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Abstract. To improve pattern representation capabilities and robustness in traditional finger-vein recogni-
tion algorithms. In this paper, we propose FFV-MBC, a novel fused finger-vein recognition method based 
on monogenic binary coding (MBC). First of all, the amplitude, orientation, and phase information of the 
finger-vein images are filtered by a multi-scale monogenic log-Gabor filter and encoded by the binary coding 
theory. Three local features, MBC-A, MBC-P, and MBC-O, are achieved from different combinations of local 
image intensity and variation coding. After obtaining the features, we utilize the block-based Fisher Linear 
Discriminant method to reduce the dimension. Finally, the similarity components are calculated by the cosine 
distance and fused for the final finger-vein recognition results. We evaluate our proposed method on two pub-
licly available datasets and one self-built dataset, i.e., Malaysian Polytechnic University (FV-USM), the Group 
of Machine Learning and Applications of Shandong University (SDUMLA-HMT), and our team, Signal and 
Information Processing Laboratory (FV-SIPL). On average, the proposed method achieved high recognition 
accuracy, i.e., 99.30%, and 1.10% equal error rates (EER). Overall, the proposed method performs better than 
most classical and state-of-the-art finger-vein recognition methods.

Keywords: finger-vein recognition, monogenic binary coding, multi-scale monogenic log-Gabor filter, 
weighted fused

1   Introduction

Finger-vein recognition causes much interest in the researchers, with the contribution to information security and 
protection. As an essential way of biometric identification, it plays an irreplaceable role in personal data security. 

Compared with other biometric features, such as fingerprint [1], palm print [2], face [3], iris [4], etc., fin-
ger-vein recognition has been widely applied for different scenarios due to high security, non-contact acquisition, 
difficult to copy, stability, and living recognition.

Generally speaking, finger-vein recognition includes four steps: finger-vein acquisition, image preprocessing, 
feature extraction, and matching, among which feature extraction is the most critical. More importantly, various 
feature extraction methodologies are utilized for finger-vein recognition, such as patterns, details, textures, and 
learnable features [5]. For example, vein pattern features were extracted through the average curvature method 
in [6]. The average curvature values of different directions for each point are used. Wang et al. [7] applied the 
scale-invariant feature transformation (SIFT) algorithm to extract detailed finger-vein features. The intersection 
point of finger-vein textures is chosen. After screening, the feature points available for matching and classification 
may be insufficient, thus increasing the probability of mismatching. Lu et al. [8] proposed a finger-vein recog-
nition method combining the Gabor filter with the histogram of oriented gradients (HOG). However, the Gabor 
filters may increase the feature magnitude and cost much run-time. Wu et al. [9] designed a finger-vein recogni-
tion network combined with principal component analysis (PCA) [10] and linear discriminant analysis (LDA) 
[11]. After obtaining the region of interest (RoI) data, PCA and LDA are used to reduce the dimension of relevant 
feature vectors. PCA and LDA can obtain a spatial matrix converted from two-dimension to one-dimension. With 
the increasing number of image pixels, we might require large dimension computation and long run-time. Hence, 
its application scope has certain limitations. Also, the global methods are susceptible to changes in finger poses 
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and lighting environments. Zhao et al. [12] used the complete local binary pattern (CLBP) and the statistical local 
binary pattern (SLBP) to describe the texture features of local veins. The local binary pattern (LBP) is used to de-
scribe images from pixel differences, resulting in good robust-ness to brightness and contrast changes. However, 
such methods focus on the relations between the center pixel and surroundings, while ignoring the information 
obtained from the center pixel itself.

