 
that outputs discrimination results. See Fig. 1 the basic structure of GAN. 

Random 
noise Generator Fake data

Real data

Discriminator Real/Fake

Feedback

Fig. 1. Basic structure of GAN
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Since GAN is composed of two neural networks, the loss function of the GAN network is also composed of 
two parts, see Equation 1 the function expression:

                                             
_ oss (1 ) log(1 ( ( )))
_ oss log( ( )) (1 ) log(1 ( ( )))

G L y D G z
D L y D x y D G z

= − − 
= − − − − 
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Where _ ossG L  represents the loss function of the generator; _ ossD L  represents the loss function of the 
discriminator; y  represents the label of the data, where 1 is for the real data, and 0 for the fake data; z  is a 
low-dimensional random noise vector that obeys a certain distribution; ( )G z  represents the data generated by the 
generator; ( )D •  represents the probability that the data is identified to be real by the discriminator,  and the value 
is between 0 and 1. The goal of the generator is generating fake data with the distribution as similar as possible 
to the real data to cause discrimination error from the discriminator, which means the fake data generated is clas-
sified as real data. The target of the discriminator is improving its classification accuracy to discriminate between 
the real and the fake data as accurately as possible. The generating capability of the generative network and the 
discriminating ability of the discriminative network are continuously improving during the mutual games. This 
process is also called confrontation. Therefore, the loss functions of the generator and the discriminator can be 
combined and written in the form of min max− game as the objective function of GAN, as shown in Equation 2:
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Where ( )zp z  represents the distribution of input noise, and ( )dataP x  represents the distribution of real data. 
Treat the GAN training process as a minimax problem which essentially is an alternate neural network optimiza-
tion. First, fix the parameters of the generator, then use the real data and fake data as input to train the discrimina-
tor to maximize the value ( , )V D G , that is, ( )D x  increases and ( ( ))D G z  decreases, so that the discriminator can 
accurately verify the authenticity of the input data; after the discriminator has been trained for several times, fix 
the parameters of the discriminator, and optimize the generator to minimize ( , )V D G , that is, ( )D x  decreases and 

( ( ))D G z  increases, so that the fake data generated by the generator is so close to the real data that the discrimi-
nator can no longer discriminate accurately. The above process is continuously performed alternately, improving 
both networks. When the fake data generated by the generator can play the effect of “fake the real”, and the accu-
racy of the discriminator is stable at about 50%, it can be considered that the generator has completed the learning 
of the real data distribution, and the model has converged.

2.2   GAN Model

The spoofing-jamming I/Q signals highly correlated with the real I/Q signals are generated through GAN. The de-
signed GAN model is composed of a generator and a discriminator using Deep Neural Networks (DNN). For the 
model, the real data are the real I/Q signals, and the fake data are the spoofing-jamming I/Q signals. The input of 
the generator is random noise that obeys the standard normal distribution, and the output is the spoofing-jamming 
I/Q signals with dimensions consistent with the real I/Q signals. Input of the discriminator is the real I/Q signals 
and spoofing-jamming I/Q signals, and the output is discrimination results. Considering the time-domain wave-
form structure of the wireless signal simple without much complicated feature information compared with the 
multi-dimensional data, it is enough to achieve the generation and discrimination of signal data using DNN. The 
network structure of the GAN model designed in this paper is shown in Fig. 2. 
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 Fig. 2. GAN network structure

Adding more neural network layers to the network structure may bring the training a better generation effect, 
but it also means that the training difficulty increases. Therefore, is it to pursue a good generation effect or to re-
duce the difficulty of training is a question worth thinking about. After a lot of adjustment and testing, the gener-
ator and discriminator adopt 8-layer and 6-layer neural network design structures respectively. This structure not 
only ensures a better generation effect, but also balances the training difficulty of the model. The specific struc-
tures of the genera-tor and the discriminator in Fig. 2 are shown in Table 1 and Table 2.

