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Abstract: In order to quantitatively study the influence of the shape of the stern on the resistance of the pro-
jectile, the computer-aided fluid dynamics method was used to numerically analyze the shape of the stern 
model with different mach numbers under the condition of supersonic speed, by analyzing and comparing the 
pressure coefficient distribution of the stern flow field, the stern surface and the bottom of the projectile ship. 
The results showed that the tail resistance of the projectile increases linearly with the increase of the tail cone 
angle; the bottom resistance of the projectile is affected by the area of the bottom of the projectile (shrinkage 
ratio) and the tail cone angle, and increases linearly with the increase of the shrinkage ratio; The overall drag 
coefficient of the projectile is related to the bottom resistance and the tail resistance. When the tail length is 
fixed, there is a tail cone angle that minimizes the drag coefficient, and its size is related to the flight speed of 
the projectile. When the flight speed of the arrow increases to 3Ma, the optimal solution of the tail cone angle 
reaches a stable value and its value is about 9.8°, which has a certain reference value for the design of the 
aerodynamic shape of the high Mach number arrow.

Keywords: computer-aided fluid dynamics method, projectile boattail, drag coefficient, aerodynamic charac-
teristics, pressure coefficient, supersonic

1 Introduction

The aerodynamic performance of artillery-launched ammunition is one of the most important performances of ar-
tillery. Researchers can increase the range of the artillery by reducing the resistance of the projectile body, which 
is an important means to increase the combat efficiency of artillery [1]. The main air resistance of the projectile 
body includes three parts [2]: 1. The wave resistance mainly produced by the projectile body wave; 2. Friction 
caused by air viscous friction; 3. The bottom resistance caused by the bottom low pressure formed by the separa-
tion of the bottom fluid of the projectile. The formation of the bottom resistance of the projectile is mainly due to 
the separation of the boundary layer. The boundary layer is a thin flow layer with a non-negligible viscous force 
close to the surface of the flow around the high Reynolds number [3]. After the separation of the boundary layer, 
alternate shedding vortices will be formed. A low pressure zone will be formed in the vortex zone, which will 
increase the resistance of the pressure difference between the front and rear of the projectile, so the bottom resis-
tance is also called vortex resistance. At the same time, the separation of the boundary layer will also cause the 
loss of mechanical energy of the fluid, and the speed loss of the bullet for the bullet. In severe cases, the stability 
of the bullet will decrease and the shooting accuracy will be affected. Generally, there are two reasons for the 
separation of the projectile boundary layer and the projectile to form vortex resistance: one is that the flow rate is 
constant, and the rear section of the projectile changes sharply; the other is that the shape of the projectile changes 
little after the largest section, but the airflow velocity is larger [4].

With the gradual optimization of the aerodynamic shape of projectiles and rockets, a large number of meth-
ods for bottom drag reduction have been proposed by researchers. There are two main ideas: one is to make the 
bottom pressure of the projectile drop as little as possible when the low pressure zone is formed, such as a ship-
shaped projectile. Tail [5] and bottom concave bullets [6]; the other is to add gas to the low pressure area (vortex 
area) at the bottom of the bullet, thereby increasing the bottom pressure of the bullet and realizing the drag reduc-
tion and range extension of the artillery, such as the bottom row of bullets [7-8].

In recent years, with the development of computational fluid dynamics (CFD), the analysis of the bottom 
pressure and flow field characteristics of projectiles and rockets has become more in-depth, providing a basis for 
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the refinement of the aerodynamic characteristics of the stern of projectiles and rockets. Based on the SCOBT 
projectile model, this paper uses slip grid and technology to establish a three-dimensional flow field model of the 
projectile body. The projectiles flying at supersonic speed under rotating conditions are studied, and the influence 
of different ship stern structures on the aerodynamic performance of the projectile body is analyzed. The char-
acteristics of the flow field around the stern stern reveals the drag reduction mechanism of the stern stern under 
supersonic conditions. The changes in the tail resistance, bottom resistance and the overall drag coefficient of the 
projectile are studied when the shape of the stern changes.

