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Abstract. To solve the problem that the Chicken swarm optimization (CSO) has low solution accuracy and
tends to fall into the local optimum on later stages of iteration, an adaptive mutation learning Chicken swarm
optimization (AMLCSO) is proposed in this paper. Firstly, to solve the problem of uneven initial distribution
and improve the algorithm’s stability, a good-point set is introduced. Secondly, according to the difference be-
tween the current individual position and the optimal individual position, the nonlinear adaptive adjustment of
weight is realized and the position update step is dynamically adjusted. This strategy improves the algorithm’s
convergence. Thirdly, the learning update strategies of Gaussian mutation and normal distribution are intro-
duced to improve the probability of selection and solving accuracy and avoid falling into the local optimum.
Finally, the AMLCSO is compared with other standard algorithms and improved Chicken swarm optimization
algorithms on twenty benchmark test functions. The experimental results show the AMLCSO has faster con-
vergence and higher solution accuracy.
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1 Introduction

The swarm intelligence optimization algorithms are a kind of random optimization algorithm constructed by
simulating natural laws or the inherent behavior and living habits of creatures such as foraging and hunting. The
swarm intelligence algorithms such as Particle Swarm Optimization(PSO) [1-2], Grey Wolf Optimization (GWO)
[3], Ant Colony Optimization (ACO) [4-6], Artificial Fish Swarm Algorithm (AFSA) [7-9] etc. have been applied
in the fields of engineering science, computing science and so on. Chicken swarm optimization [10] is proposed
by Meng et al. in 2014 to simulate chicken flock hierarchy and foraging behavior. This algorithm has the char-
acteristic of simple implementation [11-12]. It has been widely applied in wireless sensors [12-13], distribution
network [14], image processing [15] and other engineering problems [16-21].

In addition, the random initialization of the standard chicken population algorithm will cause uneven
distribution of the population, which will affect the stability of the algorithm; The search ability of roosters affects
the accuracy of the algorithm. The search ability of hens and chicks will be affected by roosters in the same
subgroup, which makes the algorithm easy to fall into local optimization in the later stage of iteration. To solve
the above problems, an adaptive mutation learning chicken swarm optimization algorithm is proposed in this pa-
per. It improves the convergence speed and accuracy of the algorithm, and avoids the algorithm falling into local
optimization.

The main contributions of this paper are summarized as follows:

(1) In view of the uneven distribution of population initialization, using a good point set to initialize the
population. This strategy can improve the ergodicity and stability of the algorithm;

(2) Nonlinear adaptive weight is proposed to adjust the step size of the position update dynamically, which
improves the convergence speed of the algorithm;

(3) Gaussian mutation is introduced to perform mutation operations on population individuals to avoid the
algorithm falling into the local optimum;

(4) The normal distribution learning update strategy is introduced to improve the location update methods of
different levels in the population, which improves the accuracy of the algorithm;

(5) Verify the effectiveness and convergence of the algorithm in this paper.

The rest of this paper is organized as follows: the related work is provided in section 2; Section 3 reviews the
chicken swarm algorithm; In section 4, the adaptive mutation learning chicken swarm algorithm (AMLCSO)
is proposed; Section 5 verifies the effectiveness and convergence of the adaptive mutation learning algorithm
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(AMLCSO); Conclusions and future directions are summarized in section 6.
2 Related Work

However, just like the most intelligent algorithms, the Chicken swarm optimization also has problems of low
solution accuracy and slow convergence speed. And it is easy to fall into local optimum in the late stage of the
algorithm iteration. In view of these shortcomings, many scholars have improved the Chicken swarm optimiza-
tion from different aspects. Zhang et al. [22] introduced non-linear inertia weights and learned from rooster into
the chicken position update formula, which was used to avoid the algorithm falling into local optimum. And it
was applied to the parameter optimization problem of support vector machine. A learning part was added to the
chicken position update formula by Wang et al. [23] to solve the problem that the algorithm tends to fall into local
optimum. Based on the improved Chicken swarm optimization, they proposed an interrupt load scheduling model
considering the user subsidy rate, which was used to reduce the system peak load and operating costs. Sanchari
Deb et al. [24] combined the Chicken swarm optimization with the teaching and learning optimization algorithm
to avoid falling into local optimum. And it was used to solve the problem of charging station placement. Wang et
al. [25] improved the rooster’s location update formula from the perspective of balancing exploration and devel-
opment. The threshold and stimulus of the performing formula were created based on the degree of population ag-
gregation and average improvement. The location was also updated as part of the stimulus-response mechanism.
Based on chaos theory, Li et al. [26] improved the Chicken swarm optimization. This method avoided falling into
local optimum and improved the optimization ability of the algorithm. Moreover, it was applied to forecast the
range of wind power.

Levy flight and random forest were introduced by Zhang et al. [27] to solve the problem of low accuracy and
it optimize the radio frequency. Levy flight and non-linear decline strategy were introduced by Liang et al. [28] to
improve the convergence accuracy and stability of the algorithm. It was applied in the robot path planning. Han et
al. [29] carry out the mutation strategy for the individuals with low fitness to solve the problem of poor optimiza-
tion accuracy of the algorithm and solve the 0-1 knapsack problem.