Table 1. Generator structure

Layer Type Output Dimension
Input Batch Size x Latent_dim

Dense+tanh Batch Size x 128
Batch Normalization

Dense+tanh Batch Size x 256
Batch Normalization

Dense+tanh Batch Size x 512
Batch Normalization

Dense+tanh Batch Size x Data_dim

Table 2. Discriminator structure
Layer Type Output Dimension

Input Batch Size x Data_dim
Dense+LeakyRelu Batch Size x 512
Dense+LeakyRelu Batch Size x 256
Dense+LeakyRelu Batch Size x 128

Dropout
Dense+Sigmoid Batch Size x 1

The signals input in the model are samples. The discriminator only needs to verify whether they are real or 
fake, which is equivalent to a binary classification problem, where realp  is the probability that a sample is a real 
I/Q signal, and 1fake realp p= −  is the probability that it is a spoofing-jamming I/Q signal. Therefore, the discrimi-
nator output layer uses Sigmoid as the activation function, and it only needs one output node. The BCE (binary_
crossentropy) loss function is suitable for binary classification tasks and is usually used with the Sigmoid activa-
tion function. Its expression is shown in Equation 3:

                                            
1
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Where n  represents the number of samples, iy  represents the label of the samples, and ˆiy  represents the 
probability that a sample is identifi ed as a real I/Q signal by the discriminator. The cross-entropy loss function 
well measures the similarity between y and ŷ , and accurately feeds back the loss values of the generator and 
the discriminator. Therefore, BCE is used as the loss function of the GAN model. Compared with other relevant 
literatures, the network structure of the GAN model designed in this paper has a faster training speed, a shorter 
convergence period, and a better generation eff ect.

The entire generation process of spoofi ng-jamming I/Q signals is divided into the following steps: 
Step 1: GAN uses intercepted real I/Q signal data for adversarial training;
Step 2: After the training converges, extract the generator model to generate spoofi ng-jamming I/Q signals.

3   Experimental Data Acquisition and Classifi er Pre-Training

3.1   Experimental Scenarios

The spoofi ng-jamming process in this paper is described as: Firstly, the jammer intercepts the real I/Q signals 
from the transmitter, and uses the intercepted I/Q signals as training data. Then the jammer generates spoof-
ing-jamming I/Q signals similar to the real I/Q signals using GAN to deceive and interfere with the receiver. To 
carry out the spoofi ng-jamming in a real scenario, this paper has designed experiment scenarios shown in Fig. 
3. Assuming that the physical locations of the jammer and the receiver are very close, the channel between the 
jammer and the transmitter is similar to the channel between the receiver and the transmitter, and then the signal 
intercepted by the jammer is similar to the signal received by the receiver. In this case, the signal data received by 
the receiver directly are input into the GAN model for adversarial training.

Fig. 3. Experimental scenarios

In the scenarios, two NI-USRP 2930 with Labview are used to transmit and receive signal data respectively. 
The distance between the two USRP devices is adjusted to 3 meters with no obstructions in the middle, and us-
ing LabView confi gures the NI-USRP 2930. One USRP is used as the signal transmitter to continuously transmit 
BPSK I/Q signals, with frequency of 915MHz, I/Q sampling rate at 500k/sec and SNR of 12dB; the other USRP 
is used as the signal receiver to continuously collect the signals from the transmitter. Form one I/Q signal sample 
with every 200 sampling points, where each sampling point is composed of In-phase/Quadrature parts. Collect a 
total of 5000 I/Q signal samples as the real I/Q signal dataset intercepted by the jammer. The signal transmission 
and reception process by USRP is shown in Fig. 4.

Random 
sequence BPSK Mod Transmitter

0/1 bit sequence LabView NI USRP 2930

Receiver

NI USRP 2930

Generate 
dataset

LabView

I/Q signal

Fig. 4. Data generation and acquisition

Since the receiver itself should have certain ability to verify whether the signals received are from the target 
transmitter, its classifi er needs to be pre-trained with I/Q signal data from the target transmitter and other trans-
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mitters. 
To obtain I/Q signal date from other transmitters, the parameters is modified to continuously transmit the I/Q 

signals. And the receiver collects the time-domain waveform of the signals. One I/Q signal sample is composed 
of 200 sampling points, where each sampling point includes real/image parts. Collecting a total of 500 I/Q signal 
samples are used as signal data from other transmitters.