In order to solve the above problems, we propose a novel fused finger-vein recognition method based on 
monogenic binary coding (MBC). First, inspired by the rotation-invariant monogenic signal in the MBC algo-
rithm, we detect the monogenic amplitude, orientation, and phase information of the finger-vein images with or-
thogonal decomposition. Then, different features are generated from various combinations of local image intensi-
ty and variation coding. The feature dimension is reduced by the block-based Fisher Linear Discriminant (BFLD) 
[13]. Finally, we calculate the similarities of the two images by cosine distance and combine those of the three 
components at the score level. Experimental results show that FFV-MBC improves the accuracy and robustness 
of finger-vein recognition effectively. The main contributions of this paper are summarized as follows:

(1) Monogenic binary coding is used to effectively extract local features of the finger vein. Except for the re-
lations between the center pixel and surroundings, the information obtained from the center pixel itself is used. 
The additional feature information effectively alleviates the influence of uneven illumination and low contrast on 
finger vein recognition.

(2) The finger-vein feature extracted by MBC is in high dimension and includes a lot of redundant information. 
This paper introduces the BFLD module to improve feature discrimination and reduce the dimension of the fea-
ture matrix.

(3) By fusing the feature similarities of different components of the monogenic signal, the discriminant feature 
can simultaneously proceed with energy, local structure, and geometric information. It enhances the feature repre-
sentations and the recognition accuracies.

(4) A low-cost and portable finger-vein acquisition device is designed. A finger-vein dataset with good con-
trast and clear finger regions without excessive background information is produced. More clear and reliable fin-
ger-vein pictures are provided for subsequent recognition.

The remainder of this paper is presented as follows. Section 2 reviews some of the classic and state-of-the-
art methods for finger-vein recognition. Section 3 introduces the principle of monogenic binary coding and the 
details of our proposed method. The parameter settings, accuracy, equal error rates (EER), run-times, etc., will be 
reported and analyzed in Section 4. Section 5 concludes the proposed method and the limitations.

2   Related Works

The existing finger-vein feature extraction methods can be roughly divided into machine learning-based, vein tex-
ture-based, and local feature-based methods. Machine learning-based methods include subspace learning and con-
volutional neural network learning. The subspace learning method can reduce some complex pre-processing steps 
and feature dimensions. Typically, Wang et al. [14] combined 2DPCA and 2DFLD (Fisher Linear Discriminant) 
techniques to improve recognition performance and reduce storage space. However, this method only extracts 
global features from the global perspective and lacks robustness to local intra-class changes, i.e., uneven illumi-
nation and rotation. The convolutional neural network can extract deeper features with strong generalization and 
representation ability. Zeng et al. [15] combined recurrent neural network, conditional random field, and residual 
network to extract vein texture features. The additional residual information improves the recognition perfor-
mance of the system. However, this method needs to conduct a lot of training on the model after obtaining image 
features. It might get overfitting when constructing the complex model. 

Classical methods are often based on vein texture, including curvature [16], repeated line tracking (RLT) [17], 
and morphological operation combined with the Gabor method [18]. Vasilopoulos et al. [19] exploited the en-
hanced maximum curvature method to extract vein pattern information and combine it with two matching meth-
ods to achieve good recognition performance on three public datasets. Nevertheless, this method relies on image 
segmentation technology, so it has high requirements for images. Zhang et al. [20] combined a Gabor filter with 
an improved histogram of oriented gradients to extract texture and orientation information from vein images. 
Although the Gabor filter is powerful in image texture analysis, it might lose essential information in low-quality 
vein images.

Some methods focus on local features for finger-vein recognition, i.e., local binary pattern [21], local line bi-
nary pattern (LLBP) [22], etc. Recently, Mustafa et al. [23] proposed a new finger-vein recognition system using 
a combination of complete local binary pattern and phase-only correlation. Compared with the classical local 
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feature extraction, this method can extract more detailed features. Zhao et al. [24] combined the mean and stan-
dard deviation of local region pixels by local binary pattern coding. This method makes up for the problem of 
insufficient global information extraction by classical local binary operators. Although these two methods have 
improved the local binary method, neither of them takes into account the information of the center pixel itself.

Most of the above research methods are aimed at identifying the single feature information in the image, more 
likely lacking some essential ones. Therefore, this paper proposes a novel fused finger-vein recognition method 
based on monogenic binary coding. The amplitude, phase, and direction information of the finger-vein image are 
extracted by the monogenic signal representation method, which is encoded by monogenic binary coding. The 
encoded features are then dimensionally reduced using BFLD to remove redundant information and reduce space 
complexity. Finally, the three features are fused in the matching stage, which effectively improves the perfor-
mance of finger-vein recognition.