To improve the convergence speed of the algorithm, mutation operations, accelerated search methods and
unified mutation operators were introduced by Bo et al. [30]. And it was applied to the optimization problem of
hypersonic flight ascent trajectory. A dynamic inertia strategy was introduced by Xue et al. [31] to improve the
overall convergence speed. It was used to establish a short-term wind power prediction model to predict the short-
term wind speed of the wind farm. The cosine inertia weight and Cauchy mutation operator were introduced by
Liu et al. [32] to improve the convergence of the algorithm. Furthermore, the improved CSO algorithm was used
to optimize the weight and threshold of the extreme learning machine to improve the prediction accuracy. Osamy
et al. [33] combined the deer hunting optimization algorithm with the Chicken swarm optimization, which can
greatly improve the convergence speed and optimization accuracy of the hybrid algorithm. And it was applied to
the human-computer interaction. Lin et al. [34] improved location update formula of rooster and transformed the
sequential iteration process into a parallel iterative process, thereby improving the convergence speed. And it ap-
plied to optimize image processing unit.

It should be noted that each of problems has been improved in the above literature. The problems in the op-
timization process of the standard algorithm were solved and the optimization ability was improved. But the al-
gorithms still have shortcomings. In order to improve the convergence speed and solution accuracy, and to avoid
falling into the local optimum, an adaptive mutation learning Chicken swarm optimization algorithm (AMLCSO)
is proposed in this paper.

3 Chicken Swarm Optimization

In the Chicken swarm optimization, the entire chicken flock is divided into roosters, hens, and chicks according
to the hierarchy strictly. Chickens of different levels have different responsibilities. The roosters will look for food
actively and grab food from other roosters randomly; The hens will follow the roosters in the same subgroup for
foraging; And the chicks will follow their mothers for foraging. The rules are summarized as follows:

(1) The entire chicken flock is divided into subgroups, each consists of a rooster, multiple hens and chicks.

(2) The flock is divided according to the fitness value, and the better the fitness value, the higher the grades.
The individuals with the best fitness in the population are regarded as roosters, the worst individuals are regarded
as chickens, and the remaining individuals are regarded as hens.

(3) The rooster has the highest grade in the population and plays a leading role during foraging. And it selects
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another rooster to compete randomly to expand the search range; The hen is second only to the roosters and ran-
domly follows the roosters in the same subgroup to search for food. And it occasionally steals food from other
subgroups. The chicks are the lowest-level and have a large search range. The chicks in each subgroup randomly
follow their mother for food and establish a mother-child relationship.

(4) In each subgroup, the hierarchy, dominance relationship and mother-child relationship between each indi-
vidual will remain unchanged after determination. Until a few generations later, the hierarchy is re-classified and
the relationship is established again according to the fitness value.

At the beginning of the algorithm, the number of roosters, hens, hens with chicks and the number of chicks
are set as Nr, Nh, Nm, and Nc in the D-dimensional space. N is the size of the chicken flock. G is the number of
updates of the hierarchy. x; (¢) is the position of the i(i € [1, N]) chicken in the j(j € [1, N])-dimensional search
space in the #th iteration.

Nc=N—-Nr—Nh. )
When solving the optimization problem, the chicken swarm individual adopts different position update meth-

ods according to different grades.
The rooster position update formula is as follows.

x, (t+1)=x_(t)*(1+randn(0,0")) . 2)

: {1 f<f,

= . 3)
exp((f, =)/ f]+¢) ae[LN].azi f=7,

Where randn(0, ¢°) is a normal distribution with a mean of 0 and a variance of 6°; £, is the fitness value of indi-
vidual i; a is the any individual of roosters which satisfies a#i; & is the smallest constant; f/ represents the fitness
value.

The hen position update formula is as follows.

X, ; (t+1)= X, ; (t)+C, *Rand *(xw. (t)-x, (t))+ C, * Rand *(xw. (¢) - X, (t)) N C))

5]

Clzexp((ﬁ—fﬁ)/(abs(ﬁ)+5)). 5)

szexp(fyz—fi). (6)

Where Rand is a random number in [0,1]; 7, € [1, Nr] is a randomly selected number of rooster; , € [1, Nr+Nh]
is a random number of rooster or hen. But 7, and r, are not equal. C, C, is the following coefficient.
The chicks position update formula is as follows.

X, (t+1):xw, (t)+F*(xm’i(t)—x['j(t)) . (@)

Where x,, (f)(m € [1, Nh]) is the position of chick’s mother which the current chicks are following; £ € [0, 2] is
the impact factor of mother hens on chicks.

4 Chicken Swarm Optimization Algorithm Based on Adaptive Mutation Learning

The position update formulas of different levels in the standard Chicken swarm optimization are interrelated,
which is easy to cause the convergence of the algorithm to decrease; When the highest-level individual falls into
the local optimum on the later stage of the iteration, it is also easy to cause the algorithm to fall into the local
optimum, thereby leading to a decrease in solution accuracy. Therefore, an adaptive mutation learning Chicken
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swarm optimization (AMLCSO) is proposed in this paper. The adaptive weighting strategy, Gaussian mutation
and normal distribution learning update strategy are introduced to improve the position update method owned by
different levels in the population. The way improves the problem that the algorithm is easy to fall into local opti-
mum. And the solving accuracy and convergence of the algorithm are improved. By introducing a good point set,
the stability of the algorithm is further improved.

