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Abstract. Taking each iteration of Particle swarm optimization (PSO) algorithm as a time node, the change 
of population in PSO algorithm can be regarded as a time series model. Particle population learns and evolves 
in multiple time nodes, which can be regarded as a dependent behavior on leader particles. In the traditional 
particle swarm optimization algorithm, this dependence behavior is independent of time, and its consideration 
standard is only the fitness value of particles. We deeply study the leadership mechanism of PSO algorithm 
in order to find a more robust leadership mechanism and improve the ability of PSO algorithm to explore the 
solution space, by extending the dependence behavior in the time dimension, we propose an improved PSO al-
gorithm with long-term and short-term memory ability. In order to verify its performance, in the experimental 
part, we select 32 public data sets in UCI data to find the optimal feature subset. In a large number of feature 
selection experiments. The experimental results proofed that the performance of proposed algorithms is better 
than some state of the art algorithms. 
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1   Introduction

In the classification problem, uniform data sampling is very important, and non-uniform data sampling can not 
truly reflect the distribution of the actual samples, which affects the effect of the classification model. In addi-
tion, if there is no prior knowledge, the number of selected features will be very large, which will cause Curse of 
Dimensionality. The purpose of feature selection is to solve the above problems. The strength of feature selection 
is that it can effectively reduce the data dimension and obtain better model performance. In the case that each fea-
ture can be selected, if there are n features, then the number of solutions is 2N [1] and the optimal solution of this 
kind of problem has been proved to be NP hard [2-3]

Some early search methods, such as sequential forward selection (SFS) [4], sequential backward selection 
(SBS) [5], sequential floating forward selection (SFFS) [6], sequential floating backward selection (SFBS) [6], 
have obvious problems. Such greedy algorithms are prone to local optimization and almost exhaustive search 
methods lead to a huge computational overhead. With the development of swarm intelligence algorithm and 
evolutionary algorithm, solving combinatorial optimization problems such as feature selection shows better per-
formance. Particle swarm optimization (PSO) [7], genetic algorithm (GA) [8], ant colony optimization (ACO), 
simulated annealing (SA) [9] and other metaheuristic algorithms have been proposed successively. PSO is a 
metaheuristic algorithm based on swarm intelligence. Its main idea is to simulate the foraging behavior of swarms 
such as fish and birds, which is a bionic algorithm. PSO has the ability to quickly converge [10] and can be imple-
mented quickly, it has a strong search capability in the problem space and can efficiently find minimal reducts. It’s 
shortcoming is that it is difficult to implement in discrete problems and easy to fall into local optimum. To solve 
the Discrete problem, a binary particle swarm optimization algorithm (BPSO) have been proposed by Kennedy et 
al. [11]. Researchers have given a lot of improvement schemes on the basis of BPSO, but the two major problems 
of BPSO have not been solved. At present, the hybrid PSO algorithm has received more attention [12-14]. 

In order to solve the conventional problem of PSO algorithm, considering the time dimension characteristics of 
PSO algorithm population learning and evolution, an algorithm named LSTMPSO is proposed by expanding the 
learning behavior of the population. In LSTMPSO, the learning of long-term and short-term historical experience 
is maintained as a trade-off, which reduces the possibility of population falling into local optimum and improves 
the search ability of the algorithm for solution space.
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The remainder of this paper is organized as follows. Sect 2 provides background information. Sect 3 describes 
the proposed LSTMPSO algorithm. Sect 4 describes the experimental design, experimental results with discus-
sions, and Sect 5 presents the conclusion.

2   Literature Review 

This section will introduce the basic theory and improvement of PSO algorithm, as well as the research status of 
feature selection model.