3   Proposed Method

3.1   Monogenic Signal Representations

As a two-dimensional extension of the one-dimensional analytical signal retaining the critical attributes, the 
monogenic signal [25] has been widely applied in the fields of image denoising, validation, and texture classifi-
cation. The monogenic signal is generated from the Riesz transform, a multi-dimensional extension of the Hilbert 
transform [26]. In two-dimensional space, the Riesz transform is defined as:
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The filters xh  and yh  are represented by two-dimensional frequency responses xjω ω−  and yjω ω− , in 

which ω  denotes the angular frequency, ( ),x yω ω ω= , ∗  means the convolution operation, and ( )f z refers to 
the input signal. The Riesz kernel in the spatial domain is defined as:
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In practice, the image needs to be band-pass filtered before inputting to the Riesz transform. The classical 
Gabor filter [27] is affected by bandwidth limitation and the direct current component. However, the logarithmic 
Gaussian function can make up for the deficiency of the Gabor function and represent the frequency responses 
more naturally. As a band-pass filter in our work, the frequency response of the Log-Gabor filter [28]:
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where 0ω  and σ  are the center frequency and the scale variable, respectively. We utilize minλ  and µ  to represent 

the minimum wavelength and the wavelength multiple. S  and ratioσ  denote the number of scales and the scale 

factor. For the input image ( )f z , the monogenic band-pass signal is represented by the combination of f and 
its Riesz transform:
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where 1F −  denotes the two-dimensional inverse Fourier transform. The original image signal is orthogonally de-
composed into three components: local amplitude (A), local phase (P), and local orientation (O), as follows:
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The local amplitude, phase, and orientation describe the local energy distribution, structure, and geometry in-
formation, respectively.

3.2   Monogenic Binary Coding

The monogenic signal is encoded in two steps, i.e., binary encoding methods with local variation and intensity 
[29]. Local variation binary coding focuses on the variation between the central and the surrounding pixels.

Due to different local properties of amplitude A, phase P, and orientation O, the local variation binary coding is 
separated into local amplitude and monogenic phase binary coding. The classical local variation coding process, a 
part of our work, is shown in the lower part of Fig. 1.

Fig. 1. The monogenic binary coding process of each local block (e.g., 3 3× )
(The upper part is the monogenic local intensity encoder, and the lower is that of variation. These two coding methods are 
used to build MBC X− , where {A,O,P}X ∈ )

Similar to LBP, the local amplitude binary coding is encoded by comparing the amplitude values of the central 
and surrounding pixels. cz  and ( )cA z  denote the central pixel and its amplitude value. ( )A i  indicates the ampli-

tude value of the thi  neighbor. The amplitude binary code of the thi  neighbor is:
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The angles of the local phase and orientation in the monogenic phase show the local structure and geometry 
information. Since feature type comparison works better than simple angles, we employ the quantization function 
( )Q x  to evaluate the similarity of two local features. They are considered similar only if the quantization func-

tion values of the two phases or orientations are equivalent. The phase and orientation binary coding rules for the 
thi  neighbor are shown in Equation (8).
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where, ( )Q x q= , ( )360 1 360
4 4
q qx

⋅ − ⋅
≤ ≤ , ( )P i  and ( )O i  indicate the local phase and orientation of the thi  pixel in 

the neighborhood around the central pixel. Therefore, the overall binary code of local variation of the monogenic 
signal is defined:
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, , ,A A A

A c N NC z C C C− =    .                                                                  (9)

( ) 1 1 binary
, , ,P P P

P c N NC z C C C− =    .                                                                (10)

( ) 1 1 binary
, , ,O O O

O c N NC z C C C− =    .                                                               (11)