2 Numerical Simulation Method

2.1 Governing Equation and Its Discrete Format

For the rotationally stable artillery projectile, its flow field around the flow has a high degree of axial symmetry, 
so the Reynolds time-averaged Navier-Stokes equation in the form of differential conservation is used as the gov-
erning equation [9]:
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Where: U is a conserved variable; F, G, and H are inviscid convective vector fluxes; FV, GV, and HV are vis-
cous convective fluxes; each expression is as follows:
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Where: ρ is the fluid density; p is the pressure term; e is the total energy per unit volume; u, v, and w are the 

speeds in the x, y and z directions; x is the flow direction;  ( , )x, y,zξητ ξ η =  is viscous stress; qx, qy, and qz are 
the heat flow of heat conduction.

The spatial discretization format adopts the second-order upwind style, and the solver uses a coupled explicit 
algorithm based on density basis. The fluid separation phenomenon at the bottom of the bullet and the bottom 
vortex make the turbulence at the bottom of the bullet show a high degree of nonlinearity. Therefore, the turbu-
lence model adopts the RNG k ε− model [10]. The k ε− model is a typical two-equation model. It is based on 
the one-equation model. After introducing an equation about the turbulence dissipation rate, it is the most widely 
used turbulence model at present. The RNG model is improved on the basis of the standard model. The RNG 
k ε−  model can handle high strain rates and streamlines well. Flow with a greater degree of curvature. The 
RNG k ε− model mainly includes turbulent kinetic energy k  equation and turbulent dissipation rate ε  equa-

tion, where turbulent viscosity tµ  is expressed as a function k  of the turbulent kinetic energy:

t C klµµ ρ=                                                                                                        (2)

Where: kσ  and Cµ  is empirical constant, l is the length along the streamline.

The turbulent kinetic energy k  equation is:
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According to the above equation (2) and equation (3), the transport equation of the standard model is:
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Where: kG  is the generation term of turbulent kinetic energy caused by mean velocity gradient; µ is the tur-

bulent viscosity; MY is the pulse expansion term in compressible turbulence; 1C ε , 2C ε  and 3C ε  are empirical 

constants; Sε  and kS  are user-defined source items.

2.2 Computational Model and Boundary Conditions

The calculation model uses a 6-fold caliber projectile named SOCBT [11]. This model has the most typical gun-
launched ammunition structure, that is, the projectile is composed of three parts: the arc part, the cylindrical part 
and the stern part. Due to its typical shape structure, SOCBT is widely used as the basic projectile for the study 
of aerodynamic shape [12]. Based on the standard SOCBT, the relevant parameters of stern, bottom concave and 
bottom jet are adjusted. The calculation model is shown in Fig. 1.
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Fig. 1. The model of SOCBT projectile

The calculation is completed by the computational fl uid dynamics (CFD) software fl uent, and the grid adopts 
an unstructured grid. In order to ensure the accuracy of the calculation, the grid at the tip and the tail of the bullet 
is refi ned, and The grid height of the fi rst layer of the boundary layer is given according to y+≤1. The projectile’s 
mesh is shown in Fig. 2.

      Fig. 2. Projectile surface mesh

In order to simulate the rotation eff ect of the projectile, the sliding mesh technology is used, the principle of 
which is shown in Fig. 3. The principle of the sliding mesh to simulate the rotating motion of the projectile is 
to divide the fl ow fi eld into two parts: the dynamic domain and the static domain. Data is exchanged between 
the dynamic domain and the static domain through the interface, and the rotational speed of the dynamic do-
main is the rotational speed of the projectile during fl ight. The dimensionless rotational speed of the projectile 

0=0.19( = d/v )ω ω ω ∞ . The overall computational mesh model and boundary conditions are shown in Fig. 4.