4.1 Population Initialization Based on a Good-Point Set

In the swarm intelligence algorithm, the distribution of the initial population affects the diversity and stability
of the algorithm. The standard Chicken swarm optimization uses the method of random initialization to gener-
ate the initial population, which will cause the problems of uneven initial population distribution and low er-
godicity. And it causes the initial positions of the individuals to gather around the localized extremes. It is not
conducive to searching for the global optimum and affects the optimization performance of the algorithm. In the
Chicken swarm optimization, individuals with high grade only search in their own group, which tends to reduce
the searching range of individuals gradually. And finally the algorithm falls into a local optimum eventually.
Therefore, a population initialization strategy based on the good point set is proposed. This method can make the
initial value of population distribute evenly in the entire solution space. It is not affected by the spatial dimension
and is conducive to finding the most global optimum in the search.

Basic definition of the good point set [35] is as follow: Pop points are uniformly selected in the J-dimensional
European space unit cube. If » € G, then P (K)={({r,*k},{r,*k},..., {r;*k}),1<k<pop}.P (k) is a set
of good points; pop is the population number; 7 is the best point; The deviation of the point set satisfies
@(pop)=C(r,e)* pop™* ,where C(r,&) is a constant related to 1, £ ; £ is an arbitrary constant in the computer.

And the value of r is {2*cos(27k/p),1<k<J}, where P satisfies the smallest prime number of (p-J)/2>J.

Good point set and random initialization are used to initialize the population in a two-dimensional space with
size of 500, as shown in Fig. 1 shows that the good point set strategy distributes more uniformly than the random
method in the same population size. Therefore, the good point set strategy is adopted in this paper to initialize
population and generate an uniform distribution, no-overlapping points and richly diverse population in the solu-
tion space. The method enhances the ergodicity and stability of the initial population and then the performance of
algorithm is improved.
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Fig. 1. Initialized population distribution diagram
4.2 The Position Update Strategy of Rooster Based on Adaptive Weight

In the standard Chicken swarm optimization, the rooster population which has the highest grade in the entire
population can lead other individuals in the group to find the optimal solution. The position update of rooster is
optimized only in the rooster population as presented in Eq. (2). In this way, the algorithm has limitations and
blindness in the iterative process and causes the convergence speed of the algorithm to decrease.

In order to solve the above problems, this paper introduces a nonlinear adaptive weight strategy. In Fig. 2(a)
the traditional weight values mostly change with the number of iterations. The way does not take the character-
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istic of each individual into account in the iteration process and the weight values lack guide. In this paper, the
difference between the current individual position and the optimal individual position of the population is used
as a guide. The weight is nonlinearly adjusted according to the degree of difference. When the degree becomes
larger, the individual is far away from the optimal position and W will increase. At this time, the individual has
great global search ability, which can improve the development ability of the algorithm in the early stage. On the
contrary, W will decrease and the local search ability of the individual will increase, which can improve the explo-

ration ability of the algorithm on the later stage, as shown in Fig. 2(b) This weighting strategy based on nonlinear
adaptive adjustment can adjust the local search ability and global search ability of the algorithm dynamically. And
it also balances the development and exploration of the algorithm before and after iteration. Therefore, the con-
vergence and stability of the algorithm is improved.
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Fig. 2. Distribution of inertia weights of different strategies

The improved roosters position update formula is given as follows.

x,,(t+1) =(x, () * (1+randn(0,0°)) ) *w(t) . ®)
X =1/(x,, —x,, *l/M*Zn:|g—x| : o)
w(t) = exp(-(w,,,, —(log(w,,, )~ log(w, ) ) *(X =1)")) . (10)

Where 7 is the dimension of solution space; w(?) is the adaptive weight of the moment # w,,,,w,,, are the initial
values and end values. x,,,, and x,,;, are the maximum and minimum values of the population. g is the optimal

position of the population at time #, and X is the current individual position at time .
4.3 The Position Update Strategy of Hen Based on Gaussian Mutation and Normal Distribution Learning

In the Chicken swarm optimization, the number of hens accounts for a large proportion and their grade is second
only to roosters. It has a great impact on the performance of the algorithm. According to the Eq. (4) , the search
direction and distance of the algorithm are controlled by the variable parameters C,C, in the formula of hen po-
sition update. And it makes the algorithm not easy to fall into the local optimum. But the search ability of the
hen will be affected by the roosters of the same subgroup. And the hen will also randomly steal food from other
subgroups. On the later iteration of the algorithm, when the roosters gather and the algorithm fall into the local
optimum, it will indirectly cause the hens to fall into the local optimum. And the diversity of population will dete-



An Improved Chicken Swarm Optimization Algorithm Based on Adaptive Mutation Learning Strategy

riorate, thereby reducing the solution accuracy and convergence speed of the algorithm.

To solve the problems, Gaussian mutation operator is introduced in this paper to exchange information between
the optimal individual and the current individual of the population. The searching method of hens is changed and
the searching range is expanded. As a result, the diversity of the population and the searching ability of hen are
increased and the precocious phenomenon is prevented. Finally, the normal distribution learning update strategy
is introduced. From the beginning to the middle of the iteration, W is continuously increasing and the algorithm’s
global search ability is continuously enhancing. And the global optimum can be searched. From the middle to the
late of the iteration, W is continuously decreasing and the local search capability of the algorithm is gradually
increasing, which can avoid the algorithm falling into the local optimum. The global optimum can be accurately
determined and the convergence speed of the algorithm is improved.

