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Abstract. To study the optimization problem of freight train operation process under complex line conditions, 
this paper adopts the freight train multi-particle model to establish the multi-objective optimization model of 
the freight train. Aiming at the problem of difficult optimization caused by complex line conditions, a two-step 
method is used to find the optimal operation strategy of the freight train. Firstly, the greedy algorithm is used 
to select the optimal working condition sequence. Secondly, the multi-objective optimization algorithm is used 
to obtain the position of the ideal working condition transition point. By introducing the idea of non-dominated 
sorting, an improved multi-objective bald eagle search algorithm is proposed to optimize the operation process 
of freight trains. This algorithm adopts the evolution method of combining bald eagle population renewal with 
adaptive Gaussian mutation, and introduces preference information to increase the rationality of population 
evolution. The simulation results show that the optimal operation strategy of freight train selected by two-step 
method is in line with the actual operation situation, and the proposed multi-objective bald eagle search algo-
rithm considers both convergence and distribution. The results can satisfy the preference of decision-makers, 
which can provide a reference target speed curve for railway workers.

Keywords: freight train, multi-particle model, multi-objective optimization, bald eagle search algorithm, pref-
erence information, target speed curve

1   Introduction

With the rapid development of the transportation network, freight trains, with their advantages of large volume, 
fast speed, low cost and all-weather, gradually incline the freight transportation to railway freight transportation 
[1]. Therefore, more and more attention has been paid to the energy-saving and optimization of freight train oper-
ation. Under the conditions of complex lines, the operation process of freight trains should not only consider the 
balance of energy consumption and time, but also consider the speed limit, decoupling and other safety issues, 
which is essentially a multi-objective, multi-constraint optimization problem. In order to find a satisfactory opera-
tion strategy among many operation strategies, and ensure energy saving, time saving, and safe and stable opera-
tion of freight trains, it is of great significance to optimize the operation process of freight trains.

For the energy-saving operation strategy and multi-objective optimization problems of the freight train oper-
ation process, scholars at home and abroad have conducted in-depth research and analysis. Ichikawa [2] was the 
first to study the energy-saving operation strategy of trains, and used the Pontryagin maximum principle to study 
the optimal control problem of train operation; Scheepmake and Goverde [3] used the Hamiltonian function to 
deduce that the constant speed and idle point are the keys to energy-saving trains; Yang et al. [4] constructed a 
lumped energy consumption mechanism model for freight trains, which proved the optimality of constant speed 
operation in the gentle slope section. Although the above methods have found the optimal operation strategy 
through rigorous theoretical derivation, they need to make ideal assumptions about trains, lines and other con-
ditions, and do not take into account the nonlinear and complex constraints of the actual operating environment. 
Cao et al. [5] and Liu et al. [6] consider complex conditions such as trains and lines, build the multi-objective op-
timization model, and get the operation strategy more in line with the actual situation. However, the multi-objec-
tive problem is transformed into a single-objective problem for solving, ignoring the mutual influence among the 
objectives. To fully embody the essence of multi-objective research, the Pareto principle is usually used to solve 
such problems. Dullinger et al. [7] designed a multi-objective mixed integer elite genetic algorithm to obtain the 
Pareto curve of energy consumption and time based on discretization of the circuit; ShangGuan et al. [8] took en-
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ergy consumption and time as two optimization goals, and designed an improved multi-objective algorithm com-
bining differential evolution and simulated annealing to solve the problem. This kind of method can get multiple 
sets of Pareto optimization solutions for decision-makers to choose flexibly, but it does not introduce any prefer-
ence information, which leads to a wide search range and low efficiency, and may lead to incomplete search and 
distribution of regional solutions of interest to the final decision-maker. Cheng et al. [9] proposed a multi-objec-
tive particle swarm optimization algorithm considering preference information to guide the optimization results 
to the region expected by the decision-maker; Xiong et al. [10] proposed a multi-objective evolutionary algorithm 
based on the preference region by dividing the preference region to find the solution that decision-makers are 
most interested in. Although traditional optimization algorithms such as particle swarms, differential evolution, 
and NSGA-Ⅱ have been widely used in the optimization of train operation process, they are prone to fall into lo-
cal optima and converge slowly. Compared with the above optimization algorithms, the Bald Eagle Search (BES) 
algorithm has stronger global search ability [11], and can effectively solve various complex optimization prob-
lems.