The local intensity coding adopts the quadrant-bit method to encode the local intensity feature information 
of the central pixel, in the upper part of Fig. 1, where lg_ , {x, y}df d ∈ , represent the horizontal and vertical 
Riesz transform outputs of the monogenic signal representation. The encoding form of quadrant-bit methods is: 

binary[C (z ),C (z )]I I
x c y c , regarded as the highest two bits in MBC code.
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MBC-A, MBC-P, and MBC-O represent different binary coding methods of the three components of the mono-
genic signal. To be specific, in each binary encoding method, the local intensity and variation codes are regarded 
as the two highest and the other eight low bits:
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3.3   Proposed Algorithm

Local histograms can represent local feature information, with the advantages of robustness to illumination 
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changes and background noise. After obtaining the multi-scale MBC X−  feature map of the finger-vein image, 
we construct the MBC X−  histogram. If feature histogram fusion is performed before their matching, the feature 
dimension and algorithm complexity will be increased. Therefore, we introduce the BFLD module to enhance 
the discrimination and reduce the feature dimension. Then feature points are matched by cosine distance, and 
similarity fusion is further carried out. The flowchart of the proposed methodology is demonstrated in Fig. 2. 
Considering the rationality and feasibility, the overall framework can be divided into five steps as follows.

Fig. 2. The overall flowchart of our proposed method

(1) For the two-dimensional input ( )f z , the monogenic signal is decomposed into the monogenic amplitude, 
orientation, and phase information through the Riesz transform and Log-Gabor filter. Corresponding to the mono-
genic binary coding mechanism, the three monogenic components are encoded to construct the feature maps.

(2) The encoded image is divided into M  parent blocks, which are further split into K  sub-blocks, where 

a bM M M= × , c dK M M= × . Next, we extract the histogram features of each sub-block and concatenate the lo-
cal histograms of all different sub-blocks into a single vector to represent the histogram of the parent block. 

(3) The parent block feature vectors L
KH  corresponding to all training sets are extracted by the second step to 

form M  feature sets, 1 2 3, , , , L
i K K K KH H H H H =   , where 1,2,3, ,i M=  , with L  training pictures. We reduce 

the dimension of feature vector (i)gH  via PCA and obtain the best projection vector-matrix (i)gW  through Fisher 

criterion, where { }g , ,MBC A MBC O MBC P∈ − − − .

(4) The validation and test sets are partitioned in the same proportion to achieve the feature sets (i)v
gH  and 

(i)t
gH . The features of each parent block are projected onto (i)gW , resulting in low-dimensional vectors in Fisher 

space, (i)v
gF  and (i)t

gF , where (i) [W (i)] (i)T
g g gF H= . Finally, the cosine distance is utilized to measure the 

similarities between the validation and test sets. We select (i)v
gF  and (i)t

gF  to represent the thi  low-dimensional 

feature of the validation and test sets. The similarity between (i)v
gF  and (i)t

gF  is calculated as:
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The similarities between the images of the entire validation and test sets are represented by the similarity ac-
cumulation of M parent blocks in Equation (15), the same for similarity calculation of amplitude MBC AS − , phase 

MBC PS − , and orientation MBC OS − .
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(5) In order to obtain better recognition results, we combine features with the appropriate weights to gain 
FFV MBCS −  and contribute to the final recognition task, where 1a , 2a , and 3a  represent coefficients, subject to 

1 2 3 1a a a+ + = .

1 2 3FFV MBC MBC P MBC A MBC OS a S a S a S− − − −= + +  .                                                (16)

Improper weight division might cause accuracy decline. Since the performances of local amplitude and local 
orientation are relatively close in various databases, we assign the same weight to MBC AS −  and MBC OS − . Specific 
experimental results will be described in detail in the fourth chapter.

4   Experimental Results and Analysis

Our experiments are conducted on Windows 10 with Intel Core i7-5500U and 8GB memory. To verify the supe-
riority of the FFV-MBC method proposed in this paper, we conduct a series of experiments on two public data-
sets and one self-built dataset. The proposed method is evaluated in terms of accuracy and EER. All the time in 
the experiment is the recognition run-time of a single image. The experimental details and the superiority of our 
proposed model are shown in this section. Note that the collection and essential technical details of the self-built 
dataset are also included.