The improved formula of hens position update is given as follows.

X, (t) + (xbm!j (t) - X, (t)) *M +C, *Rand * (xrI g (t) - X, t)) +

x, (t+1)= *w . (11)
! ( ) C, * Rand *(xw. (t)—x,.n/. t))

M =(Pyy + P )24 (P = 2, )65 (7 -6) . (12)

w=w_Fw fw VT4 Randn() . (13)

Where M is the Gaussian mutation operator. p,, and p,, are the minimum and maximum values taken at the
Gaussian variation point; 7; is a random number in the range of [0,1]; dim is the maximum dimension of the pop-
ulation; x,. is the position of the optimal solution in the population; W is the random learning coefficient of the
hen; T is the total number of iterations, and # is the current iteration number of the algorithm. Randn() is a ran-
dom number of normal distribution.

4.4 Chicken Position Update Strategy Based on Normal Distribution Learning

In the standard Chicken swarm optimization, chicks only follow hen who has a mother-child relationship with
them. As a result, when the hen falls into the local optimum, the following chick will also fall into the local opti-
mum in the later period of the algorithm.

Therefore, the normal distribution learning update strategy (Eq.(13)) is introduced to avoid the chickens falling
into the local optimum. In addition, while the chicks learn from their mother, they also randomly follow other
hens or roosters in the population to learn. By improving the search method of the chicks, the search range of the
chicks is enhanced and it avoids the chicks falling into the local optimum. Then the search ability of the algorithm
is improved.

The improved chicks position updating formulas is as follows.

x, (t+1)= w*(x,.’j (t)+F*(xm,_/. (1)—x., (t))+(xs,,f (1)—=x, (’))) : (14)

Where x,, (t)(m € [1, Nh]) is the position of the chick’s mother that the current chick is following, " is the
following coefficient, x,; € [1, Nr+Nh] is the position of the random s rooster or hen in the population, and o is
the random learning coefficient of the chick.

4.5 AMLCSO Algorithm Description

The steps of the AMLCSO algorithm are outlined as follows:
Step 1: Initialize parameters. Set relevant parameters w,,;,, w,,..; the chicken population size N; the number of

roosters Nr; the number of hens Nh; the number of hens with chicks Nm; the number of chicks Nc; parameter di-
mensions D; the number of grade system updates G and the total number of iterations T.
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Step 2: The good point set strategy is used to initialize the individuals of the population;

Step 3: Calculate the fitness values of all the individuals in the chicken group and sort them in order from small
to large. Among them, with good fitness values in the top Nr individuals are defined as roosters, with poor fitness
values in the bottom Nc individuals are defined as chicks and others were hens.

Step 4: According to the fitness value of each particle at the t iteration in the chicken group, when mod(t,G)=1,
all individuals are reordered and a new hierarchy is established.

Step 5: Gaussian mutation operator, learning coefficient and adaptive inertia weight are calculated according to
Eq. (9), (10), (12), (13).

Step 6: According to Eq. (8), (11), (14), the positions of roosters, hens and chicks are updated sequentially and
the optimal food position is finally updated.

Step 7: If the individual fitness value is better than the original value, update it, otherwise give up updating;

Step 8: If the number of algorithm iterations reaches the upper limit or a candidate solution that satisfies the
termination condition has been obtained, the algorithm terminates. Otherwise, it returns to step 4.

Step 9: Finally, the optimal position and fitness value are recorded in the chicken flock.

The pseudo code of the AMLCSO algorithm is shown by Algorithm 1.

Algorithm 1. Outlines the pseudocode of the AMLCSO algorithm
Begin
Step 1. Initialize parameters W ,W_, Nr, Nh, Nm, N¢, N'F, G, etc
Step 2. Use the good point set strategy to initialize the population
Step 3. Calculate fitness, divided into rooster, hen and chicken

Step 4. while (¢ <7) do
Formod (t,G)==1
Update the population hierarchy
End for
IF (i <=Nr) do
Calculate the adaptive weighting strategy using Eq. (9)(10)
Update rooster position using Eq. (8)
End if
If(Nr+1<i<=Nr+Nh)do
Calculate the Gaussian mutation operator using Ep. (12)(13)
Update hen position using Eq. (11)
End if
If (Nr+Nh+1< i <=N) do
Update chick position using Eq. (14)
End if
Update the individual’s best fitness vlaue and the global best fitness value
t=t+1
End while
Output the best solution found

End

5 Simulation Experiment and Result Analysis

In order to verify the performance of the algorithm in this paper, a simulation was carried out. All algorithms in
this paper were written using MatlabR2018a and the simulation experiments were performed under Intel(R) Core
(TM) i5-4258U CPU @ 2.40GHz 2.10GHz, memory 12.00GB, and Windows 10.

5.1 Evaluation Criteria

This section tests the improved chicken swarm algorithm on unimodal and multimodal functions to verify
AMLCSO from the following aspects: (1) Compare AMLCSO with the chicken swarm algorithm with a single
strategy to verify the effectiveness of the overall strategy. (2) Compared with other improved chicken swarm
algorithms, the convergence accuracy of the algorithm is verified. (3) By comparing with other advanced
algorithms, the convergence speed of the algorithm is verified. (4) The differences between AMLCSO and other
algorithms are compared by Wilcoxon’s rank sum test.
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For all the algorithms involved in this paper, the population size (N) is set 100. To reduce the algorithm's error,
each algorithm runs 30 times independently. For each algorithm, the performance of the algorithm is tested from
three aspects: mean, standard deviation and Wilcoxon’s rank sum test.