2.1   PSO 

Particle swarm optimization (PSO) is an algorithm based on swarm intelligence proposed by Kennedy et al. [7] In 
1995. By simulating the foraging behavior of fish and birds, the particles learn from each other, and then make the 
population converge near the optimal solution. Suppose the solution space of the problem is Ω, define a popula-
tion of m particles as Xi ∈ {Ω | i = 1, 2, 3, ..., m} and each particle has a velocity vector of in the solution space Vi 
∈ {Q | i = 1, 2, ..., m}. After randomly initializing the position and velocity of the particles in the solution space,  
pbest is selected for each particle and the unique gbest of the population is selected, where pbest represents the 
historical optimal solution of the particle and gbest represents the historical optimal solution of the population.

          𝑉𝑉𝑖𝑖(𝑡𝑡 + 1) =  𝜔𝜔(𝑡𝑡) × 𝑉𝑉𝑖𝑖(𝑡𝑡) + 𝑐𝑐1𝑟𝑟1(𝑡𝑡) × (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖(𝑡𝑡) − 𝑥𝑥𝑖𝑖(𝑡𝑡)) + 𝑐𝑐2𝑟𝑟2(𝑡𝑡) × (𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡(𝑡𝑡) − 𝑥𝑥𝑖𝑖(𝑡𝑡)) .        (1)

 𝑋𝑋𝑖𝑖(𝑡𝑡 + 1) =  𝑋𝑋𝑖𝑖(𝑡𝑡) +  𝑉𝑉𝑖𝑖(𝑡𝑡 + 1) .                                                                                                       (2)

As shown in Eq. (1-2), the update formulas of particle position and velocity are given, where w(t) is the inertia 
coefficient inherited from the current velocity, c1, c2 are the learning factors for pbest and gbest respectively, usu-
ally c1 = 2, c2 = 2. r1, r2 are random values in [0, 1].

𝐼𝐼𝐼𝐼 𝑉𝑉𝑖𝑖
𝑡𝑡+1 < 𝑉𝑉min, 𝑡𝑡ℎ𝑒𝑒𝑒𝑒  𝑉𝑉𝑖𝑖

𝑡𝑡+1 ← 𝑉𝑉min;  𝐼𝐼𝐼𝐼 𝑉𝑉𝑖𝑖
𝑡𝑡+1 > 𝑉𝑉max, 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑉𝑉𝑖𝑖

𝑡𝑡+1 ← 𝑉𝑉max .                                         (3)

As shown in Eq. (3), M. Clerc et al. [15] suggested that the limitation of V can achieve better results. By limit-
ing the maximum velocity, particles cannot fly too far away from the optimal solution thus it can ensure that parti-
cles have better global search ability and local search ability at the same time. M.S. Mohamad et al. [16] Proposed 
to replace V with a length or magnitude of V, which makes it easier to select small feature subsets.

𝜔𝜔(𝑡𝑡 + 1) =  𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚  −  𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∗ 𝑀𝑀𝑡𝑡𝐼𝐼𝐼𝐼(𝑡𝑡) .                                                                                (4)

S. Naka et al. [17] and T. Peram et al. [18] adopt different adaptive inertia coefficient adjustment strategies. In 
this paper, we will use the update strategy of Eq. (4), where w(T) is the value of inertia coefficient at iteration of t,  
wmax means Initial value of weighting coefficient and wmin means final value of weighting coefficient, Iter(t) is the 
current number of iterations, respectively. The larger inertia weights at the beginning help to find good seeds and 
the later small inertia weights facilitate fine search [19].

2.2   BPSO

In order to make PSO algorithm deal with discrete problems better, Kennedy improved it and proposed the binary 
particle swarm optimization (BPSO) [11] algorithm. In the BPSO algorithm for solving an D-dimensional feature 
selection problem, a population with m particles is defined, and the position and velocity of the ith particle in the 
population are defined as Xi = (x1, x2, ..., xD) and Vi = (v1, v2, ..., vD) where i ∈ [1, m] represents the number of par-
ticles, d ∈ D represents the number of dimensions. Each particle has a binary value (0 or 1) in any dimension, In 
the feature selection problem, 1 means to select this feature, 0 means not to select this feature.