3.2   Classifier Pre-Training

The structure of 1D-CNN is similar to that of two-dimensional convolutional neural networks (2D-CNN). The 
basic structure includes input layer, convolutional layer, pooling layer, and fully connected layer. Compared with 
2D-CNN, 1D-CNN is more suitable for processing data related to time series.

The collected signals are used to pre-train the classifier. The sub-process of pre-training involves two possible 
classification errors, called false alarm and misdetection respectively. The false alarm is that the signals from the 
target transmitter are classified as coming from other transmitters and the misdetection is that signals from other 
transmitters are classified as from the target transmitter. The probabilities of false alarm and misdetection are rep-
resented by FAp  and MDp , respectively. It is assumed that there are n signal samples for the pre-training. Among 
them, TN  signal samples are from the target transmitter, and there are FAn  false alarms and MDn  misdetections, 

then 
FA

FA

T
=

np
N

, 
MD

MD

T

np
n N

=
−

. To enable the verification ability of the classifier, the network structure and parame-

ters are adjusted during the pre-training process to minimize the max{ , }FA MDp p .
Fig. 5 is the 1D-CNN structure of the classifier to be pre-trained. The waveform structure of the time-domain 

signal is simple, and there is not much feature information. To ensure the information integrity and avoid complex 
statistical feature conversion, the most primitive I/Q signal data are used as the input of the model for complete-
ly retaining the characteristic information in the signals. Since every 200 sampling points form one I/Q signal 
sample, and each sampling point is composed of real/image parts, the input dimension of the neural network 
is 1 400× . In this neural network, tanh is used as the activation function of the convolution layer of the feature 
extraction module, Fil represents the window size of the convolution calculation for the local input data, Ker rep-
resents the length of the time domain windows of the convolution kernel, Relu is used as the activation function 
of the dense layer of the classifier module, and Softmax is used as the activation function of the output layer.

Input layer
（Size of 1x400）

Convolution 1D
（Fil=16,Ker=3）

Convolution 1D
（Fil=16,Ker=3）

Convolution 1D
（Fil=64,Ker=3）

Max-pooling
（Pool=3）

Convolution 1D
（Fil=64,Ker=3）

Max-pooling
（Pool=3）

Convolution 1D
（Fil=64,Ker=3）

Convolution 1D
（Fil=64,Ker=3）

Max-pooling
（Pool=3）

Flatten

Dense
（d=256,relu）

Dense
（d=128,relu）

Dense
（d=64,relu）

Dense
（d=2,softmax）

Feature extraction 
module Classifier Module

Fig. 5. 1D-CNN network structure

As described in the section 3.2, 500 signals are collected from other transmitters, and 500 signals from real I/
Q signal dataset from target transmitter are collected respectively. The signal data from the target transmitter are 
labeled as 0 and signal data from other transmitters as 1, and the training – test ratio is set to 7:3. The specific pa-
rameters corresponding to Fig. 5 are shown in Table 3.
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Table 3. Classifier parameters
Parameter name Setting

Optimizer Adam
Loss Categorical_cross-entropy

Batch Size 32
Epoch 40

The final testing result shows that 5 signals from the target transmitter are classified as from other transmitters, 

and 15 signals from other transmitters are classified as from the target transmitter, which means
5 1%

500
FAp = =

,
15 3%
500

MDp = = , and the max{ , }MD FAp p  = 3%. It is proved that this model has a high classification accuracy rate 

and the pre-trained neural network model can be used as the receiver’s classifier.

4   Experimental Validation and Analysis

After obtaining the real I/Q signal dataset and a pre-trained classifier, the generation effect of the GAN model can 
be tested.

4.1 Signal Comparison in Images 

The GAN model composed of DNN is not only fast training, but also has a better generation effect. It also has 
disadvantages like unstable training process, etc. Therefore, performing multiple trainings on the GAN model, the 
best training results are selected for experimental analysis.

Each signal sample in the real I/Q signal dataset is composed of 200 sample points, and each sample point is 
composed of In-phase/Quadrature parts. The number of neurons in the output layer of the generator and the input 
layer of the discriminator are set to be 400. And the other training parameters are shown in Table 4.