The average value is the mean of N operation results. The formula is given as follow:

1 N
Mean = inzl 1. 15)

Where fi is the result obtained after the ith operation of an algorithm, and N is 30. The standard deviation is the
arithmetic square root of the variance of N operation results, which can reflect the dispersion degree of N opera-
tion results. The formula is:

1 N 2
=, |— — . 16
Std N1 ZH(fl Mean) o)

The Wilcoxon’s rank sum test is a non-parametric test used in the hypothesis testing scenarios of two
independence groups. It is used to detect a significant difference between the behaviors of the two algorithms.

5.2 Benchmark Test Function

In this paper, 20 benchmark functions with different dimensions and peak values [36-37] are selected. As shown
in Table 1, F-F,, are high-dimensional unimodal function, which are used to test the convergence speed and opti-
mization accuracy of the algorithm. The value obtained at the end of the iteration is closer to the theoretical opti-
mal value, the better; The functions of Table 2 are high-dimensional multi-modal functions, which are used to test
the global search performance of the algorithm and the ability to avoid premature maturity. In the search process,
the effect of convergence is great and the optimization ability is better. And the global optimum can be found.
Among these test functions, F, - F|;F;FjF,, is CEC2017 classic functions.

Table 1. High-dimensional unimodal functions

Function Range Jouin
E(x)z j:le [-100,100] 0
Fy(x)=20

|+H;|xi| [-10,10] 0

F,(x) Z;(ZH"/ )2 [-100,100] 0
F,(x)=max{[x,|,1<i<n} [~100,100] 0
F(x)=) ix; [-10,10] 0
F(x)=" ([x+05]) [-100,100] 0
F(x)=)" ix'+random[0,1) [-128,128] 0
F(x)=3" |x[™ [-11] 0
Fy(x)=)" ix' [-128,1.28] 0
Fy(x)=x/+10°)" & [-100,100] 0
Fo(x)=10°% +) " xf [-100,100] 0
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Table 2. High-dimensional multimodal functions

Function Range Soin

Fy@ =0 =, sin(yx] ) [-500,500]  -418.9829%*dim
Fyw=" [ % =10c0s(27x) +10 ] [-5.12,5.12] 0
F,(x)= —20exp(—o.21/1/n DX )—exp(l/n Z:ZICOS(ZEXI.))+20+€ [-32,32] 0
Fs()=1/40003"7 %7 T cos(x/Vi)+1 [-600,600] 0
Flé(x)=%{105in(ﬂyl)+2?:(yi—1)2 [1+10$in2(ﬂyi+1):|+(yn—1)2} 50.50] .
+> " u(x,10,100,4)

Fa0=01(sin (35 )+ X (3, =1)" [1sin® (37, +1)(x, =1) [1+sin(27,)]) [-50,50] 0
Fy=>" |xsin(x)+0.1x| [-10,10] 0
Fy =" (0.2x} +0.1x} sin(2x,)) [-10,10] 0
Fyy =" x°(2+sin(l/x,)) [-1,1] 0

5.3 Comparison Algorithm and Algorithm Parameter Setting
In order to verify the effectiveness of the proposed algorithm, the effectiveness of the proposed strategy is verified
at first. The algorithms in this paper are named AMLCSO1, AMLCSO2, AMLCSO3 and AMLCSO4 respectively

under single strategy. The specific description is shown in Table 3.

Table 3. Improved strategy algorithm

Algorithm Good point set Qaussian muta- Learning update Adgptive weight-
strategy tion strategy strategy ing strategy

AMLCSOI1 V

AMLCSO2 V

AMLCSO3 N

AMLCSO4 N

In order to verify the effectiveness of the algorithm, three improved ICSO algorithms [44-46] and other
excellent intelligent algorithms [38-43], such as pigeon swarm algorithm, wolf swarm algorithm, particle swarm
optimization algorithm, genetic algorithm and geographic biological algorithm, are selected to conduct simulation
experiments with AMLCSO algorithm proposed in this paper. The relevant parameter settings are shown in Table
4.

Table 4. Algorithm parameter settings used

Algorithm Related parameters
AMLCSO G=10, N=100, Nr=0.3N, Nh=0.5N, Nm=0.2Nh, F=(0,2) ®,,,=0.2, ®,,,,=0.9
CSO [38] G=10, N=100, Nr=0.3N, Nh=0.5N, Nm=0.2Nh, F=(0,2)

PIO [39] N=100, Vmax=0.5; R=0.2
GWO [40] M=1000, N=100

PSO [41] N=100, w=[0.2, 0.9]

GA [42] N=100, M=0.1

BBO [43] N=100, I=1
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5.4 Analysis of the Effectiveness of the Strategy

Policy Validity Verification. To verify the effectiveness of the proposed improvement strategies in this paper,
this section compares the proposed AMLCSO with AMLCSO1, AMLCSO2, AMLCSO3, and AMLCSO4 of the
separate strategies. Simulation experiments are carried out in a 30-dimensional, 1000-degree operation environ-

ment. The operating parameters of the algorithm are the same as those of AMLCSO in Table 4.