Fig. 3. Schematic diagram of slip grid principle

Fig. 4. Overall computing grid
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2.3 Algorithm Verifi cation

In order to verify the validity and reliability of the numerical calculation method established in this paper in the 
aerodynamic simulation of high-speed rotating projectiles, the simulation method is fi rst verifi ed by referring to 
the SOCBT experimental data in [13]. The curve shown in Fig. 5 represents the surface pressure coeffi  cient of the 
projectile at an incoming Mach number of 0.94 and an angle of attack of 0°:

Fig. 5. Projectile pressure coeffi  cient curve

It can be seen from the curve in Fig. 5 that the numerical calculation is consistent with the pressure coeffi  cient 
variation law obtained by the wind tunnel experiment. Although there is a certain error, the relative error is within 
the allowable range, indicating that the numerical simulation method established in this paper is accurate. In this 
paper, according to the above model, the parameters aff ecting the resistance coeffi  cient of ammunition are numer-
ically analyzed and some laws are obtained.

3. Stern-shaped Projectile Tail

The drag coeffi  cient of the stern-shaped projectile tail consists of two parts, one is the drag coeffi  cient of the con-
ical part of the tail (called tail drag), and the other part is the drag coeffi  cient of the bottom part of the projectile 
(called projectile drag). Fig. 6 is a schematic diagram of the fl ow fi eld at the tail of the projectile. The fl ow state 
at the bottom of the projectile can be divided into three areas, the free fl ow area, the bottom recirculation area and 
the shear layer area. 

Fig. 6. Schematic diagram of the fl ow fi eld at the tail of the projectile

Under the condition of supersonic incoming fl ow, due to the infl uence of air viscosity, there is a thin boundary 
layer (boundary layer) on the surface of the projectile. The bottom recirculation area surrounded by the shear lay-
er developed by the separation of the boundary layer, the velocity of the airfl ow in this area is very small, and the 
pressure in this area is very low due to the mixing and ejection of airfl ow [14]. The shear layer area is the transi-



230

Research on Drag Reduction Mechanism of Supersonic Ship Tail-shaped Projectile Based on Computer-aided Simulation

tion area connecting the free flow area and the bottom recirculation area. The flow state of the shear layer area has 
a great influence on the bottom recirculation area. The separation streamline is the airflow boundary line between 
the outflow area and the shear layer area. The shape of the separation streamline directly affects the velocity and 
pressure distribution in the outflow area, and the velocity and pressure distribution in the outflow area affect the 
pressure in the bottom recirculation area through the shear layer area. and bottom resistance. Therefore, the gas 
flow state and bottom pressure at the bottom of the arrow have a great relationship with the state of the shear lay-
er. Theoretical analysis and experiments show that the shear layer state must be changed to increase the bottom 
pressure. The straighter the separation streamline, the greater the expansion angle. Smaller, the higher the bottom 
pressure, the smaller the bottom resistance [15]. The change of the stern cone angle directly affects the flow state 
of the shear layer, thereby affecting the resistance characteristics of the projectile tail. It directly affects the effect 
of the bottom pressure on the arrow.

4 Numerical Simulation

4.1 Analysis of the Flow Field at the Tail of the Projectile

Fig. 7 shows the velocity cloud diagram of the flow field around the projectile with different tail cone angles when 
the incoming flow is 2.5 Ma. It can be seen that the tail of the projectile forms an obvious expansion wave at the 
connection of the cylindrical part. With the increase of the tail cone angle, the cylindrical and the speed difference 
between the tail and the tail of the projectile gradually increases [16]. According to the Prandtl-Meyer theory, as 
the angle of the airflow increases, the velocity difference before and after the angle increases gradually, and there 
is a limit angle. When the angle of the geometry is larger than this angle, the airflow will not remain attached to 
the surface of the object. The bottom forms a bottom recirculation area surrounded by the shear layer developed 
by the separation of the boundary layer, and the velocity of the airflow in this area is very small.