4.1   Datasets 

We created a new, high-quality finger-vein dataset in the Signal and Information Processing Laboratory (FV-
SIPL). Except for the self-built dataset, we evaluate the proposed method on the datasets made by Malaysian 
Polytechnic University (FV-USM) [30], the Group of Machine Learning and Applications of Shandong University 
(SDUMLA-HMT) [31]. An overview of the three datasets is shown in Table 1. The third column, ‘sample’, shows 
the number of samples for each finger.

Table 1. Information about the finger-vein datasets used in our experiments
Dataset # People Details of fingers Sample # Images

FV-USM 123 Index, middle (both hands) 12 5904
SDUMLA-HMT 106 Index, middle, ring (both hands) 6 3816

FV-SIPL 27 Index, middle (both hands) 12 1296

FV-USM was collected from 123 people, each of whom provided two index and middle fingers and participat-
ed in two collection processes. Each finger’s picture should be taken six times with the size of 640 480×  pixels 
in each collection process. For SDUMLA-HMT, the Joint Laboratory made the acquisition equipment for the 
Intelligent Computing and Intelligent System of Shandong University. This dataset was obtained from 106 peo-
ple, each of whom provided the index, middle, and ring fingers of both hands. Each finger was collected six times 
repeatedly with the size of 320 240×  pixels.

The source of the self-built dataset includes 27 volunteers, of whom are teachers and students from Liaoning 
Technical University. Each volunteer provided four fingers, and each finger was collected 12 times, generating 
a total of 1296 ( 27 4 12× × ) finger-vein pictures. The finger veins in our dataset (FV-SIPL) appear in 176 415×  
pixels with higher quality, fewer non-finger areas, and no apparent flipping of different images of the same finger.

Self-built Dataset.  We collected the dataset FV-SIPL through a self-built finger-vein acquisition sensor with a 
single camera. Here are the collection details of the finger-vein images in FV-SIPL.

(1) Side-illuminated light penetration. The hemoglobin in the blood possesses a strong absorption capacity 
for near-infrared rays with a wavelength of 720 ~ 1104  nanometers. When the incident light adopts this wave-
length, the near-infrared light is absorbed by hemoglobin in the blood vessel and reflected by other finger tissues. 
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Therefore, the finger-vein structure can be highlighted in the imaging system [32]. 
Generally, the finger-vein image acquisition devices are divided into light penetration and reflection acqui-

sition. Compared with the reflective acquisition, the infrared light of the light penetration acquisition is in a 
relatively closed environment. Because of inherent advantages, the light penetration collection results in high-
er-quality images. As shown in Fig. 3, the light penetration method can be further divided into top-illuminated 
and side-illuminated (left and right sides). If the illumination is not uneven, the contrast between the venous and 
non-vein areas may be greatly reduced. After angle adjustments, the finger-vein collection device built by our lab-
oratory adopts the side-illuminated light penetration method finally, as shown in Fig. 3(b).

(a) Top-illuminated                                 (b) Side-illuminated
Fig. 3. Two types of light penetration in finger-vein acquisition

(2) Sensor selection. Besides, our device adopts 850 nm near-infrared led and embeds an infrared high trans-
mittance filter (NIR filter) to eliminate the interference of noisy background and visible light. First, a 1080p res-
olution near-infrared camera is used to shoot images. Second, the LED light intensity is automatically adjusted 
by pulse width modulation (PWM) according to the image’s brightness. Finally, the camera can catch a clearer 
image, which is transmitted to the Micro-Controller Unit (MCU) for storage, calculation, and matching. The fin-
ger-vein collection device is shown in Fig. 4.

(a) Components                                           (b) FV-SIPL collector
Fig. 4. Our self-built acquisition equipment

Data Preprocessing.  The range and resolution of finger vein images collected by different acquisition devices 
are inconsistent, and the samples collected contain background irrelevant to finger-vein recognition, so it will 
cause interference to further finger-vein recognition. To extract meaningful information in the subsequent fin-
ger-vein recognition method, we preprocess the collected images, as shown in Fig. 5.

