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Abstract. There are often some prior requirements about empirical risk in regression problems. To meet these 
requirements, this paper firstly proposes two novel support vector regression machine models in which part 
of empirical risks are given. One is a support vector regression machine in which partial empirical risks are 
given (PSVR), and the other is a model in which unilateral partial empirical risks are given (UPSVR). For the 
samples with given empirical risk levels, PSVR meets the requirements by some inequality constraints about 
empirical risk levels, while for the other samples without empirical risk requirement, PSVR uses the same 
strategy as the tradition support vector regression (SVR) to meet the requirement of empirical risk. UPSVR 
is similar to PSVR, except that the inequality constrains of empirical risks are unilateral. Secondly, the dual 
problems and the solving methods of PSVR and UPSVR are given. Finally, the effectiveness and superiority of 
PSVR and UPSVR are verified by the experiments on four artificial datasets. Both PSVR and UPSVR achieve 
better regression performance than the traditional models respectively. At the same time, PSVR is less sensi-
tive to the trade-off coefficient C between empirical risk and confident risk compared with SVR. Thus, PSVR 
can select parameter C faster and more conveniently. PSVR and UPSVR are the extensions of the traditional 
models. When the set of samples with given empirical risks is empty, they degenerate into the traditional mod-
els. PSVR and UPSVR are suitable for the scene with prior requirements of empirical risk. 

Keywords: support vector regression machine, partial empirical risks, confidence risk, unilateral empirical 
risk

1   Introduction

The support vector machine (SVM) proposed by Vapnik [1] is based on the principle of structural risk minimi-
zation (SRM). Structural risk is composed of empirical risk and confidence risk. Empirical risk refers to the per-
formance of the model on training data, such as the misclassification rate of classification problems or the fitting 
error of regression problems, while the confidence risk refers to the performance of the model on test data or the 
generalization ability of the model. The SRM principle makes SVM obtain an excellent generalization ability. 
The training of SVM is realized by solving a convex quadratic programming problem (QPP) that is simple and 
quick. SVM has gained a wide attention and numerous applications with these advantages [2-5]. Support vector 
regression (SVR) [5] is the version of SVM in regression problem and maintains all the advantages of SVM in 
classification problem.

There are three approaches for the realization of SRM. The first one is to minimize the weighted sum of empir-
ical risks and confidence risk. The standard SVM [1, 7] is realized with this approach. The second is to minimize 
the empirical risks under the conditions of a given level of confidence risk, such as [8-9]. The last is to minimize 
the confidence risk under the conditions of given empirical risks level, such as [10-12].

One disadvantage of the first approach is that it is very time-consuming to determine the trade-off coefficient 
C between empirical risk and confidence risk. The commonly used method to determine C is K-fold cross-vali-
dation, which is extremely time-consuming when the training set is large. Another disadvantage of this approach 
is that it cannot guarantee the required empirical risk or confidence risk level. The optimization goal of this 
approach is to minimize the weighted sum of empirical risks and confidence risk, which cannot ensure that the 
empirical risk or confidence risk meet the required level. For example, the standard SVM cannot meet the a priori 
requirement that “the empirical risk or confidence risk of a certain training sample cannot exceed 0.01”.

One disadvantage of the second approach is that its dual problem is not a convex quadratic programming prob-
lem. In addition, it is difficult for users to give a priori requirements of confidence risk in practical application be-
cause the confidence risk is relatively abstract. These two shortcomings cause the second approach is rarely seen 
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in practice.
The third approach is suitable for the scenarios with a given level of empirical risks. Compared with abstract 

confidence risk, empirical risk such as misclassification rate and fitting error are clear. In practical applications, 
users often put forward the requirements of empirical risks, for example, the fitting errors of some training sam-
ples cannot exceed 0.001. Therefore, it has more application scenarios than the second approach. 

Luo et al. [10] proposed several support vector machine models under given overall empirical risk levels in 
2006. In 2010, they extended it to regression problem, and proposed a support vector regression model with giv-
en empirical risk levels of all samples (ASVR) [11]. Considering that the empirical risk requirements for certain 
training samples are more common in practice, they further proposed a support vector classification model with 
partial empirical risks given (P-SVC) [12], which increases the practicability of the model.

