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Abstract. Vibration occurs when a vehicle passes through a speed bump, which has different intensities at 
different sizes and speeds. The recognition of speed bump type is an important step for vehicle to adjust speed 
automatically in time in automatic driving, which helps to improve the safety and comfort of passengers. In 
this paper, we put forward the technical requirements of speed bump image acquisition in automatic driving 
scene, and establish the speed bump image dataset. Based on improved EfficientNet basic block, we construct 
a lightweight convolutional neural network integrating edge detection, which is named Edge-Efficientnet. The 
experimental results show that its accuracy is improved by 3.3% and the model size is reduced by 53% com-
pared with EfficientNetB0 model. In terms of computing speed, the model meets the real-time performance 
requirements. The Edge-Efficientnet model can be applied to the comfortable speed adjustment of autonomous 
vehicles passing through speed bump.
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1   Introduction

Speed bump is a traffic safety facility widely distributed in urban roads and expressways. It forces the vehi-
cle speed to decrease by forcibly causing vehicle vibration, so as to achieve the purpose of safe driving [1]. 
According to relevant research, the size of speed bump and vehicle speed are the key factors affecting the strength 
of vibration [2-5]. Under the excitation of the same speed bump, the vehicles in different speed ranges show three 
vibration states: periodic vibration, quasi periodic vibration and chaotic vibration. In the periodic vibration state, 
the comfort of passengers is the best, in the quasi periodic vibration state, the comfort of passengers is the worst, 
and speed bumps of different size correspond to different comfort speed ranges [6-7]. This effect is more obvious 
when encountering continuous speed bump. With the rapid development of artificial intelligence technology and 
intelligent control technology, automatic driving technology is developing towards a higher level. How to recog-
nize the type of the speed bump efficiently and accurately and adjust to a comfortable speed in time according to 
the type is the key to improve the safety and comfort [8-10].

At present, traffic sign recognition technology based on deep learning is widely used in the field of automatic 
driving [11-14]. VGG, GooLeNet and ResNet models have achieved good results in image classification tasks 
[15-17]. These models usually have deeper network layers, larger model volume and longer computing time. 
However, the computational performance of the vehicle is relatively low, and the speed bump recognition task 
requires high real-time performance. In recent years, MobileNet, ShuffleNet, EfficientNet and other lightweight 
network models suitable for mobile terminals have emerged [18-24]. By changing the traditional convolution 
operation mode, these models realize the fast and lightweight network. However, in the automatic driving scene, 
due to the influence of distance, height, angle and other factors, the speed bump characteristics in the image are 
not obvious, and the effect of using these models directly is not good. In terms of data sets, with the rapid devel-
opment of automatic driving applications, many institutions have released traffic sign datasets, including a variety 
of common traffic signs or facilities [25-26]. However, in these data sets, there is no more detailed classification 
of speed bump. In this paper, we first put forward the technical requirements of speed bump image data acquisi-
tion in automatic driving scene, and construct the image dataset. Then, based on the EfficientNet basic block of 
Google team, an algorithm suitable for fast extraction and classification of speed bump features is designed, and 
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edge detection technology is integrated to enhance the performance of image features. Finally, experiments show 
that the model improves the accuracy and recognition efficiency on the premise of model reduction.

2   Speed Bump Image Dataset

2.1   Material and Type

In this study, the common speed bump types include hump speed bump, spike speed bump, thermoplastic vibra-
tion marking and color anti-skid deceleration pavement. We purchased 30 different hump speed bumps from man-
ufacturers, which have different heights, widths, cross-sectional shapes, surface textures and color distributions, 
as shown in Fig. 1. Hump speed bump is assembled by multiple sections, for research convenience, we only use 
one section with a length of 1 meter. In Fig. 2, images of other types are collected on site. Compared with hump 
speed bump, they have lower height and fewer subtypes.

Fig. 1. Subtype of hump speed bump

Fig. 2. Other types of speed bump except hump type

2.2   Technical Specification for Image Acquisition

The image acquisition shall conform to the automatic scene, where the direction and height of image acquisition 
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are fixed. As shown in Fig. 3, suppose the camera height is h, the distance from the speed bump is s, and the cam-
era depression angle is θ. The approximate relationship between the three is as follows:

  Tan（ 90o - θ ）= h / s.                                                                                   (1)

Fig. 3. Mathematical relationship among photographing distance, height and depression angle

When s becomes larger, θ will become larger, and the image lacks the contour and shape information in the 
vertical direction of the speed bump. On the contrary, when s is too small, there will not be enough distance for 
the car to adjust its speed. After field practice, the image acquisition specification is formulated by manually 
checking the image quality, as shown in Table 1.

Table 1. Operation specification for image acquisition of speed bump
Item Specification
Camera pixel 5 million at least
Photographic distance 3m-9m
Camera height 1.5m
Camera angle Straight ahead,15 degrees to the left and right

2.3   Dataset Development

We collected 5280 original images of speed bumps. All images are marked with data type by manual marking, 
and the dataset is divided into 12 subtypes as shown in Table 2.