𝑉𝑉𝑖𝑖
𝑑𝑑(𝑡𝑡 + 1) =  𝜔𝜔(𝑡𝑡) × 𝑉𝑉𝑖𝑖

𝑑𝑑(𝑡𝑡) + 𝑐𝑐1𝑟𝑟1
𝑑𝑑(𝑡𝑡) × (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖

𝑑𝑑(𝑡𝑡) − 𝑥𝑥𝑖𝑖
𝑑𝑑(𝑡𝑡)) + 𝑐𝑐2𝑟𝑟2

𝑑𝑑(𝑡𝑡) × (𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡(𝑡𝑡) − 𝑥𝑥𝑖𝑖
𝑑𝑑(𝑡𝑡)) . (5)
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𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑣𝑣𝑖𝑖
𝑑𝑑(𝑡𝑡 + 1)) =  1

1 + 𝑒𝑒−𝑣𝑣𝑖𝑖
𝑑𝑑(𝑡𝑡+1) .                                                                                           (6)

𝐼𝐼𝐼𝐼 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑣𝑣𝑖𝑖
𝑑𝑑(𝑡𝑡+1)) >  𝑟𝑟3

𝑑𝑑(𝑡𝑡) , 

𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑥𝑥𝑖𝑖
𝑑𝑑(𝑡𝑡 + 1) = 1 ; 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥𝑖𝑖
𝑑𝑑(𝑡𝑡 + 1) = 0 . 

                                                                                                    (7)

As shown in Eq. (5-7), BPSO algorithm is different from classic PSO algorithm in updating strategy. BPSO 
uses a sigmoid function to map the velocity value of any dimension to [0, 1] interval as a probability to decide 
whether to update the position of this dimension to 1. The flow chart of BPSO was shown in Fig. 1.
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Initialize population and 
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Start

End
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Fig. 1. BPSO algorithm flow

2.3   Feature Selection

According to evaluation criteria, feature selection methods can be divided into two categories, Filter method and 
Wrapper method [20].

2.3.1   Filter Method

According to information theory, fuzzy set theory and other methods, the filtering method designs fitness function 
as evaluation criteria, and selects redundant features. B. Chakraborty et al. [21] proposed a computationally light 
fuzzy fitness function which is more efficient than the conventional classifier algorithm. Kundu et al. [22] pro-
posed a MOGA-based fuzzy proximity algorithm which was performed for selecting a feature subset. Xiangyang 
Wang et al. [23] proposed a PSORSFS algorithm based on rough sets and PSO. L. Cervante et al. [24] proposed 
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Two fi tness functions based on entropy and mutual information and the main idea of these functions is to maxi-
mize the correlation between feature subset and class label and minimize the redundancy of feature subset. Alper 
Unler et al. [25] proposed a hybrid algorithm called mr2PSO which uses the mutual information available from 
the fi lter model to weigh the bit selection probabilities in the discrete PSO.

2.3.2   Wrapper Method

Wrapper method takes the results of classifi cation model as the evaluation criteria, so it has better model perfor-
mance than fi ltering method in most cases, but the defect of wrapper method is that it needs more computation.

E. Alba et al. [26] proposed a GPSO algorithm which use a three-parent mask-based crossover (3PMBCX) 
operator to replace the movement of particles. An algorithm called IBPSO is proposed to reset gbest by the cri-
terion that gbest is not updated in three iterations. Alper Unler et al. [27] proposed an extensible social learning 
behavior and added a new learning target ibest (optimal solution of current iterative population). Classical genetic 
algorithm (GA) has appeared many improved algorithms, such as the nondominated sorting genetic algorithm 
II (NSGA-II) [28], proposed a fast non dominated sorting method to reduce the computational complexity, in-
troduced the concept of crowding degree to maintain individual diversity, retained the elite strategy to rapidly 
improve the quality of the population. The related work of NSGA-II in feature selection is as follows: [29-31]. 
Bing Xue et al. [13] fi rstly proposed two algorithm called NSPSOFS and CMDPSOFS which combines PSO and 
multi-objective optimization algorithm. Pedram Ghamisi et al. [32] proposed a hybrid algorithm named HGAPSO 
can be used for road detection. Yong Zhang et al. [33] has conducted the fi rst study on multi-objective PSO for 
cost-based feature selection problems. J. Vijayal et al. [14] proposed a hybrid algorithm based on PSO and simu-
lated annealing to avoid the population falling into the optimal solution by randomly replacing the leading parti-
cles.