Taking FV-USM as an example, firstly, we can obtain contour information of the finger veins through edge 
detection and filters, which can smooth the images, suppress the noise, and eliminate the sharp phenomenon. 
Secondly, we normalize the RoI obtained by cropping the boundary lines. More important, FV-SIPL collected by 
our team contains fewer non-finger areas, no significant flipping, and no RoI extraction needed. Examples of pre-
processed images from different datasets are shown in Fig. 6.
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 (a) Original image     (b) Filtering                (c) Edge detection       (d) Denoising              (e) Cropping        (f) Normalization
Fig. 5. Image preprocessing processes on FV-USM

(a) FV-USM                 (b) SDUMLA-HMT              (c) FV-SIPL
Fig. 6. Examples of testing finger-vein datasets 

4.2   Parameter Settings

We tuned the parameters on FV-USM for the proposed method in two stages: the filtering stage and the histogram 
calculation.

(1) Parameters in the multi-scale Log-Gabor filter: In our proposed work, we employ a multi-scale log-Gabor 
filter to capture more frequency information, rather than a simple log-Gabor filter or Gabor filter [33]. The param-
eters in the multi-scale log-Gabor filter include the minimal wavelength minλ , the multiplication factor of wave-

length µ , the scale number, and the ratio factor ratio 2σ = . For example, with min 4λ = , 0.45µ = , 3S = , and 

ratio 2σ =  as the initial values for FV-USM, the above parameters are tested and compared in Fig. 7. After those 

parameter tuning experiments, we chose min 6λ = , 0.35µ = , 3S = , and ratio 3σ = .

                                       (a) minλ                                                                                 (b) µ
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                                              (c) S                                                                                           (d) ratioσ

Fig. 7. The accuracy of the MBC X BFLD− +  combined with different parameter settings, where {A,O,P}X ∈

(2) Number of blocks in the sub-region histogram: Because the block number in the sub-region determines the 
expressive ability and dimension of the feature, it is essential to choose an appropriate block number and further 
retain more detailed information. While calculating sub-region histograms, we divide the image into a bM M×  

blocks, further split into c dM M×  sub-blocks. We have conducted ablation studies on different parent blocks and 
sub-block partitioning. The more blocks, the more feature dimensions, the more memory and longer recognition 
run-times it will cost. Under the same parameter settings, the recognition performance of FV-USM in different 
block division is shown in Fig. 8. Consequently, the parent block in the three datasets are divided into 1 2×  sub-
blocks. Finally, the sub-blocks are further separated into 1 2×  for FV-USM and 2 2×  for the others.

(a) Parent blocks                                                            (b) Sub-blocks
Fig. 8. The recognition performance of FFV-MBC using different block partitions

4.3   Experimental Results

This section mainly reports the experimental results and details of FFV-MBC on two public datasets and one self-
built dataset. The dataset division and selection of weight are shown. Our proposed method shows better accuracy 
and EER than other state-of-the-art methods.

Experiments on FV-SIPL.  We used all the categories in the FV-SIPL dataset. We randomly selected four images 
for training, three images for verification, and three images for testing in each category in a non-repeated manner. 
The experimental results of FV-SIPL under different weights are shown in Table 2. All of them performed well, 
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especially the best weights in terms of accuracy and recognition run-time, 1 0.6a = , 2 3 0.2a a= = , are chosen 
for later experiments. The comparison results of the FFV-MBC method with LBP, LBP+PCA, and other classi-
cal algorithms are shown in Table 3. Compared with classical algorithms such as LBP and LDA, FFV-MBC not 
only considers the information of the center pixel itself but also extracts more discriminative features by BFLD. 
Therefore, the method shows better performance in terms of accuracy and equal error rate.