Table 5 shows the mean (Mean) and standard deviation (std) results of the unimodal functions and the mul-
timodal functions. Fig. 3 shows some of the algorithm convergence graphs of the unimodal and the multimodal
functions under different strategies.

Table 5. Test function results of AMLCSO algorithm under different strategies

Fun CSO AMLCSO1 AMLCSO2 AMLCSO3 AMLCSO4 AMLCSO
F Mean 5.4119¢-47 3.6416¢e-46 3.0779¢-139 3.1353¢-89 1} 0
! Std 2.2673e-46 1.3012e-45 1.5040e-138 4.8924¢-89 1} 0
F Mean 1.0657e-39 3.6343e-40 8.1931e-95 8.5113e-52 0 0
? Std 2.4925¢-39 8.3831e-40 4.2703¢-94 6.2720e-52 0 0
I Mean 1.6330e+03 1.2994e+03 4.3803e-73 1.2229¢-42 0 0
s Std 892.4371 813.3543 2.3577e-72 2.6117e-42 0 0
F Mean 4.5603 4.2602 1.7290e-59 1.3417e-37 1} 0
i Std 3.4103 5.5018 6.3311e-59 9.9448¢-38 0 0
F Mean 7.2790e-49 4.4695¢-48 1.7915e-143 5.2435e-90 0 0
’ Std 2.6358e-48 1.9653e-47 9.6471e-143 1.1080e-89 0 0
F Mean 2.2558 2.1068 2.1702 1.4004 4.1603 1.0205
o Std 0.3324 0.3781 0.2887 0.3278 0.3092 0.4402
I Mean 0.0041 0.0021 2.4212e-05 1.3737e-04 4.4979¢-05 1.2008e-05
7 Std 0.0026 0.0013 1.6006¢-05 5.1899e-05 2.6193e-05 9.7240e-06
F Mean 2.5309¢-40 2.3761e-40 1.0785e-98 2.4450e-52 0 0
8 Std 5.5103e-40 9.6625¢e-40 1.1264e-98 1.7276e-52 0 0
F Mean 3.2436e-22 2.9031e-27 2.7279e-234 3.5003e-159 0 0
? Std 1.7405e-21 1.5553e-26 0 1.0533e-158 0 0
F Mean 1.6561e+10 1.4581e+14 2.9993e-140 3.9160e-169 0 0
10 Std 8.9182e+10 5.4678e+14 1.6152¢-139 0 0 0
I3 Mean 1.3393e-06 1.5404e+08 2.7554e-200 2.1898e-176 0 0
" Std 7.2122e-06 3.0600e+08 0 0 0 0
F Mean -5.8099¢+03 -9.007e+03 -9.0425¢+03 -8.7309¢+03 -5.3290e+03 -9.8115e+03
2 Std 533.6261 348.0928 1.1455e+03 524.0823 500.1422 744.6764
F Mean 0 0 0 0 0 0
3 Std 0 0 0 0 0 0
F Mean 4.6777e-15 4.6777¢-15 1.0066¢-15 8.8818e-16 8.8818e-16 8.8818e-16
" Std 8.8620e-16 8.8620e-16 6.3773e-16 0 0 0
F Mean 0 0 0 0 0 0
s Std 0 0 0 0 0 0
F Mean 0.1625 0.1379 0.1264 0.0511 0.5121 0.0175
16 Std 0.0455 0.0420 0.0276 0.0155 0.0791 0.0064
F Mean 1.2931 1.3052 1.8517 0.8687 2.7648 0.1679
7 Std 0.1681 0.2230 0.1579 0.1273 0.0912 0.0473
F Mean 2.8362¢-39 6.1200e-38 1.0878e-77 3.9801e-51 0 0
” Std 5.6898e-39 2.6788e-37 5.8570e-77 4.5058¢e-51 0 0
F Mean 5.7665e-49 1.3277e-47 7.8323e-148 2.4453e-92 0 0
" Std 2.0705e-48 7.0557e-47 2.5187e-147 4.9660e-92 0 0
F Mean 3.0755¢e-11 6.7180e-12 0 2.9713e-232 0 0
20 Std 1.5412e-10 2.3480e-11 0 0 0 0
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Fig. 3. Convergence diagram of partial test functions

Analysis of Results. In Table 5, the standard deviation of 15 functions is 0 in these 20 functions. The results
clearly show that the AMLCSO algorithm combined with all strategies has good convergence and stability.
Although the mean and standard deviation of the functions F¢F,F,F (F,, are not 0, they have little improvement in
optimizing ability compared with other strategy algorithms. But the final optimal value is better than other algo-
rithms. Therefore, it can be seen that the combined improvement strategy can improve the algorithm’s optimiza-
tion ability more effectively. In Fig. 3, the optimization effect under different improvement strategies is different.
AMLCSO2, AMLCSO3 and AMLCSO4 have the best optimization results, but AMLCSO under all strategies is
better than a single strategy.

5.5 Algorithm Accuracy Analysis

Experimental Results of the Algorithm. In order to verify the convergence accuracy performance of the
AMLCSO algorithm proposed in this paper, AMLCSO and the improved CSO algorithm [38] are tested. The
population dimension (dim) is 30, 50, and 100 and the number of population iterations is 1000. In this way, the
test function F,-F,, is tested. The specific experimental results are shown in Table 6 and some effects are shown in
Fig. 4.