3.   LSTMPSO

The long-term and short-term memory network is a time series network model, which can well capture the chang-
ing trend in time series problems, dig out hidden information and learn from it. As shown in Fig. 2, the PSO algo-
rithm has multiple iterations, and if each iteration is considered as a time node, the entire PSO algorithm can also 
be considered as a time series model. In many iterations of the PSO algorithm, individuals learn from both pbest 
and gbest simultaneously. We interpret learning behavior as a dependence and name learning from two particles 
as individual dependence and population dependence, which are time independent and can only be evaluated by 
fi tness value. Therefore, we extend individual dependency in the PSO algorithm from time dimension to long-
term individual dependence (lpbest) to short-term individual dependence (spbest), and similarly, population 
dependence to long-term population dependence (sgbest) and short-term population dependence (sgbest). The 
following subsections describe the long-term and short-term division rules and the update rules of population de-
pendence. 

                                    

Long-Term 
experience

Short-Term 
experience

Sequence of 
population iterations

Learning with both short 
and long-term experience

The iteration nodes to 
divide the long-term and 
short-term

Fig. 2. LSTMPSO learning mode

1) Node division: To make the long-term and short-term division clearer, we consider the PSO algorithm itera-
tion process as a time series and each iteration as a node. For the fi rst node of the PSO algorithm, a dividing node 
is found based on the period of change. Iterations before this node are considered to be in the long-term range, 
while those after this node are considered to be in the short-term range. We can determine the division by defi ning 
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the length of the change period, that is, by making the change period a constant, we can simply divide the long 
and short term. Considering that the change period of the constant is unstable with the increase of the number of 
iterations, we propose a partition method based on the current number of iterations as follows:

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = max (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 , 𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖 − 10)  .                                                                                                        (8)

If we want to add a long-term dependency to the population, we must preserve the population history from the 
dividing node to the current node. When the number of iterations is too large, if the dividing node is still com-
puted by multiplying the current node by a constant in the range [0, 1], the spatial complexity of the algorithm 
becomes O(n * m), n and m are the number of iterations and the population size, respectively. To reduce the spa-
tial complexity of the algorithm, we set a constant number of short-term dependent iterations when the number of 
iterations is too large, so that the spatial complexity of the algorithm will be O(m).

2) Learning factor (Momentum method): In the classical PSO algorithm, the importance of gbest and pbest is 
reflected by learning factors c1 and c2. In most cases, they will be preset to the same value. However, for long-
term and short-term memory, short-term memory is usually easier to remember, and long-term memory should 
be lost slowly over time. In this paper, a momentum method is proposed, which gives short-term memory greater 
learning weight, makes the population search in the solution space have a certain flight inertia, and can reduce the 
probability of oscillation of population learning behavior.

𝑐𝑐𝑖𝑖 =  𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑃𝑃
𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟 ∗ 𝐹𝐹(𝑃𝑃), 𝑖𝑖 ∈ {3,4} .                                                                                           (9)

As shown in Eq.(8), two new learning factors c3 and c4 are determined by momentum method, the F(P) is the 
fitness value of the dependent particle (for both gbest and pbest), the iternow, iterP, maxiter are the current num-
ber of iterations, the number of iterations to which the dependent particle belongs, and the maximum number of 
iterations respectively. By calculating the proportion of the difference of iterations to the maximum number of 
iterations for dependent particles, the above method can better simulate the task of giving long-term dependent 
smaller weights, which is a simple and effective method.