Considering the shortcomings of the above literatures, a multi-objective optimization method for the freight 
train operation process based on the improved bald eagle search algorithm is proposed in this paper. Firstly, ac-
cording to the line information, the two-step method is used to find the optimal operation strategy of the freight 
train, and the multi-objective optimization model of the freight train is established. Secondly, the multi-objective 
bald eagle search algorithm with better optimization performance is designed by combining preference guidance, 
improved elite set maintenance mechanism and adaptive Gaussian mutation. In this paper, the HXD1 electric 
locomotive hauling 54 C80 wagons on the line from “Wandian Station to Xiapingzi Station” in China is used as 
the experimental object. It is verified by simulation experiments that the proposed improved multi-objective bald 
eagle search algorithm improves the convergence and distribution of the population, and the optimal target speed 
curve found can meet the preferences of decision-makers.

2   The Optimal Control Problem of Freight Trains

2.1   Dynamic Model of Freight Train

In this paper, the freight train is taken as the research object. Due to the complex situations such as nonlinearity 
and multi-marshalling, the traditional single-particle freight train model does not consider the influence of the 
constraints of the length and coupler force, so there are obvious deviations in the operation of complex lines [12]. 
In order to obtain a more accurate target speed curve, a freight train multi-particle model is established, and the 
dynamic differential equation is as follows:
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Where, Ft (v) and Fb (v) are respectively the traction force and braking force of the freight train, μt is the traction 
coefficient, μb is the braking coefficient, μt ∈ [0, 1], μb ∈ [0, 1], and μt·μb = 0, v is the current speed of the freight 
train, x is the current position of the freight train, mi is the weight of the ith freight train, which varies with the 
on-board load of the train, xi” is the acceleration of the ith freight train, Fcqi-1 is the front coupler force of the ith 
freight train, Fcqi+1 is the rear coupler force of the ith freight train, and Fri (x, v) is the total resistance acting on the 
ith freight train.

The total resistance of freight train is the sum of basic resistance and additional resistance.

                                            Fr (x, v) = W0 (v) + Wj (x, v).          (2)

Where, W0 (v) mainly depends on the speed of freight trains, which can be approximated as a quadratic function 
of train speed [13]:
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                                 W0 (v) = μ1 + μ2v + μ3v
2. (3)

The additional resistance Wj (x, v) is determined by the track characteristics, which mainly include ramps, 
bends and tunnels, and can be expressed as:

                                   Wj (x, v) = w1 (θ (x)) + wr (σ (x)) + w1 (τ(x), v). (4)

Where, θ (x), σ (x) and τ (x) are the slope, curve radius and tunnel length along the track respectively [14].

2.2   Operation Strategy of Freight Trains

The optimal operation strategy of trains is composed of four working conditions: maximum traction (MT), con-
stant speed (CS), idle running (IR) and maximum braking (MB) [15-16]. Existing research results show that the 
optimal operation strategy of trains is MT-CS-IR-MB under the condition of simple lines (such as a straight road). 
In the case of complex lines such as speed limit, ramp and curve, a two-step method is adopted: firstly, the greedy 
algorithm is used to select the optimal train working condition sequence, and then the multi-objective optimiza-
tion algorithm is used to obtain the position of the ideal working condition transition point, so as to obtain the 
optimal operation strategy of the train. The schematic diagram is shown in Fig. 1.

The starting stage and the final braking stage of the train are usually regarded as a large section respectively 
without subdivision. For the middle section with higher speed, the line will be divided into k-2 sections according 
to the line conditions. The maximum traction strategy is adopted at the starting point of the line section. When 
v(s1) > vl- Δv, the train reaches the s1 position and starts to change operating conditions. In the middle k-2 sec-
tions, the optimal working condition sequence are set according to the algorithm. The maximum braking strategy 
is adopted at the end of the line section, and the braking position sk-1 is obtained by reverse derivation.

0

Line condition

Line speed limit

R800
L641
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L811 L641
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s1 s2 s3 Sk-1 sk... ...