In this paper, P-SVC is extended to regression problem, and a support vector regression machine with partial 
empirical risks given (PSVR) is proposed. Similar to P-SVC, PSVR covers the traditional SVR and ASVR. PSVR 
degenerates to the traditional SVR when no empirical risk is given, while it becomes ASVR when the empirical 
risks of all samples are given. PSVR can be applied to the situation where the regression curve is expected to pass 
through the specific samples within a given fitting error. At the same time, considering that sometimes only the 
upper or lower bound of empirical risk needs to be met, we further provide a support vector regression machine 
with unilateral partial empirical risks given (UPSVR). 

The rest of the paper is organized as follows. The related work is summarized in Section 2. The details of our 
proposed model are provided in Section 3. Experiments are conducted in Section 4. The conclusion and future 
work are presented in Section 5.

2   Related Work

The regression problem considered is as follows: find a regression function f according to a given training set 
},...,2,1,,|),{( liyxyxT i

n
iii == RRX  , so that )(xfy =  can be used to infer the y value of any mode x. 

The traditional SVR and ASVR are commonly used to solve above regression problem.

2.1   SVR

The traditional SVR model is:
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where w is the weight vector, b  is the bias, iq  is the sample weight, iξ  and *
iξ  are the slack variables that rep-

resents the empirical risk of ix , ε  is the bandwidth of the insensitive band, C is the trade-off coefficient between 
empirical risk and confidence risk, ψ denotes the nonlinear mapping from the input space to high-dimensional 
Hilbert space.

The dual model of (1) is:
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where iα  and *
iα  are the multiplier variables, = )(),(),( jiji xxxxk   is the kernel function that represents the 

inner product of the samples in the high-dimensional Hilbert space. The matrix form of (2) is
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is the inner product matrix of the samples in the high-dimensional Hilbert space, [ ]T l×⋅⋅⋅= 11,,1,1e , 

[ ]T l211,,1,1,1,,1,1 ×−⋅⋅⋅−−⋅⋅⋅=z . If the kernel function is positive definite, then model (2) is a convex quadratic pro-

gramming problem, which can be solved quickly with the sequential minimal optimization (SMO). If *,αα is an 
optimal solution of model (2), the regression function is 
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2.2   ASVR

ASVR minimizes the structural risk by giving the empirical risks of all samples without the trade-off coefficient 
C. It can be expressed by
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where 0≥iρ  represents the given empirical risk level for sample i.

3   Proposed Models

In this section, two new models, PSVR and UPSVR, are proposed. Their dual problems and the solving methods 
are also given.
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3.1   PSVR

Let },,2,1{ lI ⋅⋅⋅=  be the index set of all samples, II ⊆1  be the index set of samples with given empirical risk lev-
els, and 12 \ III =  be the index set of samples without given empirical risk level. The prime model of PSVR is
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where 0≥iρ  represents the given empirical risk level of ix . If a sample is given by an empirical risk level, 

PSVR meets this requirement by iii ρξξ ≤*, . Otherwise, PSVR still uses the second item of the objective function 
to meet the requirement of empirical risks, which is the same as the traditional SVR. 

One can see that PSVR has two extreme cases. When φ=1I , PSVR is degraded to the traditional SVR in 

which no sample is given empirical risk. When φ=2I , PSVR is the same as ASVR in which all samples are 
given empirical risks. Therefore, PSVR is an extension of the traditional SVR and ASVR.	

The following theorem 1 gives the dual problem of PSVR model and a calculation formula of regression 
function. The proof is omitted due to limited space.

Theorem 1: The dual model of (5) is
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where *
ii

*
ii ,β,β,αα ,   are the multiplier variables. If ** ,,, ββαα  is an optimal solution of model (6), the regression 

function can be provided by
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The model (6) can be solved by the method of solving model (3) through some conversions.
Theorem 2: Let
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If ** ,,, ββαα is an optimal solution of (6), then

1
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The proof is omitted due to limited space.
According to (7) and (8), (6) can be rewritten as
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The model (9) has the same structure as the model (3). Therefore, it can be solved by the method of (3).