3) Speed update: The update method of particle velocity is as follows:

𝑉𝑉𝑖𝑖
𝑑𝑑(𝑡𝑡 + 1) =  𝜔𝜔(𝑡𝑡)𝑉𝑉𝑖𝑖

𝑑𝑑(𝑡𝑡) 

+ 𝑐𝑐1𝑟𝑟1
𝑑𝑑(𝑡𝑡) × (𝑐𝑐3𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖

𝑑𝑑(𝑡𝑡) + 𝑐𝑐4𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖
𝑑𝑑(𝑡𝑡) −  𝑥𝑥𝑖𝑖

𝑑𝑑(𝑡𝑡)) 

+ 𝑐𝑐2𝑟𝑟2
𝑑𝑑(𝑡𝑡) × (𝑐𝑐3𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖

𝑑𝑑(𝑡𝑡) +  𝑐𝑐4𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖
𝑑𝑑(𝑡𝑡) −  𝑥𝑥𝑖𝑖

𝑑𝑑(𝑡𝑡)) 
.                                                               (10)

4) Dependency update: After extending dependencies, we need to update four types of dependencies at each 
node. Among them, short-term individual dependency and short-term population dependency can be updated 
according to the current node, while long-term individual dependency and long-term population dependency can 
be updated according to the partition node. The time complexity and spatial complexity of the update process are  
O(1).

 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖 =  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖, 𝑖𝑖𝑖𝑖 𝐹𝐹(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖)  >  𝐹𝐹(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖) .                                                                          (11)

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑖𝑖𝑖𝑖 𝐹𝐹(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) >  𝐹𝐹(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) .                                                                              (12)

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑖𝑖 =  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑖𝑖, 𝑖𝑖𝑖𝑖 𝐹𝐹(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑖𝑖)  >  𝐹𝐹(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑖𝑖) .                                                                           (13)

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑖𝑖𝑖𝑖 𝐹𝐹(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) >  𝐹𝐹(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) .                                                                            (14)

As shown in Eq. (11-12), we use the F(x) function to calculate the fitness of all particles in the current popula-
tion. If the fitness values of pbesti and gbest in the current node are greater than the existing values, the short-term 
dependent spbesti and sgbest  will be updated. This process is actually the same as that of the traditional PSO 
algorithm. Importantly, we divide the historical solution set of the population once, so as to simulate that the pop-
ulation has long-term and short-term memory ability respectively. Therefore, in Eq. (13-14), after each partition 
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node is calculated through the current node, if the pbesti and gbest fitness values in the partition node are greater 
than the existing long-term dependency values, lpbesti and lgbest are updated.

5) Three part initialization: Different population initialization strategies have a significant impact on the solu-
tion space search scope, we use a three-part initialization strategy that divides the initial population into three 
parts. For the first part population, the probability of any dimension of all particles being 1 is 0.1, for the second 
part population, the probability of any dimension of all particles being 1 is 0.5, and for the third part population, 
the probability of any dimension of all particles being 1 is 0.9.

6) Flow chart: The flow chart of LSTMPSO was shown in Fig. 3.

Whether the 
number of 

iterations is 
reached?

Initialize population and 
model parameters

Evaluate fitness of each 
particle

Update the sgbest and the 
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Update the velocity and 
position of particles

Start

End

Yes

No

Forget the memory before 
partition nodeCompute partition node

Stores the memory of the 
current node

Update the lgbest and the 
lpbest in partition node

Fig. 3. LSTMPSO algorithm flow

4. Experiment & Discuss

In this section, we will first introduce the datasets from UCI benchmark repository, our experimental environment 
and methods. Finally, we will discuss the details of experimental results.