Table 4. Training parameters

Parameter Name Setting
Latent_dim 100
Data_dim 400
Batch Size 512

Eopch 35000
Optimizer Adam

Learning Rate 0.001

The real I/Q signal dataset contains 5000 signal samples. The batch size is set to be 512, which improves the 
training speed. After continuous training adjustment, the learning rate is finally determined to be 0.001, and the 
training result is the best under this parameter.

During the training, extracting a batch of generated spoofing-jamming I/Q signals every 500 training epochs 
is analyzed to investigate the improvement process of the generator.  When the loss of the generator and the dis-
criminator tends to be stable during a long training epoch, the GAN model is considered to be converged and the 
training can be stopped.

Fig. 6 shows the time-domain waveform of the real I/Q signals and the spoofing-jamming I/Q signals generat-
ed through GAN at different training epochs. 
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(a) Real I/Q signals

(b) 15,000th Epoch

(c) 25,000th Epoch

(d) 35,000th Epoch
Fig. 6. Real I/Q signals and Spoofing-jamming I/Q signals generated through GAN at different training epochs

Through comparative analysis, it can be clearly observed that:
- When reaching to the 15,000th training epoch, the spoofing-jamming I/Q signals generated through GAN have 

initially learned the waveform characteristics of the real I/Q signals, but differences can still be visually observed. 
At this point, the generator of the GAN model is considered to have certain generation ability;

- After reaching to the 25,000th training epoch, the spoofing-jamming I/Q signals generated through GAN has 
fully learned the waveform characteristics of the real I/Q signals, and the time-domain waveform of the spoof-
ing-jamming I/Q signals is basically no different from the real I/Q signals.

The training results show that, if only considering the time-domain waveform of the generated signals, the 
GAN model has completed the learning process of the real I/Q signals and has great generation ability.
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4.2   Comparison After Dimensionality Reduction by t-SNE

t-SNE is a non-linear dimensionality reduction algorithm used to express the high-dimensional dataset in a two or 
three-dimensional space to visualize its distribution.

Reducing the dimensionality of the spoofing-jamming I/Q signal data and the real I/Q signal data with the 
t-SNE algorithm, their distributions can be displayed in a two-dimensional space. And the difference of the distri-
bution can be calculated using KL divergence to analyze the learning results of the generator. The calculation of 
KL divergence is shown in Equation 4:

                                            
1

( )( ) log( )
( )

KL

n i
i

ii

p xD p || q p x
q x=

（ ) =   .  (4)

where ( )p x  represents the probability distribution of the real I/Q signal data and ( )q x  represents the probability 
distribution of the spoofing-jamming I/Q signal data. The smaller the KL divergence value is, the closer the two 
probability distributions are.

The 3 batches of spoofing-jamming I/Q signal data previously are extracted at the 15,000th, 25,000th, and 
35,000th training epoch in the section 4.1, and a batch of the same number of signals randomly are selected from 
the real I/Q signal dataset. Using the t-SNE algorithm to reduce their dimensionality to visualize their distribu-
tions is shown in Fig. 7. The Fig. 7 shows the distributions of the real I/Q signal data and the signal data generat-
ed at the 3 different training epochs.

Spoofing-jamming
I/Q signals

Real I/Q 
signals

 

Spoofing-jamming
I/Q signals

Real I/Q 
signals

(a) 15,000th epoch                                             (b) 25,000th epoch

Spoofing-jamming
I/Q signals

Real I/Q 
signals

(c) 35,000th epoch

Fig. 7. The distributions of real I/Q signal data and spoofing-jamming signal data at different training epochs 
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Due to the uncertainty of the t-SNE algorithm, the distribution results shown in Fig. 7 are random, but this 
does not affect the analysis on the generation effect of the GAN model.

From the Fig. 7, it can be observed that when reaching to the 15,000th epoch, the distribution of generated data 
is mainly concentrated in a certain part of the distribution of the real I/Q signal data. It indicates that the data gen-
erated by the GAN model has a certain degree of authenticity but still lacks diversity.

When reaching to the 25,000th epoch, the data generated by the model already has a better diversity compared 
with the 15,000th epoch, but its distribution is not completely consistent with the real I/Q signal data.

When reaching to the 35,000th epoch, it can be clearly observed that, the distribution of the spoofing-jamming 
I/Q signal data generated through GAN fits well with the distribution of the real I/Q signal data. The generated 
data has both high authenticity and diversity.