3.2   UPSVR

Different from PSVR, UPSVR only considers the requirement of bilateral empirical risk. The requirement of 
bilateral empirical risk can be the upper bound or the lower bound of empirical risk. Without loss of generality, 
taking the upper bound as an example, the prime model of UPSVR is 
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There are two differences between PSVR and UPSVR: 1) the constrain ,  in PSVR is changed to 
. 2) the objective function of UPSVR adds an item of C . For the sample with given upper empiri-

cal risk level, the given requirement is met by the constrain .
The following theorem 3 gives the dual problem of the UPSVR model and a calculation formula of regression 

function. The proof is omitted due to limited space.
Theorem 3: The dual model of (10) is
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If **,, βαα is an optimal solution of model (11), the regression function is
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Model (11) can be solved by the method of solving model (3) through following conversion.
Theorem 4: If **,, βαα is an optimal solution of model (11), then
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The model (13) has the same structure as the model (3) and can be solved by the method of (3).
To satisfy the requirement of bilateral empirical risk, the traditional SVR can increase the one-sided weight of 

empirical risk. For the sake of simplicity, we denote it as USVR. The prime model of USVR is
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The dual model of (14) is
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If  *α,α   are an optimal solution of model (15), the regression function is
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The solving method of model (15) is the same as model (2).

4   Experiments and Results

In order to verify the effectiveness of PSVR and UPSVR, we conducted two numerical experiments. The first one 
compares the regression performance of PSVR and the traditional SVR, and the evaluation criterion is the abso-
lute error between the regression value and the actual value. The second experiment compares the regression per-
formance of UPSVR and USVR, and the evaluation criterion is the absolute error between the regression value 
and the actual value under the condition the regression value is greater than the actual value.

4.1   Datasets

Two experiments share the same datasets. All data in the datasets are synthetic where the true regression functions 
are known. Table 1 lists the basic information of the datasets. The samples are randomly generated with the true 
regression functions. The ratio of training set and test set is 4:1. Gaussian noise with mean zero and standard 
deviation 0.1 is added to each training samples.

Table 1. Datasets

Data Function expression Variable domain Number of 
samples

Number of 
features

Data1
x

xxf sin)( =   }0{\]4,4[ ππ−∈x 100 1

Data2 







+
=

135.0
9sin)(

x
xf   ]10,0[x  100 1

Data3 )sin(
21

21),( xxexxf π= ]1,1[, 21 −∈xx 400 2

Data4 2
2

2
1

2
2

21
)5()5(*3

)5(
),(

xx
x

xxf
−+−

−
=   ]10,0[, 21 xx  400 2

4.2   Experimental Program

We select the radial basis function (RBF) )||||exp(),( 2'' xxxx −−= σk  as kernel function in all models. We 
set the insensitive margin ε = 0.01. The kernel parameter σ  and the trade-off coefficient C are selected by 5-fold 
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cross validation on the training set from the candidate set }2,...,2,2{ 878 −− . Once the optimal σ  and C are deter-
mined, they are used to establish the fi nal regression model on the full training set. 

Since the prior knowledge of the synthetic dataset is known, we select the 20% samples of training set that are 
the closest to the actual values as the specifi c points (SP). For SP, we will provide the requirement of empirical 
risk. 

For SP, the requirement of empirical risk is set by 001.0=iρ  in PSVR and UPSVR. To obtain the correspond-

ing empirical risk in the tradition SVRs, we set 2=iq  for SP, 1=iq  for the other samples in SVR, and 2* =iq

for SP, 1* == ii qq  for the other samples in USVR.
All values of samples are scaled in [0, 1]. All methods are coded in Python and Scikit-learn [13] is used to 

solve the traditional SVR.

4.3   Experimental Results

Six measures are employed to evaluate the performance of models. They are root mean squared error (RMSE), 
mean absolute error (MAE), the ratio between the sum of squared error and the sum of squared deviation (SSE/
SST), the ratio between the interpretable sum of squared deviation and the sum of squared deviation (SSR/SST), 
symmetric mean absolute percentage error (SMAPE) and mean absolute scaled error (MASE) [14]. In addition, 
the ratio between the number of samples whose predicted value is greater than the actual value and the total num-
ber of samples (Grate) is also calculated in the second experiment.