4.1 Experiment Preparation

The Table 1 shows 32 datasets from UCI database that we selected for the experiment. For the missing data in the 
dataset, we use mode to fill in the missing data or directly eliminate the seriously missing data, and use minmax 
method to normalize the data. In addition, for the data set that is not divided into training data and test data, we 
shuffle the data first, and then use the 10 fold method to divide the dataset. The machine used in this experiment is 
a HP high performance computer with Intel(R) Core(TM) i7-10700 CPU @ 2.9-4.8GHZ and a 32GB high speed 
memory. All the experiments were completed by the machine independently.
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Table 1. Description of 32 UCI datasets used for evaluation of the proposed model

Dataset Instances Features Classes Dataset Instances Features Classes

Arrhythmia 452 278 16 Australian 690 14 2

Breast 699 10 2 BreastEW 73 326 2

Congress 435 16 2 Diabetes 540 16 2

DryBean 13611 16 7 Exactly 1000 14 2

ForestType 198 28 4 German 1000 25 2

Glass 214 11 6 HillValley 606 101 2

Horse 300 28 2 Ionosphere 351 34 2

Iris 150 5 3 Madelon 2000 501 2

Monk1 124 7 2 Monk2 169 7 2

Monk3 122 7 2 PenglungEW 73 326 7

Seismic 2584 19 2 ShillBidding 6321 12 2

Sonar 208 61 2 Soybean (small) 47 36 4

SPECT 80 23 2 SpeakAccent 329 13 6

Tictactoe 958 10 2 SportsArticle 1000 60 2

Vowel 528 13 11 Urbanlandcover 168 148 9

Wine 178 14 3 Zoo 101 117 7

4.2 Fitness Function

The classifier we use is Extreme Learning Machine (ELM) [34], a single hidden layer neural network algorithm, 
can be used for regression or classification [35]. It is characterized by calculating the remaining weights by ran-
domly initializing the partial weights and then using a ridge regression method, which eliminates the training pro-
cess of the neural network and speeds up the calculation. Generally speaking, ELM is only a single layer neural 
network classifier and does not have the strong fitting ability like Multi-Layer Perception, but its efficient training 
speed can help us to quickly verify the effectiveness of LSTMPSO algorithm.

In classification problems, confusion matrix can be used to calculate various evaluation criteria. The relevant 
formulas are shown in Eq. (15-17) where TP, TN, FP, and FN stand for true positives, true negatives, false pos-
itives, and false negatives, respectively. But for imbalanced datasets, F-measure as a composite evaluation stan-
dard can better reflect the real performance of the classifier, so we use F-measure as the evaluation standard. The 
calculation method of F-measure is shown in Eq. (18).

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇  .                                                                                               (15)

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 .                                                                                                                (16)

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 .                                                                                                                     (17)

𝐹𝐹 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  2 𝑃𝑃𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑅𝑅𝑀𝑀𝑃𝑃𝑀𝑀𝑅𝑅𝑅𝑅
𝑃𝑃𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑀𝑀𝑃𝑃𝑀𝑀𝑅𝑅𝑅𝑅  .                                                                                      (18)

Because the feature selection problem needs to optimize two objectives at the same time, which are to improve 
the classifier performance and reduce the feature dimension, the fitness function also considers the proportion of 
the number of features used  in all features.
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𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =  𝛼𝛼 × 𝐹𝐹 − 𝑀𝑀𝑓𝑓𝑀𝑀𝑓𝑓𝑀𝑀𝑀𝑀𝑓𝑓 +  (1 − 𝛼𝛼) ∗ 𝐹𝐹𝑓𝑓𝑀𝑀𝑓𝑓𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓
𝐴𝐴𝐴𝐴𝐴𝐴 𝐹𝐹𝑓𝑓𝑀𝑀𝑓𝑓𝑀𝑀𝑀𝑀𝑓𝑓𝑓𝑓 .                                                         (19)

As shown in Eq. (19), α represents a weight factor, Features represents the number of features used in classifi-
er and  All Features represents the number of all features, respectively. It is generally accepted that more attention 
should be paid to the performance of classifiers, so in this paper, α = 0.9.