(a) θ=3 (b) θ=5°

(c) θ=7° (d) θ=9°

(e) θ=11° (f) θ=13°

Fig. 7. Velocity cloud map under different tail cone angles
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It can be seen from Fig. 7 that with the increase of the tail cone angle θ of the projectile, the range of the turbu-
lent region formed by the tail of the projectile gradually decreases, and it can be clearly seen that the range of the 
turbulent region at the tail of the projectile increases with the increase of the tail cone angle. The obvious decrease 
is mainly due to the fact that the tail cone angle causes an expansion wave to form at the tail of the projectile [17], 
the airflow velocity at the tail of the projectile increases, and the airflow angle is larger, resulting in the earlier 
intersection of the airflow after the angle of the tail of the projectile, thus reducing the turbulent area at the tail of 
the projectile. small, which also reduces the negative pressure area at the bottom of the projectile.

4.2 Projectile Pressure Distribution

In order to further reveal the influence of the change of the tail cone angle on the pressure of the projectile tail, 
the pressure coefficient Cp of the projectile tail is analyzed below.

4.2.1 Projectile Bottom Pressure

Fig. 8 shows the distribution curve of the pressure coefficient Cp at the bottom of the projectile when the shrink-
age ratio is constant and the tail cone angle θ is different. It can be seen that the absolute value of the pressure 
coefficient at the axis of the projectile is the smallest. This is because in the return zone at the bottom of the pro-
jectile, the air flows towards the bottom of the projectile, stagnates at the axis of the projectile bottom and flows 
along the radial direction, resulting in the center of the projectile bottom. where the pressure is the largest, the 
velocity vector diagram of the tail of the projectile is shown in Fig. 9.

(a) Ma=1.5

(b) Ma=2
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(c) Ma=2.5
Fig. 8. Bottom pressure coefficient Cp distribution curve

Fig. 9. Projectile tail velocity vector diagram (2Ma, θ=7°, arrows indicate velocity)

It can be seen from Fig. 8 that with the increase of the tail cone angle θ, the pressure coefficient Cp of the 
projectile bottom shows an overall increasing trend, that is, the absolute value of Cp gradually decreases, which 
means that the negative pressure of the projectile bottom gradually decreases. Small, the bottom pressure of the 
projectile gradually increases, and at the same time, due to the gradual increase of the tail cone angle, the bottom 
area of the projectile decreases when the diameter of the projectile does not change. Under the combined action 
of pressure reduction and projectile bottom area reduction, the projectile bottom resistance decreases gradually 
with the increase of tail cone angle. At the same time, with the increase of Ma, the absolute value of the pressure 
coefficient at the bottom of the projectile gradually increases, which means that with the increase of the number 
of Ma, the bottom resistance of the projectile gradually increases.

4.2.2 Projectile Pressure

Fig. 10 is the distribution curve of the projectile pressure coefficient Cp under different tail cone angles and Ma. It 
can be seen that since the cylindrical part of the projectile and the head of the projectile do not change significant-
ly, the pressure coefficients are basically the same.
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(a) Ma=1.5

(b) Ma=2

(c) Ma=2.5
Fig. 10. Projectile pressure coefficient Cp distribution curve

As shown in Fig. 10, there are two sudden changes in the Cp distribution curve of the projectile pressure co-
efficient under different Ma numbers. This is due to the sudden change of shape at the connection between the 
projectile head and the projectile tail and the cylindrical part, which makes the surface of the projectile expand. 
There are large changes in the airflow velocity and pressure before and after the wave.