Fig. 1. Schematic diagram of optimal train operation strategy

The sequence of working conditions must meet the following constraints: (1) Traction cannot be followed 
by braking; (2) The initial working condition is traction and the final working condition is braking; (3) Working 
conditions should not be changed frequently. The train operation model determines the initial working condition 
distance sequence {s1, s2, s3, …, sk-1, sk} according to the line division. With the initial working condition distance 
sequence as the input, the working condition sequence {p1, p2, p3, …, pk-1, pk}is initialized as {2, -1, -1, …, -1, -2}, 
where 2, 1, 0, -1, -2 represent traction condition, constant speed condition, idle running condition, condition to be 
determined and braking condition respectively.

On the premise of ensuring safe operation, this paper takes energy consumption and running time as evaluation 
indexes of working conditions. To obtain the optimal working condition sequence, the weight summation method 
is used to design the working condition evaluation index ui = a × ei + b × ti, where ei is the energy consumption 
of the line section, ti is the running time of the line section, and a and b are the weight coefficients, satisfying a + 
b = 1, where a = 0.5, b = 0.5. To sum up, the optimization index of working condition sequence is , and the 
smaller the index, the better the working condition sequence.

To obtain the optimal working sequence of freight trains, if exhaustive method is adopted, it is necessary to 
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conduct 3k-2 train operation simulation. In this paper, the greedy algorithm can effectively improve the calcu-
lation efficiency, that is, only the current line si is considered when determining the working condition pi. The 
working condition evaluation indexes {ui0, ui1, ui2} corresponding to pi = 0, 1, 2 are calculated in turn, and the 
working condition corresponding to the minimum evaluation index is taken as the optimal work condition, so as 
to obtain the optimal working condition sequence of the whole line. In this paper, firstly, the greedy algorithm is 
used to generate the optimal working condition sequence and obtain the local optimized speed curve, and then 
the multi-objective optimization algorithm is used to search the position of the ideal working condition transition 
point and obtain the global optimized speed curve.

3   Multi-objective Optimization and Preference Information of Freight Train Operation

3.1   Multi-Objective Optimization Model of Freight Train

The operation process of freight trains is a complex problem with multiple objectives and constraints, which 
has some problems such as large energy consumption and long running time caused by unreasonable setting of 
operating conditions. The optimization of this paper mainly starts from the above problems, and its optimization 
objectives are energy consumption and running time. Multi-objective optimization is different from the optimiza-
tion problem with a single objective, in which multiple objectives need to be optimized as much as possible at the 
same time [17-19].

The energy consumption model of freight trains is:
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Where, E is the energy consumption during the freight train operation, Pt (t) and Pb (t) are the traction power and 
braking power of the freight train respectively, ξt is the transformation factor from electric energy to mechanical 
energy under the action of traction force, and ξb is the transformation factor from mechanical energy to electric 
energy under the action of braking force.

The running time model [20] is:
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Where, T is the total running time, and ti is the running time of each section of the line.
Meanwhile, in order to ensure the safety of freight train automatic operation and prevent the accidents such as 

derailment and decoupling, the constraints of freight train operation should be considered.
In order to prevent coupler fracture accidents, the value of coupler force during freight train operation should 

be less than the value of maximum coupler force recommended by the Academy of Railway Sciences:

                                   ,cqi N chi NF F F F  . (7)

Where, Fcqi is the front coupler force of the ith freight train Fchi is the rear coupler force of the ith freight train, and 
z is the maximum coupler force of the freight train.

The stationarity of freight trains needs to consider acceleration and speed. In this paper, the change rate of two 
factors is taken as the adaptive weight. In order to ensure the stationarity of the freight train, the following condi-
tions should be met:
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Where, J is the stationarity index of the freight train, JN is the maximum stationarity constraint of the freight train, 
w1 is the weight of the acceleration change rate of the freight train, and w2 is the weight of the speed change rate 
of the freight train.

The constraints of the freight train operation process are as follows:
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Where, v(0) and v(xs) are the speed at the starting point and the end point of the running line, v(xi) is the freight 
train speed at position xi, which is required to be lower than the speed limit, X(0) is the starting point of the run-
ning line, D is the actual running distance, Xn is the end point of the running line, Δxmax is the maximum allowable 
stopping error, and Δx represents the actual stopping error.

In summary, the multi-objective optimization model of freight train operation process is as follows:
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3.2   Preference Information of Decision-makers

The traditional multi-objective optimization algorithm does not introduce any preference information, which 
leads to a wide search range and low efficiency, and may lead to the incomplete search and distribution of the 
regional solution that the final decision-maker interest in. If the preference information of the decision-maker can 
be combined, the possibility that the preference solution is selected in the iterative process can be changed, and 
the solution can be driven to move towards the desired region [21].