Experimental Results of the Algorithm. In Table 6, we can see that the mean and standard deviation of 9
benchmark functions in the unimodal function are zero except the function F(F,. It indicates that AMLCSO algo-
rithm has higher optimization accuracy and stability than other improved CSO algorithms in the same series; The
standard deviation of six benchmark functions in the multimodal function are zero expect the function F,F(F,,.
So the global search performance of AMLCSO algorithm is higher than other algorithms in the same series; With
the continuous improvement of dimension, the mean and standard deviation of AMLCSO algorithm in multiple
benchmark functions are always zero. It indicates that the optimization ability, stability and accuracy of the al-
gorithm have not been affected. For other algorithms, the average and standard deviation of multiple functions
decrease by multiple orders of magnitude with the improvement of dimensionality. For unimodal function F,,
the average value of all improved CSO algorithms of the same series differs by 40 orders of magnitude between
dimension 30 and dimension 100. For the multi-modal function F,,, both the average and standard deviation of
ICSO [46] differ by 80 orders of magnitude between dimension 30 and dimension 100. And both the average and
standard deviation of ICSO [44] differ by 20 orders of magnitude between dimension 30 and dimension 100. It
can be seen that the AMLCSO algorithm proposed in this paper has higher accuracy and better stability than the
improved CSO algorithm of the same series.

We can see that the AMLCSO algorithm can obtain the optimal solution the optimum within 400 iterations,
whether it is a unimodal function or a multimodal function from Fig. 4. It indicates that the solution accuracy of
this algorithm is significantly higher than other algorithms.
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Fig. 4. Part of the test function image
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5.6 Analysis of Algorithm Convergence Speed

Experimental Results of the Algorithm. In order to further verify the convergence speed of AMLCSO, the
functions F, _F,, are tested with population iteration times (M) of 100, 500 and 1000 and dimension of 50. The
AMLCSO in this paper is compared with pigeon swarm algorithm, wolf pack algorithm, particle swarm optimi-

zation algorithm, genetic algorithm and geographic bio-algorithm. The experimental results are shown in Table
and some experimental results are shown in Fig. 5.
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Experimental Analysis of Convergence Rate. In Table 7, with the number of iterations increasing, the
AMLCSO algorithm is better than other standard algorithms in average value and standard deviation. The
AMLCSO algorithm finds the optimal solution after 500 iterations while the means and standard deviation of oth-
er standard algorithms change little. For example, in the function F,, only the wolf pack optimization increased
by 36 numbers, while other standard algorithms only increased by an order of magnitude within 10. When the
AMLCSO algorithm is iterated 500, the number is increased by 160 and the optimal solution is directly obtained
after 1000 iterations. This shows that the convergence speed of the AMLCSO algorithm is better than other stan-
dard algorithms and the adaptive weights introduced by the Chicken swarm optimization can improve the conver-
gence speed of the algorithm. The standard deviation of the function F,, is lower than all standard algorithms and
the stability is slightly worse. But for the average value, the AMLCSO algorithm can effectively converge to the
global optimal value. Other algorithms are more likely to fall into the local optimum. The result shows that the
addition of the learning update strategy with normal distribution and the Gaussian mutation strategy can make the
algorithm jump out of the local optimum and find the optimal value.

Fig. 5 shows the partial function convergence diagrams of the six algorithms. In the convergence graph of
function F,, most of the standard algorithms have fallen into the local optimum when the iteration is about 600
times in the middle. At this moment, most of the individuals in the population have gathered at the local opti-
mum, which will eventually lead more individuals to gather here. As a result, the algorithm will not jump out of
the local optimum. When the algorithm in this paper iterates to 100, the advantage of accuracy is obvious and the
convergence speed is obviously better than other standard algorithms. It reflects that the introduction of adaptive
weighting strategy can improve the convergence accuracy of the algorithm. In the subsequent iterative, the al-
gorithm jumped out of the local optimum many times and obtained the optimal solution. The result reflects that
the addition of the learning update strategy with the normal distribution and the Gaussian mutation strategy can
prevent the algorithm from falling into the local optimum to a certain extent. And the convergence speed and op-
timization accuracy of the algorithm are improved ultimately.

5.7 Statistical Analysis of Benchmark Function

This section uses Wilcoxon’s rank sum test to evaluate statistical performance. The performance of AMLCSO is
compared with other algorithms by 5% significance. The experimental results are shown in Table 8.

In Wilcoxon’s rank sum test, the statistical performance of AMLCSO and other algorithms are determined by
the values of p and h. When the value of p is less than 5% or h is equal to 1, it indicates that there is obvious dif-
ference between AMLCSO and the comparison algorithm. We should note that if the results of the two algorithms
are the same, the value of P is NaN. But it does not mean that the performance of the two algorithms is identical.

From Table 8, we can see that AMLCSO has obvious difference with CSO, OPIO, PSO, GA and BBO in all
performance. For other algorithms, the global optimization has obtained in F;and F,;. There are obvious differ-
ences between AMLCSO and ICSO [45] in 17 functions except F,,. And AMLCSO has obvious differences with
ICSO [46], ICSO [44] and GWO in 18 functions. For most functions, AMLCSO is significantly different from
CSO, ICSO [46], ICSO [44]. ICSO [45], GWO, OPIO, PSO, GA and BBO.