Table 2. 12 types of speed bump collected so far

Type
No.

Shape Width (mm) Height (mm) Length (mm) Remarks

1 Miniature 200 10 1000 hump
2 Half sine wave 300 30-40 1000 hump 
3 Half sine wave 400 50-60 1000 hump
4 Triangle 300 30-40 1000 hump 
5 Triangle 400 50-60 1000 hump
6 Trapezoid 300 40-50 1000 hump
7 Trapezoid 400 60-70 1000 hump
8 Multilateral slope shape 450 70 1000 hump
9 Reflective spike 400 20
10 Punctate bump 400 5-7
11 Continuous vibration mark-

ing of expressway
5-7

12 Continuous anti-skid pave-
ment

3-5

Note: The surface textures and patterns of speed bumps with same shapes but different sizes are different.
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3   CNN Model for Image Classification

3.1   Classification Principle of Speed Bump

The speed bump is classified according to the geometric features, including shape, texture, width, height and oth-
er elements. The whole project includes dataset construction, feature network design and model training. In Fig. 
4, it shows the flow of speed bump classification. We design an edge detection module to enhance the edge infor-
mation before entering the convolutional neural network. Then the image processed by edge detection enters the 
trained convolution neural network model for feature extraction, and finally connects with softmax classifier for 
feature matching.

Fig. 4. Speed bump classification task flow

3.2   Design of CNN Model Combined with Edge Detection

As shown in Fig. 5, the classification algorithm mainly includes two modules: edge detection and feature ex-
traction network.

Fig. 5. Feature extraction and classification algorithm flow

3.2.1   Edge Detection Module

An edge detection module is added at the front end of the convolutional neural network to enhance the feature 
expression ability of the shape and texture of the speed bump image. Firstly, we preprocess the image, convert it 
into gray image, and resize the size to 380 * 380 pixels. Secondly, Sobel operator, an edge detection operator, is 
used to convolute the input matrix in X direction and Y direction. The convolution mode adopts “zero filling” and 



33

Journal of Computers Vol. 33 No. 5, October 2022

the image size remains unchanged. After the matrix is convoluted by Sobel operator, some pixels become nega-
tive numbers. In order to ensure the normal data range, it is necessary to convert them. The conversion rules are 
as follows:

new_pixel =  {
| src_pixel | −255 < src_pixel < 0

255 srcpixel > 255 or  srcpixel < −255.
src_pixel  0 < src_pixel < 255

                                     (2)

The converted convolution results in X and Y directions are fused according to the ratio of 50%: 50%. Finally, 
a sharpening filter operator is used to convolute the image matrix again. Fig. 6 shows the detailed flow of the edge 
detection module.

Fig. 6. Detailed flow of edge detection module

3.2.2   Structure of Feature Extraction Network 

The feature extraction network adopts the EfficientNet basic block, as shown in Fig. 7, and it is improved. We 
change average pooling to maximum pooling to retain more shape features. Moreover, the DWConv kernel does 
not use 5x5 size, but all are set to 3x3 size to reduce the amount of network parameters. The DWConv convolu-
tion kernel uses the depthwise convolution mode, which is different from the traditional convolution operation. A 
depthwise convolution kernel is responsible for one channel, and a channel is convoluted by only one convolution 
kernel, which greatly reduces the amount of parameters.

Fig. 7. Improved EfficientNet basic block
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We named the feature extraction network as “Edge- EfficientNet”. The input data of the network is the out-
put data of the edge detection module. As shown in Fig. 8, the network is composed of improved MBConv and 
MBConvblock stack, including 6 stages and 12 convolution layers. Stage1 contains a 3x3 size traditional con-
volution layer with a stride of 2, including BN and the activation function swish. Stage2 contains a MBConv 
with a stride of 1 and a MBConvBlock with a stride of 2. Stage3 contains an MBConv with a stride of 2 and two 
MBConvBlocks with a stride of 2. Stage4 contains an mbconv with a stride of 2 and three MBConvBlocks with 
a stride of 1. Stage5 is an MBConv with a stride of 1. Stage6 is a 1x1 size traditional convolution layer with a 
step of 1, including BN and the activation function swish. After stage 6, there is a pool layer and a full connection 
layer. Similarly, unlike EfficientNet, the last of the network uses maximum pooling instead of average pooling to 
retain more shape features. After the full connection layer is another full connection layer, which transforms the 
features extracted by neural network into feature mapping corresponding to 12 speed bump types. Finally, the 
softmax classifier is connected to realize the speed bump type output.

Fig. 8. Network structure of the Edge-EfficientNet

4   Experimental Verification

4.1   Training Dataset and Test Dataset

The dataset with 5280 original images is expanded to 10560 by using data enhancement techniques such as 
translation, chroma transformation and adding a small amount of noise. The training dataset and test dataset are 
divided according to the ratio of 85% : 15%, and the training dataset of 8976 images and the test dataset of 1584 
images are obtained.