In this paper, for the practical problem of multi-objective optimization, decision-maker preference is intro-
duced, and the ideal value with sufficient optimization degree of each objective is obtained in advance through 
the single-objective optimization algorithm and a large number of calculations, and the reference point is obtained 
accordingly.

For the practical optimization problem with m objectives, the real ideal value cannot be obtained due to the 
conflict among all objective functions, which needs to be corrected. The calculation formula of the ideal value Gi 
of the ith objective is as follows:

                                   Gi = ( 1 + εi ) * min ( fi (x)). (12)

Where, Gi is the optimization correction coefficient of the ith objective, which is determined by the decision-mak-
er based on the experience of practical application.

According to the set reference point, the vector direction with the origin as the starting point and the reference 
point as the ending point is constructed as the preference vector direction. The decision-maker can select the 
optimal solution according to the direction of the preference vector, that is, the solution closest to the preference 
vector direction is selected as the optimal solution. According to the preference information, the population pref-
erence region is divided, and the target space is divided into Preference Region and Non-preference Region, as 
shown in Fig. 2.
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Fig. 2. Schematic diagram of preference region division

In the process of multi-objective optimization, decision-makers often have a certain preference for the opti-
mization target value. The preference of decision-makers for the objective function is set according to the prior 
information, as shown in Table 1.

Table 1. The preference division of decision-makers

Perfect Qualified Unqualified
Energy consumption (kJ) [E0, E1] [E1, E2] [E2, ∞]

Running time (s) [T0, T1] [T1, T2] [T2, ∞]

In this paper, the two objective functions of energy consumption and running time are used to calculate the 
population preference region. The specific steps are as follows:

Step 1: Divide the sections on the coordinate axis of the objective function according to the level of preference 
information;

Step 2: Calculate the corresponding points of each boundary point on the front edge: S1(T0, E(T0)), S2(E2, 
T(E2)), S3(E1, T(E1)), S4(T1, E(T1)), S5(T2, E(T2)), S6(E0, T(E0));

Step 3: If the following formula is satisfied, it means that there is solution on the Pareto front that satisfy the 
boundary and the setting is reasonable. According to the preference direction and the preference boundary, the tar-
get space can be divided into preference region (S2, S5) and non-preference region (∞, S2) and (S5, ∞); otherwise, 
the decision-maker is prompted that the setting is unreasonable and needs to be reset;

                                   E0 < E (T2) < E < E(T1) < E2 < E (T0). (13)

Step 4: The preference region is further divided into three regions (S2, S3), (S3, S4) and (S4, S5); the first region 
prefers time-saving, the second region has the best overall performance, and the third region prefers energy sav-
ing.

According to the preference information of decision-makers, the target space is divided into preference region 
and non-preference region, and the solution individuals in the preference region are preferentially selected into 
the evolution pool, which is conducive to the evolution of population individuals toward the preference region 
of the decision-maker and provides more solution individuals meeting the requirements for the decision-maker. 
Meanwhile, the partitioning of the preference region is to set up the preference strategies that satisfy different de-
cision-makers. According to the preference of the decision-maker, different selection probabilities of the optimal 
position in the preference region were set in the iteration process to drive bald eagle individuals to move towards 
the most preferred region, which is also convenient for the decision-maker to select the optimal solution in the 
later stage. 
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4   Improved Multi-objective Bald Eagle Search Algorithm

4.1   Bald Eagle Search Algorithm

The bald eagle search algorithm is an intelligent optimization algorithm based on the hunting behavior of bald 
eagle. Individuals in the algorithm are regarded as bald eagle individuals, and the process of finding the opti-
mal solution can be regarded as bald eagle hunting process, which includes three stages: selecting search space, 
searching selected space, and subducting prey.

In the stage of selecting search space, bald eagle randomly selects a search space close to but different from the 
previous search space, and updates its position by identifying the best search position and the prior information of 
random search. Its mathematical model is as follows:

                                   Xi, new = Xbest + α * β ( Xmean − Xi ). (14)

Where, α is the parameter that controls the position change, the value range is (1.5, 2), β is the random number 
between (0, 1), Xbest is the best search position identified by the current bald eagle, Xmean is the average distribution 
position of the bald eagle after the previous search, and Xi is the position of the ith bald eagle.