4.3 Result & Dicuss

To evaluate the proposed LSTMPSO algorithm for feature selection, we have implemented several classical algo-
rithm for comparison, i.e., Random generation plus Sequential Backward Selection (RGSBS), Random generation 
plus Sequential Forward Selection (RGSFS), GA, PSO, PSO-FSSA [34], LSTMPSO and pure ELM classifier. 
Except the pure ELM classifier, each algorithm has 4800 times of calculation limit of fitness function. For GA, 
PSO, PSO-FSSA and LSTMPSO, the number of population is 30 and the number of iterations is 160. For other 
algorithms, including RGSBS and RGSFS only limits the number of fitness calculations. We run each algorithm 
24 times and calculate the average result. 

Table 2 shows the average running time of three PSO-based algorithms on 12 UCI datasets, and the results 
show that the computing time of the three algorithms is approximately the same. Drybean, the largest dataset, has 
more than 13,000 samples, which verifies that the LSTMPSO algorithm does not significantly increase the com-
putational complexity in large datasets.

Fig. 4 shows a boxplot diagrams of the distribution of 24 runs detailed classification results for each dataset. 
LSTMPSO algorithm finds the optimal solution region and achieves a very perfect result in most datasets. In the 
Seismic and ShillBidding dataset, several algorithms have easily achieved good performance, so it is difficult to 
reflect the margin. In other data sets, LSTMPSO algorithm outperforms other algorithms in median results, and 
the results of 24 runs are more concentrated, which shows stronger robustness.

As shown in Fig. 5, ELM classifier without any optimization algorithm performs poorly, followed by RGSBS, 
RGSFS, which is easy to fall into local optimum. Because the number of the experimental population is not large 
enough, so the performance of GA algorithm is very general. The performance of PSO algorithm is slightly lower 
than the remain two improved PSO algorithm. On average, the proposed LSTMPSO algorithm achieves superior 
performance and outperforms all the other compared methods for each dataset significantly. 

Table 2. Results of running time of three PSO-based algorithms on 12 UCI datasets (in minutes)

Australian Diabetes DryBean ForestType German Japan

PSO 0.4887 4.1930 30.0165 4.4404 0.2832 4.2801

PSO-FSSA 0.4937 4.2079 30.6920 4.2666 0.4210 4.6139

LSTMPSO 0.4933 4.1751 30.7088 4.2711 0.4139 4.2365

Seismic ShillBidding SpeakAccent SPECT SportsArticle Urban

PSO 15.0243 8.2719 0.2101 5.4742 4.3591 4.7824

PSO-FSSA 17.1791 9.0194 0.3688 5.0988 4.7270 4.6551

LSTMPSO 17.2298 9.0362 0.3520 5.2302 4.5647 4.5675
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runs



131

Journal of Computers Vol. 33 No. 5, October 2022

SPECT

Austr
ali

an

Diab
ete

s

DryB
ea

n

Germ
an

Ja
pan

Sports
Artic

le
Seis

mic

ShillB
idding

Fores
tTyp

e

Spea
kA

cc
en

t
Urban

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Av

er
ag

e 
Fi

tn
es

s

ELM

RGSFS

RGSBS

GA

PSO

PSO-FSSA

LSTMPSO

Fig. 5. Compared 24 runs average fitness results of the proposed method with other classical algorithm based on 12 UCI 
benchmark datasets

Table 3. Compared the accuracy (%) of the proposed method with other Feature Selection Model based on 20 UCI benchmark 
datasets

Datasets
KNN MLP

Ours Rank
GA PSO HMOGA BGSO GA PSO HMOGA BGSO

BreastCancer 98.79 98.79 96.32 99 98.32 98.32 98.32 98.66 98.08 8
Glass 85.71 77.14 80.12 88.57 84.28 82.86 81.88 84.28 90.48 1