4.2   Model Configuration and Experimental Setup

The training dataset is preprocessed such as label smoothing and normalization, so as to improve the learning 
ability of the model, reduce over fitting and improve the final classification accuracy. In Table 3, the configuration 
of the model is shown. In terms of learning rate, the model adopts warm up learning rate and CosineAnnealing 
method [27]. The loss function uses “cross entropy”. The padding value is set to “same”. After training, it is found 
that epoch of 250 and batch of 64 are better settings.
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Table 3. List of hyper-parameters used in Edge- EfficientNet model
Parameters Value
Learning rate Dynamic learning rate
Loss-function Cross-entropy
Epoch 250
Batch size 64
Padding Same

4.3   Results and Analysis

On the dataset constructed in this paper, the accuracy of EfficientNetB0 model is 95.33%, and the accuracy of 
Edge-EfficientNet model is 98.67%. The edge detection module extracts the key features of the speed bump im-
age. Fig. 9 shows the renderings of some examples.

 
(a) Original image

(b) Graphics after edge extraction
Fig. 9. Effect comparison after edge detection

The classification of speed bump is mainly based on contour, shape, texture and other features. These features 
are shallow features. Deep networks may cause the disappearance of back-propagation gradient and over fitting 
in the process of multiple extraction. Based on the improved EfficientNet basic block, we tried a variety of com-
binations, including different structures, convolution kernel sizes and depths, and finally determined the model of 
six stages through many experiments. In Table 4, the size of the trained EfficientNetB0 model is 22.1M, and the 
time taken to identify a picture is 64 ms. The size of the Edge-Efficientnet model is 10.3M, and the time taken to 
identify a picture is 26 ms, which meets the requirements of real-time.

Table 4. Performance comparison between Edge-EfficientNet model and EfficientNetB0 model
CNN model Size Operation time Value
EfficientNetB0 22.1M 64ms 95.33%
Edge- EfficientNet 10.3M 26ms 98.67%

In the actual environment, the vision sensor imaging of autonomous vehicles may have some problems, such 
as noise, low color contrast, poor lighting conditions and so on. The image smoothing function of the edge detec-
tion module can reduce the noise interference, and the sharpening function of the module can strengthen the shape 
characteristics of the speed bump. Therefore, the Edge-EfficientNet model has better robustness. Fig. 10 and 
Table 5 show the accuracy and loss corresponding to the number of different batches used by the model, which is 
helpful to observe the critical point of the model training process and set the best network model parameters.
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(a) Model accuracy of training dataset (b) Model accuracy of test dataset

                   (c) Model loss of training dataset                        (d) Model loss of test dataset

Fig. 10. Accuracy and loss of Edge-EfficientNet and EfficientNetB0 in different epoch values and phases 

Table 5. Accuracy and loss of Edge-EfficientNet and EfficientNetB0 in different epoch values
Number of  
epoch

Edge-EfficientNet 
training accuracy

EfficientNetB0 
training accuracy

Edge-EfficientNet test 
accuracy

Edge-EfficientB0 
test accuracy

50 96.27% 94.70% 93.53% 94.10%
100 99.10% 97.09% 95.60% 94.89%
150 99.37% 97.11% 98.07% 94.10%
200 99.51% 97.17% 98.45% 95.33%
250 99.67% 97.10% 98.67% 95.13%
300 99.62% 97.13% 98.61% 95.24%

As is shown in Fig. 11, among the 12 types of speed bump, the recognition rates of type 7 (higher trapezoid) 
and type 8 (multilateral slope shape) are 96% and 91% respectively, and the recognition accuracy of other types is 
100%. The main factors causing recognition errors are the speed bump height and recognition distance. When the 
recognition distance exceeds 7 meters, the shape information in the vertical direction of the speed bump image is 
incomplete. However, in the automatic driving scene, it is usually necessary to complete the target recognition as 
far as possible in order to provide more time for vehicle speed adjustment, which is contradictory. Therefore, if 
manufacturers can design unique surface texture, pattern or other obvious features, it will make the classification 
of speed bump more efficient and accurate.
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Fig. 11. The recognition accuracy of 12 types of speed bumps with Edge-EfficientNet and EfficientNetB0

5   Conclusion

In this paper, we have completed two tasks:
Firstly, the technical requirements of speed bump image acquisition in automatic driving scene are proposed, 

and the speed bump image dataset is constructed.
Secondly, an efficient speed bump classification network based on convolutional neural network is designed 

and verified by experiments.
At the front end of the feature extraction network, we improve the performance of key features such as shape, 

texture and contour of the image through the edge detection module. We build a network model with appropriate 
structure and depth based on improved EfficientNet basic block. Compared with EfficientNetB0, our model has 
higher accuracy, lighter model and shorter operation time. The model can be applied to the fine classification task 
of speed bump in automatic driving scene, which helps the vehicle to make comfort speed adjustment in time, 
which will promote the development of automatic driving from safety to higher comfort. At present, there are 
only 12 types of speed bump in the dataset. In future, we will continue to collect more samples of speed bump 
types, and build a standardized feature library based on Edge-EfficientNet model, which can provide data support 
for automatic driving.
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