After selecting search space, the bald eagle searches the space and updates its position in a spiral flight mode, 
as shown below:

                                   θ(i) = a * π * rand, r(i) = θ(i) + R * rand. (15)

                                   xr(i) = r(i) * sin (θ(i)), yr(i) = r(i) * cos (θ(i)). (16)

                                   x(i) = xr(i)/ max(|xr|), y(i) = yr(i)/ max(|yr|). (17)

                                   Xi, new = Xi + y(i) * (Xi − Xi+1) + x(i) * (Xi − Xmean). (18)

Where, θ(i) and r(i) are the polar angle and polar diameter of the spiral equation respectively, a and R are the pa-
rameters that control the change of spiral shape, and their value ranges are (0, 5) and (0.5, 2) respectively, rand is 
the random number within (0, 1), and x(i) and y(i) are the bald eagle position in polar coordinates, and their value 
ranges are both (0, 1).

After searching the space and determining the best position, the bald eagle quickly dives from the best position 
in the search space to fly towards the target prey. Its mathematical model can be expressed as:

                                   θ(i) = a * π * rand, r(i) = θ(i). (19)
 
                                            xr(i) = r(i) * sinh (θ(i)), yr(i) = r(i) * cosh(θ(i)). (20)

                                   xl(i) = xr(i)/ max(|xr|), yl(i) = yr(i)/ max(|yr|). (21)

                                  Xi, new = rand * Xbest + x1(i) * (Xi − c1 * Xmean) + y1(i) * (Xi − c2 * Xbest).   (22)

Where, c1 and c2 are the movement intensity of bald eagle to the optimal position and the central position respec-
tively, and their value ranges are both (1, 2).
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4.2   Improved Elite Set Maintenance Mechanism

In order to apply the bald eagle search algorithm to the multi-objective optimization problem, the non-dominat-
ed sorting idea of non-dominated sorting genetic algorithm-II (NSGA-Ⅱ) [22] is introduced. After each iteration 
update, the non-dominated solutions in the population preference region are screened by using the dominance re-
lationship and extended into the elite set. In the updating process, there may be more and more individuals in the 
elite set population. In order to keep the number of individuals in the elite set population within the upper limit 
and maintain the diversity of the population, the elite set needs to be tailored.

The traditional elite set maintenance mechanism only considers the distance between the front and back indi-
viduals of the individual, but does not consider the bias information of the point, that is, which individual is closer 
to, and it is difficult to improve its distribution quickly. In order to quickly improve the distribution of elite sets, 
this paper proposes an improved elite set maintenance mechanism. The specific steps are as follows:

Step 1: Take the maximum and minimum values of each objective function as the boundary, divide the objec-
tive function section into k-2 sections (k is the storage number of elite set), and count the number of non-domi-
nant individuals in each section;

Step 2: Then the uniform distribution variance D (fi) of different sections on each objective function is calculat-
ed according to Eq. (23), and the maximum objective function of D (fi) is taken as the partition standard;
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Where, x  is the average number in the total section;
Step 3: Select the section with the densest distribution of individuals, and calculate the density h (θ) between 

individuals by the cosine distance formula;

                                   
1

2 2
1 1

( )
( ) ( )

m
i ii

m m
i ii i

a b
h cos

a b  
. (24)

Step 4: Select the two or more individuals with the closest density, and delete one individual at a time through 
the crowding distance formula;
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Where, m is the number of the objective function,  and  are the maximum and minimum fitness values 
on the ith objective respectively, 1

i
jf +  and 1

i
jf -  are the fitness values of the front and back individuals of individual 

j on the ith objective respectively, and Dj is the crowding degree of the jth individual.
Step 5: Check whether the number of elite sets p is greater than the storage number of elite sets k, and if p is 

greater than k, turning to step 1, otherwise, ending the operation.
As can be seen from Fig. 3, when the crowding distance calculation formula is used alone, the crowding dis-

tance at point B is smaller than that at point D, so individual B should be deleted, but it is obvious that individual 
D is more crowded. This method does not consider the bias information of this point and cannot accurately reflect 
the crowding degree of individuals. Therefore, this paper first calculates the uniform distribution variance of the 
two objective function sections, where D (f1) > D (f2), then divides the function f1 section, selects the individuals 
B, C, D, E and F in the section with the densest individual distribution, selects the two densest individuals D and 
E by the cosine distance formula, and then removes the individual D by the crowding distance formula. Through 
the above steps, the distribution of elite set can be rapidly improved.
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Fig. 3. Improved elite set maintenance mechanism