Table 2. Recognition accuracy and run-time on FV-SIPL fused with different weights

1a 2a 3a Accuracy (%) Run-time (ms)
0.2 0.4 0.4 99.38 19.78
0.4 0.3 0.3 99.38 19.81
0.6 0.2 0.2 99.69 19.38
0.8 0.1 0.1 99.69 19.77

Table 3. Comparison of run-time, accuracy, and equal error rates with different methods on the FV-SIPL dataset
Method Run-time (ms) Accuracy (%) EER (%)

LBP [34] 12.05 83.75 6.53
LBP+PCA [35] 33.70 93.56 5.13

2DPCA [36] 73.33 97.72 3.53
LDA [37] 41.26 91.15 5.29
FFV-MBC 19.81 99.69 0.85

Experiments on FV-USM.  We randomly selected 150 classes in the FV-USM dataset and generated finger vein 
images with the size of 100 300×  pixels through the preprocessing in Fig. 5. We divided the selected images into 
a training set, validation set, and test set equally. Table 4 shows the experimental fusion results on the FV-USM 
dataset, where 1 0.2a =  and 1 0.4a =  have the same accuracy and similar recognition run-time. Considering the 

equalization of features and robustness of the algorithm, we choose the weight 1 0.4a = . First, reported the ac-
curacies in Table 5. The proposed method achieves 99.67% accuracy, better than other novel methods. Second, 
Table 6 shows that the FFV-MBC method has lower EER than EMC [38], lightweight CNN [39], MULBP + 
Block (2D)2PCA [40], PLPQ [41], and FVRAS-Net [42].

Table 4. Recognition accuracy and run-time on FV-USM fused with different weights

1a 2a 3a Accuracy (%) Run-time (ms)
0.2 0.4 0.4 99.67 11.84
0.4 0.3 0.3 99.67 11.67
0.6 0.2 0.2 99.33 11.14
0.8 0.1 0.1 99.33 10.95

Table 5. Accuracies on FV-USM compared with existing methods
Paper Feature extraction method Accuracy (%)

Zhao et al. [12] CLBP+SLBP 97.43
Vasilopoulos et al. [38] EMC 90.50

Zhao et al. [39] lightweight CNN 97.95
Hu et al. [40] MULBP + Block (2D)2PCA 99.32
Ma et al. [41] PLPQ 97.83

Proposed FFV-MBC 99.67

Table 6. Comparison of equal error rates with different methods on the FV-USM dataset
Paper Feature extraction method EER (%)

Vasilopoulos et al. [38] EMC 1.42
Zhao et al. [39] lightweight CNN 1.07
Hu et al. [40] MULBP + Block (2D)2PCA 1.89
Ma et al. [41] PLPQ 1.92

Yang et al. [42] FVRAS-Net 0.95
Proposed FFV-MBC 0.92
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Experiments on SDUMLA-HMT.  We tested FFV-MBC on 100 classes in the SDUMLA-HMT dataset. Similar 
to the FV-USM dataset, we also equally divided the selected data into three non-repeated parts. The fusion exper-
iment results in Table 7 show that when 1 0.4a = , 2 3 0.3a a= = , the best recognition accuracy is achieved with 
the shortest run-time. Compared with other advanced methods such as PLS-DA [20] and Coding Scheme B [44], 
the proposed method improved accuracy by 0.34% to 4.01% and reduced EER by 0.18% to 0.76%, as shown in 
Table 8 and Table 9.

Table 7. Recognition accuracy and run-time on SDUMLA-HMT fused with different weights

1a 2a 3a Accuracy (%) Run-time (ms)
0.2 0.4 0.4 98.39 6.66
0.4 0.3 0.3 98.53 5.97
0.6 0.2 0.2 97.58 6.12
0.8 0.1 0.1 97.58 6.25

Table 8. Accuracies on SDUMLA-HMT compared with existing methods
Paper Feature extraction method Accuracy (%)

Zeng et al. [15] CRF-RNN 90.07
Zhang et al. [20] PLS-DA 97.52

Li et al. [43] DSFD 94.52
Ren et al. [44] Coding Scheme B 96.67

Zhang et al. [45] Robust Keypoint Correspondence Clustering 97.54
Proposed FFV-MBC 98.53