4.3.1 The Compassion Between the Traditional SVR and PSVR

As an example, Fig. 1 shows the regression results of the traditional SVR and PSVR on Data1. From Fig. 1, we 
see that PSVR can satisfy the given empirical risk levels of SPs and the prediction values of PSVR on the training 
set is closer to the real values than the traditional SVR does. Further, the prediction values of PSVR on the test set 
is better than the tradition SVR. 

Fig. 1. The regression results of PSVR and SVR on Data1
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Table 2 shows the performance comparison of traditional SVR and PSVR on the four datasets. For the six mea-
sures, PSVR obtains relative improvements of 34.06%, 39.12%, 49.71%, -7.31%, 31.58% and 38.27% respec-
tively, compared with the traditional SVR on the four datasets. It shows that PSVR achieves a better regression 
performance than traditional SVR when the empirical risks of SPs are given.

Table 3 lists the results of C-sensitivity in PSVR and the traditional SVR on the four datasets, in which AVG 
and STD represent the mean and standard deviation respectively when C varies from }2,...,2,2{ 878 −− . Except 
SSR/SST, the AVG and STD of all measures in PSVR are significantly better than the traditional SVR, which 
means the sensibility for C in PSVR is lower than the traditional SVR.

Table 2. The regression results of PSVR and SVR on the four datasets

Data Model RMSE MAE SSE/SST SSR/SST SMAPE MASE

Data1
PSVR 0.0097 0.0062 0.0031 0.9530 0.0160 0.0710
SVR 0.0292 0.0226 0.0275 0.8745 0.0680 0.2613

Data2
PSVR 0.0281 0.0169 0.0127 0.8700 0.0542 0.1077
SVR 0.0537 0.0368 0.0404 0.7895 0.0728 0.2185

Data3
PSVR 0.0247 0.0170 0.0181 0.9595 0.0635 0.1245
SVR 0.0285 0.0221 0.0242 0.9991 0.0773 0.1613

Data4
PSVR 0.0443 0.0345 0.0737 0.9809 0.0810 0.4208
SVR 0.0484 0.0370 0.0881 0.8601 0.0866 0.4511

Table 3. The results of C-sensitivity in PSVR and SVR on the four datasets

Data Model AVG/STD
C varies in {2^(-8),2^(-7),…,2^(8)}

RMSE MAE SSE/SST SSR/SST SMAPE MASE

Data1
PSVR

AVG 0.0155 0.0102 0.0084 0.9598 0.0291 0.1078
STD 0.0088 0.0063 0.0089 0.036 0.0185 0.0683

SVR
AVG 0.0536 0.0417 0.1692 0.7415 0.1116 0.4709
STD 0.0493 0.0396 0.2613 0.3589 0.0969 0.4652

Data2
PSVR

AVG 0.0529 0.0358 0.0461 0.8469 0.0739 0.2174
STD 0.0195 0.0132 0.0295 0.0765 0.0215 0.077

SVR
AVG 0.0958 0.0664 0.1687 0.6449 0.1461 0.4125
STD 0.0404 0.0384 0.1727 0.2418 0.0968 0.2515

Data3
PSVR

AVG 0.063 0.0453 0.117 0.9767 0.0998 0.3881
STD 0.0086 0.011 0.0331 0.2262 0.0281 0.0941

SVR
AVG 0.0829 0.0668 0.2206 0.8623 0.1426 0.5723
STD 0.0276 0.0228 0.1632 0.4294 0.0413 0.1951

Data4
PSVR

AVG 0.0386 0.0283 0.0503 0.887 0.083 0.2116
STD 0.0112 0.0108 0.0282 0.0687 0.0327 0.0812

SVR
AVG 0.0773 0.0536 0.2313 0.6534 0.1461 0.4017
STD 0.038 0.0223 0.2381 0.3494 0.0509 0.1668

4.3.2 The Compassion Between USVR and UPSVR

Fig. 2 shows the regression results of USVR and UPSVR on Data1. For SP, UPSVR can meet the requirements 
of given unilateral empirical risks, so that the regression curve is above the SP, while USVR cannot meet this re-
quirement.
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Fig. 2. The regression results of UPSVR and USVR on Data1

Table 4 lists the comparison results of regression performance between USVR and UPSVR on the four data-
sets. For the seven measures, UPSVR obtains the average improvements of 18.00%, 25.93%, 37.52%, 2.30%, 
31.94%, 28.22% and 17.17% respectively compared with USVR on the four datasets. It shows that UPSVR has 
better generalization ability than USVR.