4.3   Flow Chart of IMOBES

The bald eagle search algorithm (BES) performs optimization based on the current optimal position to make it 
have certain directional guidance, which is conducive to its accelerated convergence and global optimization. 
However, this will make the evolution of the bald eagle population too dependent on the optimal position, which 
will result in the loss of diversity and is not conducive to global convergence. In order to solve the problem that 
multi-objective algorithm falls into local optimal solution, adaptive Gaussian variation is added in the position 
update. During the iterative process of the algorithm, each dimension of each individual decision variable has a 
certain probability of Gaussian variation with the standard deviation of σ2. The adaptive strategy is introduced. 
With the increase of the number of iterations, the variation range of the population gradually decreases, which is 
larger in the early iteration period and smaller in the late iteration period. Its mathematical model is shown in Eqs. 
(26) ~ (28) [23]:
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Where, lbi,j and ubi,j are the minimum and maximum values of the j-th code of the i-th individual respectively, σ0
2 

is the standard deviation, GM (Xi,j, σ
2) is a random number generated by the normal distribution, and its mean val-

ue and standard deviation are Xi,j and σ2 respectively.
Based on the above reasons, the multi-objective bald eagle search algorithm designed in this paper adopts 

the evolution method of adopts the evolution mode of combining bald eagle population update with adaptive 
Gaussian mutation, and uses the preference information given in this paper to enhance the rationality of evolution. 
Combined with the above sections, the flow chart of the improved multi-objective bald eagle search algorithm 
proposed in this paper is shown in Fig. 4.

Considering the convergence and diversity of the optimization algorithm, the temporary population composed 
of the elite set and some individuals of the bald eagle population is adopted as the temporary population of adap-
tive Gauss variation. As can be seen from Fig. 4, based on the original Pareto dominance relationship, this paper 
selects the non-dominant solution according to the decision-maker’s preference information. Meanwhile, in the 
iterative process, guided by the preference information, different selection probabilities of the optimal position in 
the preference area are set, which drives the bald eagle individual to move towards the most preferred region, so 
that it is easy to find the optimal solution that is more satisfactory to the decision-maker. The preference direction 
vector is constructed according to the preference reference points set by the decision-maker, and the solution clos-
est to the preference direction vector on the Pareto front is selected as the output preference solution.
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Fig. 4. The flow chart of the improved multi-objective bald eagle search algorithm

5   Simulation Experiment and Analysis

5.1   Data on the Operation of Freight Trains

In this paper, the HXD1 electric locomotive hauling 54 C80 wagons on the line from “Wandian Station to 
Xiapingzi Station” is used as the experimental object. Simulation experiments are conducted based on actual line 
and operation data to verify the effectiveness of the proposed method. In this section, the speed limit of the gen-
eral line is 80 km/h, and the speed limit of the multi-curve section is 70 km/h. Part of the line data of “Wandian 
Station to Xiapingzi Station” is shown in Fig. 5, and the basic attributes of the freight train are shown in Table 2.

Table 2. Basic parameters of freight trains
Parameter name Parameter characteristics
Formation plan 1 Locomotive+54 wagons

Self-weight of locomotive and wagon (t) 184, 20
Length of locomotive and wagon (m) 35.222, 12.2

wagon loading weight (t) 80
Unit basic resistance of locomotive (N/kN) 1.2+0.0065v+0.000279v2

Unit basic resistance of wagon (N/kN) 0.92+0.0048v+0.000125v2

Maximum running speed (km/h) 80
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Fig. 5. Partial line data from Wandian station to Xiapingzi station

5.2   Experimental Parameter Setting

The parameters of the improved multi-objective bald eagle search (IMOBES) algorithm are set as follows: the 
size of the bald eagle population is 100, the size of the elite set is 100, the size of the temporary population is 100, 
and the number of iterations kmax is 100. The parameters of the freight train operating environment experiment are 
set as follows: the maximum couple force constraint is FN ≤ 1000 kN, the stationarity constraint is JN ≤ 55. After 
the single-objective optimization and the prior calculation of equation (15), the preference reference points for 
energy saving, time saving and optimal comprehensive performance are set as (4750, 1235), (5180, 1120) and 
(4950, 1182) respectively (energy consumption unit is 103·kJ, time unit is s). Referring to the relevant provisions 
of international standard ISO 2631-1 [24] and the actual operation of freight trains, the division of train perfor-
mance indicators is set, as shown in Table 3. The above parameter settings consider the parameter characteristics 
and the results of several experimental simulations.