Hill-valley 54.76 54.76 51.5 55.68 54.22 55.31 53.22 56.04 87.13 1
Horse 97.06 97.05 97.05 100 100 100 100 100 94.12 9

Ionosphere 93.37 92.05 93.38 96.03 97.35 96.12 96.56 97.35 95.14 6
Madelon 57.33 54.17 60.33 59.67 60.17 57.83 59.8 60.05 61.83 ?
Monk1 88.89 88.89 83.23 88.89 92.59 97.22 94.54 100 100 1
Monk2 74.77 74.77 55.09 74.77 81.94 74.31 69.21 67.13 91.44 1
Monk3 97.22 97.22 97.12 97.22 100 97.22 97 97.22 100 1
Sonar 56.72 58.21 68 79.1 76.11 80.59 77.12 79.1 94.50 1

Soybean-small 100 100 85.71 100 100 100 100 100 100 1
Vowel 89.61 88.74 87.85 88.53 91.77 89.83 87.25 88.74 65.37 9
Wine 97.87 100 70.21 100 100 100 99.98 100 100 1
Zoo 82.93 85.37 84 82.93 85.37 85.37 81.98 82.93 99 1

BreastEW 74.12 90.59 94.80 95.29 74.71 92.35 93.33 95.29 98.21 1
CongressEW 92.31 90.00 97.00 97.69 89.23 94.62 96.30 97.69 97.97 1

Exactly 91.50 69.50 72.00 89.00 91.50 69.25 88.25 90.75 78.8 6
Tic-tac-toe 82.77 73.63 78.00 82.77 80.68 74.41 75.00 82.25 98.95 1

PenglungEW 86.21 82.76 86.00 89.66 86.21 82.76 83.25 86.21 94.29 1
Avg 84.34 83.05 80.73 87.74 86.95 86.12 86.32 88 92.31
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4.4 Comparison with Others

The Table 3 showed the Highest classification accuracy which is obtained by GA, PSO, BGSO [36], HMOGA 
[37] using KNN (K-NearestNeighbor) and MLP (Multi-Layer Perception). In the Monk (1-3) datasets, our model 
achieves 100% accuracy in Monk1 and Monk3 and outperforms others nearly 10% accuracy in Monk2. In addi-
tion, we have made great strides in Hill-valley, Sonar, Zoo and Tic-tac-toe dataset. There is no free lunch in the 
classification model, our model also does not perform well in some datasets. In the horse dataset, there are many 
missing data and the filling effect is not ideal, so our feature selection model almost fails. There are 16 classes in 
Arrhythmia dataset and 11 classes in vowel dataset, which may be due to the small number of samples that makes 
our model perform poorly in multi classification problem. It should be noted that because the testset label of 
Madelon dataset is hidden, we use validset instead of testset, and the experimental results may be biased, which 
is not included in the ranking and average performance calculation. Generally speaking, as shown in Table 3, the 
LSTMPSO model proposed in this paper ranks first in 14 of 19 (excluding Madelon) datasets. It outperforms all 
Feature selection model in Table 3 by a significant margin of approximately 4.31%–11.58%.

5. Conclusion

In this paper, an LSTMPSO algorithm with long-term and short-term dependence mechanism is presented by 
strengthening the leadership mechanism of particle swarm optimization. This algorithm expands the time dimen-
sion of the PSO algorithm’s leadership mechanism so that the population can take into account both long-term 
and short-term empirical learning, thereby improving the algorithm’s ability to explore solution space. A com-
parison of 32 datasets on UCI public datasets shows that compared with the classical algorithm and the current 
advanced feature selection model, the algorithm can take into account both the model classification performance 
and redundant feature filtering capabilities. The quality of the optimal solution obtained by the search is also sig-
nificantly improved.
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