Table 9. Comparison of equal error rates with different methods on the SDUMLA-HMT dataset
Paper Feature extraction method EER (%)

Zeng et al. [15] CRF-RNN 5.83
Zhang et al. [20] PLS-DA 2.15
Yang et al. [42] FVRAS-Net 1.71
Ren et al. [44] Coding Scheme B 2.14
Liu et al. [46] Shallow CNN 2.29

Proposed FFV-MBC 1.53

4.4   Ablation Studies 

In order to verify the importance of fusing the three components to improve the finger-vein recognition perfor-
mance. We compared the accuracy of the FFV-MBC with the three components of MBC without and with dimen-
sion reduction shown in Table 10. Experimental results show that BFLD can further improve the performance of 
the MBC algorithm in terms of amplitude, direction, and phase component and improve the recognition rate by 
0.39% to 3%. On this basis, we fuse the three components in a certain proportion, namely FFV-MBC. Our FFV-
MBC outperforms MBC and MBC+BFLD methods to a certain degree. Especially for the FV-USM dataset with 
uneven illumination, the recognition performance is significantly improved after fusing the three components.

Table 10. Experimental results of the proposed algorithm under different combinations
Methods MBC-A MBC-O MBC-P MBC-A+BFLD MBC-O+BFLD MBC-P+BFLD FFV-MBC

FV-SIPL (%) 98.15 96.76 98.77 99.07 98.61 99.38 99.69
FV-USM (%) 97.67 95.67 96.33 99.00 98.67 98.33 99.67

SDUMLA-HMT (%) 97.58 98.00 96.77 98.39 98.39 97.58 98.53

4.5   Result Analysis 

The algorithm can effectively obtain meaningful information from finger vein images since the monogenic signal 
is represented by local amplitude, phase, and orientation. The intensity encoding process in MBC can compen-
sate for the representation capability of local variation and improve the recognition accuracy. After that, BFLD 
is exploited to reduce the dimension of the encoded feature vector, which can obtain stable and effective feature 
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extraction and significantly improve the recognition effect, as shown in the experimental results of Table 10.
The number of blocks is also an essential factor affecting the recognition effect. Block partitions of parents and 

sub-blocks have been tuned to find the best accuracy. As shown in Fig. 8, the accuracy of the FFV-MBC method 
increases first and then decreases with the increasing number of blocks. It shows that when the number of blocks 
is too large, although the small local change information of the image has been accurately extracted, it may face 
an insufficient grasp of the larger regional feature information. The fusion experiments of the three datasets show 
that choosing weights can noticeably improve the recognition accuracy without increasing the run-time.

Thanks to FFV-MBC fuses three meaningful features, the method achieves higher accuracy and lower equal 
error rate on three datasets compared with classical methods and state-of-the-art methods, reflecting the superiori-
ty of the FFV-MBC method.

5   Conclusions

To address the problem of poor feature pattern representations in traditional finger-vein recognition algorithms, 
we propose a novel fused finger-vein recognition method based on monogenic binary coding. We utilize a multi-
scale Log-Gabor filter to acquire three components of images, i.e., amplitude, orientation, and phase information. 
Also, the BFLD is used to reduce the dimensions of the extracted features, including redundant information. 
Finally, for each image, the similarities of amplitude, orientation, and phase information are combined under ap-
propriate weights, calculated from cosine similarities. The experimental results verify that the combination of the 
monogenic signal components in the FFV-MBC can effectively represent the finger-vein features. The superiority 
of the proposed FFV-MBC over most classical and state-of-the-art methods on three different datasets. Besides 
these, the finger-vein dataset we made eliminates image preprocessing steps and results in excellent performance 
for finger-vein recognition. Although the extracted features in the proposed method consider the information of 
the relationship between the center pixel and the surrounding pixels as well as the information of the center pixel 
itself, these features are all local features and ignore the importance of global information. Therefore, we will 
consider encoding global information and fusing local and global features in future studies. Design more efficient 
encoding and feature representation methods to improve the accuracy and robustness of finger vein and other bio-
metric identification methods.
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