Table 3. Specific division of decision-makers’ preferences

Perfect Qualified Unqualified
Energy consumption (103·kJ) [4600, 4850] [4850, 5300] [5300, ∞]

Running time (s) [1080, 1150] [1150, 1280] [1280, ∞]

5.3   Experimental Results and Analysis

Under the above experimental conditions, IMOBES algorithm, Multi-objective Bald Eagle Search (MOBES) al-
gorithm, Multi-objective Particle Swarm Optimization (MOPSO) algorithm and NSGA-Ⅱ are respectively used 
to optimize the operation process of the freight train. Fig. 6 shows the distribution of frontier solutions using 
the IMOBES algorithm, MOBES algorithm, MOPSO algorithm and NSGA-Ⅱ. As can be seen from the figure, 
the IMOBES algorithm can ensure that the solution sets are in the preference region and meet the goals of en-
ergy saving and time saving, and the Pareto frontier solution is closer to the inner side with better convergence. 
Overall, the energy consumption calculated by it is significantly lower and the time is shorter. In addition, com-
pared with MOBES, MOPSO and NSGA-Ⅱ, the Pareto frontier solutions obtained by the MOBES algorithm are 
densely and uniformly distributed, showing better distribution, and the number of Pareto frontier solutions in the 
preference region is more. However, the solutions obtained by the other three algorithms have solutions that do 
not conform to actual engineering applications, and the gaps between adjacent solutions are not uniform, which 
needs to be filled to increase the diversity of solutions.

1100 1150 1200 1250 1300 1350

Running  time(s)

4600

4700

4800

4900

5000

5100

5200

5300

5400

5500

5600

En
er

gy
  c

on
su

m
pt

io
n(

10
3

kJ
)

MOBES
NSGA-Ⅱ
MOPSO
IMOBES

Fig. 6. Pareto frontier distribution of four algorithms
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As can be seen from Fig. 7 and Fig. 8, compared with MOBES, MOPSO and NSGA-Ⅱ, the computational 
efficiency of the IMOBES algorithm is greatly improved, and its global convergence is faster in the preference 
region. The IMOBES algorithm rapidly converges to the optimal solution in the preference region, while other 
algorithms converge more slowly, and some of the optimal solutions of convergence do not conform to the engi-
neering practice.

The proposed algorithm not only has a good optimization effect, but also meets the expectation of deci-
sion-makers in terms of energy consumption and running time. According to the preference reference point set 
by the decision-maker, the solution closest to the preference direction vector on the Pareto front is selected as the 
output preference solution. As can be seen from Table 4, the IMOBES algorithm (preference 1) finds the optimal 
solution with energy saving, the IMOBES algorithm (preference 2) finds the optimal solution with less running 
time, and the IMOBES algorithm (preference 3) finds the optimal solution with the best overall performance.
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Fig. 7. Iterative convergence curve of energy consumption

0 10 20 30 40 50 60 70 80 90 100

Number of iterations

1080

1100

1120

1140

1160

1180

1200

R
un

ni
ng

  t
im

e(
s)

MOPSO

NSGA-Ⅱ

MOBES

IMOBES

Fig. 8. Iterative convergence curve for running time

Table 4. Optimization results of different preferences

Preferred target Energy consumption (103·kJ) Running time (s)
IMOBES (Preference 1) 4768.51 1253
IMOBES (Preference 2) 5222.16 1124
IMOBES (Preference 3) 4965.74 1188

The corresponding speed-distance curve of freight train with energy saving, time saving and best overall per-
formance is shown in Fig. 9, and the operating condition is shown in Fig. 10. Where, “2” represents the traction 
condition sequence, “1” represents the cruising condition sequence, “0” represents the idling condition sequence, 
and “-2” represents the braking condition sequence.
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In this paper, the solution with the best overall performance is selected as the optimized solution. The compari-
son data before and after optimization is shown in Table 5.