Table 5 shows the results of C-sensitivity in UPSVR and USVR on the four datasets. Except Grate, UPSVR is 
equivalent to USVR in all measures, which indicates that UPSVR and USVR are both sensitive to the parameter 
C. The reason is that UPSVR will make the regression function shift to one side of the real function so that the 
unilateral empirical risk can be satisfi ed. When C is small, UPSVR may cause a large deviation.

Table 4. The regression results of UPSVR and USVR on the four datasets

Data Model RMSE MAE SSE/SST SSR/SST SMAPE MASE Grate

data1
UPSVR 0.0252 0.0147 0.0145 0.9573 0.0465 0.1432 0.7500
USVR 0.0303 0.0249 0.0296 0.8728 0.0748 0.2874 0.6500

data2
UPSVR 0.0379 0.0285 0.0209 0.9975 0.1426 0.1701 0.6500
USVR 0.0515 0.0400 0.0384 1.0427 0.2501 0.2388 0.5500

data3
UPSVR 0.0293 0.0193 0.0292 1.0095 0.0575 0.1514 0.7000
USVR 0.0344 0.0239 0.0404 1.0280 0.0803 0.1874 0.5375

data4
UPSVR 0.0586 0.0473 0.0994 1.0780 0.1031 0.4053 0.5375
USVR 0.0681 0.0555 0.1339 1.2353 0.1266 0.4753 0.5125
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Table 5. The results of C-sensitivity in UPSVR and USVR on the four datasets

Data Model AVG/STD
C varies in {2^(-8),2^(-7),…,2^(8)}

RMSE MAE SSE/SST SSR/SST SMAPE MASE Grate

data1
UPSVR

AVG 0.0855 0.0653 0.2988 0.9926 0.1671 0.6341 0.8269
STD 0.076 0.0598 0.4156 0.0968 0.1392 0.5805 0.1564

USVR
AVG 0.0803 0.0657 0.2321 0.6439 0.1675 0.6376 0.5615
STD 0.061 0.0523 0.2653 0.3529 0.1229 0.5079 0.0812

data2
UPSVR

AVG 0.1083 0.0714 0.2155 0.6627 0.1487 0.4239 0.55
STD 0.0605 0.0496 0.2669 0.1848 0.1069 0.2946 0.124

USVR
AVG 0.1036 0.0701 0.186 0.6252 0.1498 0.4161 0.4231
STD 0.0504 0.046 0.1954 0.2479 0.1022 0.2734 0.1187

data3
UPSVR

AVG 0.088 0.0682 0.2498 1.1507 0.1618 0.5835 0.5212
STD 0.0299 0.0228 0.1659 0.4261 0.0642 0.1952 0.0655

USVR
AVG 0.0939 0.0744 0.2789 1.1086 0.1729 0.6373 0.4625
STD 0.0289 0.022 0.1641 0.5257 0.0599 0.188 0.0282

data4
UPSVR

AVG 0.072 0.0539 0.1751 0.8218 0.1601 0.4034 0.5404
STD 0.0207 0.0153 0.0986 0.1717 0.0482 0.1149 0.1151

USVR
AVG 0.0827 0.0579 0.2313 0.7343 0.164 0.4333 0.4692
STD 0.024 0.0133 0.1359 0.2961 0.0403 0.0993 0.0349

5 Conclusion

In order to meet the requirements of given empirical risk level, we propose two new support vector regression 
models, PSVR and UPSVR, and give their dual problems and the solving methods. PSVR is an extension of the 
traditional SVR and ASVR. PSVR degenerates into the traditional SVR when no empirical risk is given. When 
the empirical risks of all training samples are given, PSVR degenerates to ASVR. UPSVR can meet the upper 
or lower bounds of the empirical risk when the unilateral empirical risk is given. Experiments on four artificial 
datasets verify the effectiveness and the superiority of the proposed models. Given the empirical risks, PSVR 
and UPSVR can achieve better regression performance. The sensitivity experiments of the trade-off coefficient 
C show that PSVR is less sensitive to C than the traditional SVR, which means that C can be selected faster and 
more conveniently in PSVR. However, UPSVR is still sensitive to C.
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