In addition to visualizing the distributions, the KL divergence value is also calculated to numerically analyze 
the difference between the two distributions at different epochs. According to the Table 5, as the GAN training ep-
och increases, the KL divergence value between the two distributions decreases. This also proves that the spoof-
ing-jamming I/Q signals generated through GAN are highly similar to the real I/Q signals.

Table 5. KL divergence values at different epochs

Epoch KL divergence value
15,000 0.248
25,000 0.142
35,000 0.122

4.3   Classification by Pre-Trained Classifier

Like in section 4.2, the 3 batches of spoofing-jamming I/Q signal data previously are extracted at the 15,000th, 
25,000th, and 35,000th training epoch in the section 4.1, and are labeled as 1; then the extracted 500 signals from 
the real I/Q signal dataset are labeled as 0. The 1,000 signals are put into the pre-trained classifier for classifica-
tion test, and the classification results at the three different epochs are shown in Fig. 8.

Classifocation Labels

R
eal Labels

 

Classifocation Labels

Real Labels

 

Classifocation Labels

R
eal Labels

                        (a) 15,000th Epoch                           (b) 25,000th Epoch            (c) 35,000th Epoch
Fig. 8. Confusion matrix of classification results of the classifier at different epochs

It can be observed from Fig. 8 that:
- When reaching to the 15,000th training epoch, the probability that the spoofing-jamming I/Q signals with 

label 1 are classified as real I/Q signals with label 0, which is also called successful deception rate, is 86%sdp = ; 
this shows that the generated spoofing-jamming I/Q signals already have quite high authenticity;

- When reaching to the 25,000th training epoch, the 89%sdp = . The authenticity of the generated signal has im-
proved compared with the 15,000th training epoch;

- When reaching to the 35,000th training epoch, the 92%sdp = . It proves that the generator is already capable 
of generating spoofing-jamming I/Q signals highly similar to the real I/Q signals which causes great classification 
errors from the classifier;
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- At the same time, it can be observed that all the real I/Q signals labeled as 0 are completely and correctly 
classified, which means the false alarm rate 0%FAp = . This proves that the pre-trained classifier itself has certain 
discrimination ability.

The experimental results show that as the GAN training epoch increases, the authenticity of the generated 
spoofing-jamming I/Q signals continuously improves. This is consistent with the conclusion in the section 4.2 
that the distribution of the spoofing-jamming I/Q signal data becomes more and more similar to the real I/Q signal 
data with the increase of training epoch.

To sum up, as the spoofing-jamming I/Q signal data generated through GAN has caused great classification er-
rors from the classifier of the receiver, the jammer has achieved the goal of deceiving opponents. 

5   Conclusions and Prospects

This paper proposes a GAN-based spoofing-jamming I/Q signal generation technology. As GAN has the ability 
of learning independently the potential distribution of target data, the jammer trains the GAN with the intercepted 
real I/Q signals to obtain spoofing-jamming I/Q signals with time-domain waveform characteristics highly similar 
to the real I/Q signals.

Compared with the traditional methods, the GAN-based method proposed in this paper does not require ob-
taining parameters of the target data in advance or need complex prior knowledge. As GAN has the ability of 
extracting independently the characteristics of the target signal data to generate spoofing signal data, it reduces 
human intervention in decision-making, and can better keep up with the dynamic change of the relevant parame-
ters which is more practical. Meanwhile, the spoofing-jamming I/Q signals generated have high authenticity that 
can cause high classification errors from the pre-trained classifier of the receiver, and achieve certain deception 
purposes.

This method also has certain limitations. Take the GAN model designed in this paper as an example, it is usu-
ally only applicable to one or several types of signals, but the real communication countermeasure scenario is 
normally composed of multiple kinds of signals. All the experiments in this paper are carried out under the condi-
tion that the transmitter and the receiver are static, without considering the position change of the devices while in 
a real scenario the devices often change dynamically. These limitations will be improved in future re-search. 

In the future research, the author will focus on optimizing the proposed GAN model to ensure its high per-for-
mance and enhance the generalization of the model. In order to be more in line with the real communication 
countermeasure scenario, the author considers conducting experiments in a designed scenario where the devices’ 
position will change dynamically.
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