Table 8. Experimental results of Wilcoxon rank sum test under 50 dimensions
Fun CSO ICSO [42] ICSO[43] ICSO [41] OPIO GWO PSO GA BBO

p 1.21e-12 1.21e-12 1.21e-12 1.21e-12 1.21e-12 1.21e-12 1.21e-12 1.21e-12 1.21e-12

Frooy 1 1 1 1 1 1 1 1 1
p o 12le12 12le-12 12le-12 12le-12 12le-12 12le-12 12le-12 121e-12 12le-12

o 1 1 1 1 1 1 1 1 1
p o 12le-12 12le12 12le-12 12112 12le-12  121e-12 12le-12  12le-12  1.2le-12

LA 1 1 1 1 1 1 1 1 1
p 1.21e-12 1.69e-14 1.21e-12 1.21e-12 1.21e-12 1.21e-12 1.21e-12 1.21e-12 1.21e-12

Foooh 1 1 1 1 1 1 1 1 1
p o 12le12 12le-12 12le-12 12le-12 12le-12 12le-12 12le-12 12le-12 121e-12

Fs 1 1 1 1 1 1 1 1 1
P 30211 3.02e-11  3.02-11  3.02e-11  3.02e-11  3.02e-11  3.02e-11  3.02e-11  3.02e-11

Fso 1 1 1 1 1 1 1 1 1
p 3.02e-11 3.02e-11 3.69e-11 3.16e-10 6.07e-11 3.02e-11 3.02e-11 3.02e-11 3.02e-11

Foh 1 1 1 1 1 1 1 1 1
p o 12le12 12le-12 12le-12 121e-12 12le-12 12le-12 12le-12 121e-12 121e-12

Fe 5 1 1 1 1 1 1 1 1 1
Foop 121e12 12112 120e12 120e-12 120e12 12012 121e2 12012 12112

s 1 | | 1 | 1 | | 1
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Table 8. Experimental results of Wilcoxon rank sum test under 50 dimensions (continue)

Fun CSO 1CSO [42] __1CSO[43] _ICSO[41] ____OPIO GWO PSO GA BBO
F p 1.21e-12 1.21e-12 1.21e-12 1.21e-12 1.21e-12 1.21e-12 1.21e-12 1.21e-12 1.21e-12
0o 1 1 1 1 1 1 1 1 1
poop 12012 12112 121e-12  121e-12 121e-12 121e-12 12le-12  12le-12  121e-12
o 1 1 1 1 1 1 1 1 1
Fop 30211 0.7845 3.02¢-11 3.02¢-11 29605  3.02-11  3.02e-11  3.02e-11  3.02¢-11
2 1 0 1 1 1 1 1 1 1
F p 0.0014 NaN NaN NaN 1.21e-12 0.3337 1.21e-12 1.21e-12 1.21e-12
5 1 0 0 0 1 0 1 | |
- p  12iel2 20713 589608 168e-14  121e-12  557e-13  121e12 12112 121e-12
o 1 1 1 1 1 1 1 1 1
» 0.0028 NaN NaN NaN 121e-12 03337 121e-12 121e-12  121e-12
Fis 1 0 0 0 1 0 1 1 1
p o 30211 3.02-11 507¢-10  3.02¢-11  3.02¢-11  926e-09  3.02e-11  3.02e-11  3.02¢-11
Fis 1 1 1 1 1 1 1 1 1
p o 30211 3.02-11 3.02¢-11  3.02e-11  3.02e-11  3.02e-11  3.02e-11  3.02e-11  3.02¢-11
Fir % 1 1 1 1 1 1 1 1 1
p 12112 1.21e-12 121e-12  121e-12 121e-12  121e-12 12le-12  121e-12  121e-12
Fis 1 1 1 1 1 1 1 1 1
p 12112 12le-12 121e-12  121e-12 121e-12  121e-12  12le-12  12le-12  121e-12
Fio 1 1 1 1 1 1 1 1 1
p 12112 12le-12 121e-12 121e-12 121e-12  121e-12  12le-12  12le-12  121e-12
Fa | | | 1 1 1 | | |

6 Conclusion

The standard Chicken swarm optimization has low solution accuracy and tends to fall into the local optimum on
the later stage of iteration. To solve the problems, an adaptive mutation learning Chicken swarm optimization is
proposed in this paper. Firstly, the good point set is introduced into the initial population to enhance the ergodicity
of the initial population; Secondly, an adaptive weight strategy is adopted to improve the convergence speed of
the algorithm; Thirdly, the Gaussian mutation strategy is utilized to avoid the algorithm falling into the local opti-
mum; Finally, the learning and updating strategy of normal distribution is introduced to improve the accuracy of
the algorithm. In the paper, not only the effectiveness of all strategies is analyzed, but also simulation experiments
are carried out on twenty test functions. And the AMLCSO algorithm is simulated with the improved chicken
swarm algorithm and multiple standard algorithms of the same series. The results show that the algorithm pro-
posed has strong competitiveness in convergence speed, solution accuracy and stability.

In the future research, some directions are worthy of attention. For example, the method can be generalized to
all practical problems where other algorithms can be applied, such as the optimal parameter selection problem,
the multi-objective optimization problem, the knapsack problem and the image threshold segmentation problem.
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