Table 5. Comparison data before and after optimization

Energy consumption (103·kJ) Running time (s)
Before optimization 5713.93 1087
After optimization 4965.74 1188

The energy consumption of freight train operation before optimization is 5713.93 × 103 kJ, and the running 
time is 1087s. The optimized train makes reasonable use of cruise and idle running conditions, increases the run-
ning time of the train to a certain extent, and greatly reduces the energy consumption of the train operation, which 
reduces 13.09% compared with the energy consumption before optimization, and can realize the energy saving 
optimization of freight train operation. Fig. 11 and Fig. 12 respectively show the distance-velocity curve and con-
trol sequence curve before and after optimization.
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In order to reflect the advantages of the designed method, for the same line conditions, the professional sim-
ulation software (Train Traction Calculation and Simulation System 1.0) developed by Shijiazhuang Tiedao 
University is used in this paper for comparative simulation, and the results are shown in Fig. 13.
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Fig. 13. Comparison between the method in this paper and the reference simulation software

As can be seen from the Fig. 13, the driving strategy in this paper (taking the driving strategy with time saving 
as an example) is that in the low-speed limit section of 0~3km, the train speed is first increased to about 68.2km 
by traction condition and then maintain at a uniform speed. Then entering the large ascending ramp section of 
3~4km, the vehicle speed still decreases under the maximum traction condition. After passing through the low-
speed limit section, in the ramp section of 4~7.8km, the train speed is increased to 76.4km/h by traction condition, 
and then the train keeps the uniform speed. In the middle ramp sections, the alternating operating mode of idling, 
traction and cruising is adopted to ensure that the train speed is between 60 and 80km/h, while making full use of 
the descending ramp section for energy saving. At 15.3~18.8km, the idling condition is adopted to reduce the train 
speed and prepare to stop. After 18.8km, the braking condition is adopted to reduce the train speed and stop the 
train.

As for the referenced simulation software, the cruising condition is not considered in the operation process. 
The train speed is lower than the speed limit by alternating traction and idling conditions. The freight train oper-
ating conditions change frequently, and the operation strategy is extremely unreasonable. In the low-speed limit 
section of 0~3km, the train speed is first increased to about 65km by traction condition, and then the alternating 
operation conditions of traction and idling condition are adopted to keep the train speed at about 65km. Then en-
tering the large ascending ramp section of 3~4km, the vehicle speed still decreases under the maximum traction 
condition. After passing through the low-speed limit section, in the ramp section of 4~7.8km, the train speed is 
increased to 75km/h by traction condition. Then the train speed is kept at about 75km/h by alternating traction and 
idling operating conditions. The train’s maximum traction time is long and the energy consumption is more. In 
addition, the method does not use idling condition to reduce the speed in advance in the descending ramp section 
at about 7.8km and 15.3km, but uses braking condition to prevent the speed exceeding the speed limit in the de-
scending ramp section. In order to reduce energy consumption, the train usually uses braking only for the purpose 
of stopping, and the operation strategy is unreasonable. The energy consumption of the method used in the simu-
lation software is 6036.96×103kJ and the running time is 1241s. Its energy consumption is 814.8×103kJ more than 
the method in this paper, and its running time is 117s longer than the method in this paper.
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6   Conclusion

The multi-objective optimization of freight train operation is a complex optimization and decision problem. The 
freight train runs on a long line and the line conditions are complex and changeable. This paper adopts a two-step 
method to determine the optimal operation strategy of the freight train, and designs a multi-objective bald eagle 
search algorithm with better optimization performance, which is applied to the optimization of the freight train 
running process. Through the simulation experiment, the following conclusions are obtained:

1) The freight train operation strategy selected by the two-step method is in line with the actual operating con-
ditions and meets the requirements of energy-saving and time-saving. The simulation results show that compared 
with the referenced simulation software, the proposed method has less energy consumption and shorter running 
time.

2) By introducing the preference of the decision-maker, the possibility of the preference solution being select-
ed in the iteration process is changed, and the solution is driven to move towards the desired region. Meanwhile, 
the elite set maintenance mechanism is improved and adaptive Gaussian variation is introduced. Compared with 
other algorithms, the Pareto front of the IMOBES algorithm has better convergence and distribution.

3) For the Pareto frontier solution, combined with preference information, the optimal operation scheme that 
meets the requirements of decision-makers can be selected, which improves the practicability of engineering ap-
plications.
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