For different tail cone angles θ, with the increase of the tail cone angle, the sudden change of the pressure 
coefficient curve at the junction of the projectile tail and the cylindrical part is more serious. In a certain range, 
the larger the bending angle, the greater the velocity difference before and after the expansion wave, the great-
er the velocity, the lower the pressure, the larger the tail cone angle, and the smaller the pressure coefficient of 
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the projectile tail, that is, the absolute value of the pressure coeffi  cient. bigger. At the same time, it can be seen 
that after the expansion wave of the projectile tail, the pressure coeffi  cient of the projectile tail is negative as a 
whole, which means that the larger the tail cone angle is, the greater the drag coeffi  cient of the projectile tail is. 
Moreover, as the Ma number increases, the absolute value of the pressure coeffi  cient of the projectile tail will fur-
ther increase, that is, the tail resistance will also gradually increase.

4.3 Variation of Projectile Drag Coeffi  cient

According to the above analysis, the drag coeffi  cient of the projectile tail is divided into two parts: bottom resis-
tance Cb and tail resistance Cw. The bottom resistance Cb decreases with the increase of the tail cone angle, and 
the tail resistance Cw increases with the increase of the tail cone angle. It is conceivable that there must be an in-
tersection point between the bottom resistance Cb curve and the tail resistance Cw curve, so that the resistance co-
effi  cient of the projectile tail is the smallest, that is, when the projectile head and the cylindrical part are constant, 
the projectile resistance coeffi  cient Cd is the smallest.

Fig. 11 shows the variation curve of correlation coeffi  cient with tail cone angle. It can be seen that under dif-
ferent Ma numbers, the tail cone angle that minimizes the drag coeffi  cient Cd of the projectile is diff erent, which 
is called the optimal tail cone angle, which is constructed according to the simulation results. The relationship 
between optimal tail cone angle and Ma number shown in Fig. 12.

(a) Ma=1.5

(b) Ma=2
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(c) Ma=2.5
Fig. 11. Correlation coeffi  cient versus tail cone angle θ

Fig. 12. Relationship between optimal tail cone angle and Ma number

It can be o bserved from Fig. 12 that the optimal tail cone angle increases with the increase of Ma number, but 
its increasing speed gradually decreases with the increase of Ma number. When Ma number is greater than 3, the 
optimal tail cone angle changes. It is extremely small, and the overall approach is 9.8°, that is, as the Ma number 
increases, the variation of the optimal tail cone angle with the Ma number decreases. When the Ma number is 
greater than 3, it can be considered that the optimal tail cone angle is a fi xed value, for the SOCBT projectile, the 
optimal tail cone angle greater than 3Ma is about 9.8°.

5 Conclusion

The drag coeffi  cient of the stern-shaped projectile tail is aff ected by the shape of the stern. The increase of the tail 
cone angle increases the pressure coeffi  cient of the tail and the tail resistance. With the increase of the tail cone 
angle, the action area of the bottom pressure decreases, and the absolute value of the bottom pressure coeffi  cient 
also decreases. The combined eff ect of the two causes the bottom resistance coeffi  cient to decrease with the in-
crease of the tail cone angle. The tail cone angle also aff ects the airfl ow velocity at the end of the projectile and 
the separation angle of the boundary layer, aff ects the airfl ow at the bottom of the projectile, changes the pressure 
coeffi  cient at the bottom of the projectile, and aff ects the bottom resistance coeffi  cient of the projectile. 

When the tail length is constant, the tail resistance increases with the increase of the tail cone angle, and the 
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bottom resistance decreases with the increase of the tail cone angle. The combined effect of the two makes the 
overall drag coefficient have a minimum value, and the corresponding tail cone angle is 7°~10°, and the flight 
speed of the projectile increases, the effect of the flight speed is smaller, that is, with the increase of Mach num-
ber, the size of the optimal tail cone angle of the stern shape of the projectile tends to be stable. When the flight 
speed is greater than 3Ma, the optimal tail angle The size of the cone angle does not change. Finally, finite ele-
ment analysis and numerical research on the aerodynamic shape of the ship-shaped tail projectile with other spe-
cial shape parameters or other structural forms would be carried out.
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