
Journal of Computers Vol. 34 No. 1, February 2023, pp. 29-43
doi: 10.53106/199115992023023401003

29* Corresponding Author

Improving Adversarial Robustness via Finding Flat Minimum of the Weight 
Loss Landscape

Jiale Yan, Yang Xu*, Sicong Zhang, Kezi Li, Xiaoyao Xie

 Key Laboratory of Information and Computing Science of Guizhou Province, Guizhou Normal University,
Guiyang 550001, China

xy@gznu.edu.cn

Received 27 March 2022; Revised 30 June 2022; Accepted  6 July 2022

Abstract. Recent studies have shown that robust overfitting and robust generalization gap are a major trouble 
in adversarial training of deep neural networks. These interesting problems of robust overfitting and robust 
generalization gap motivate us to explore more solutions. Inspired by recent research on the idea of smooth-
ness, this paper introduces the latest research work on the Adversarial Model Perturbation (AMP) method 
of finding the flatter minimum of the weight loss landscape into the adversarial training (AT) framework of 
deep neural networks to alleviate the robust overfitting and robust generalization gap troubles, called AT-AMP 
method. The validity of the flat minimum is explained from the perspective of statistical generalization theory. 
Although the idea is plain, this approach is surprisingly effective. Experiments demonstrate that by incorporat-
ing the AMP method into adversarial training framework, we can boost the robust accuracy by 1.14% ~ 5.73%, 
on three different benchmark datasets SVHN, CIFAR-10, CIFAR-100 and two threat models L∞  norm con-

straint and 2L  norm constraint, across diverse types of adversarial training framework such as AT, TRADES, 
MART, AT with pre-training and RST and diverse white-box and black-box attack, achieving the state-of-the-
art performance in adversarial training framework. In addition, we compare several classical regularization and 
modern deep learning data augmentation tricks for robust overfitting and robust generalization with the AMP 
method, and the experimental research results consistently indicate that introducing the AMP method achieves 
advanced adversarial robustness in the adversarial training framework.
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1   Introduction

As the core technology of artificial intelligence, deep neural networks (DNNs) have been extensively used in the 
majority of scenes and applications. They have achieved state-of-the-art performance in many tasks such as com-
puter vision [1], natural language processing [2], speech recognition [3], autonomous driving [4], medical diagno-
sis [5], and even surpass human processing ability in some fields. However, it is found that the DNNs are easily 
fooled by adding human-imperceptible small perturbations to the normal input examples (known as adversarial 
examples) [6-7], resulting in wrong output, which brings tremendous challenges to the application of the DNNs 
in security-sensitive systems [4-5]. As the DNNs model is widely used, it is almost everywhere in daily life. 
Therefore, how to construct a more secure, reliable and robust DNNs model, such as improving model robustness 
against adversarial examples, becomes more and more urgent.

So far, there have been many defense techniques to improve the adversarial robustness of DNNs [8-11]. 
Among these defense methods, Aleksander Madry et al. proposed projected gradient descent (PGD) adversarial 
training (AT) [12] is recognized as the most effective and promising defense method, which trains DNNs to min-
imize the training loss under the worst input perturbation. Although AT has achieved a certain degree of adver-
sarial robustness, its robustness is far from satisfactory due to the enormous robust generalization gap [13-14]. 
For instance, on CIFAR-100 dataset [15], PreAct ResNet-18 [16] using PGD-AT under the L∞  norm constraint 
achieved 71% training robustness accuracy, but only achieved 27% test robustness accuracy after 200 epochs, as 
shown in Fig. 1(c). Surprisingly, this gap in robust generalization is as high as 44%, which is completely distinct 
from the DNNs standard training on normal examples. The standard generalization gap is usually less than 10%. 
In addition, the recent research by Leslie Rice et al. [13] shows that the AT of DNNs has a property, that is, “robust 
overfitting” is a dominant phenomenon. Robust overfitting is an important factor that leads to unsatisfactory ad-
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versarial robustness of DNNs model. Therefore, how to solve the robust generalization gap and robust overfitting 
is the key way to go a step further improve the robustness of adversarial training methods.

(a) SVHN                                             (b) CIFAR-10                                       (c) CIFAR-100

Fig. 1. The curve of the accuracy of PGD-AT on three different benchmark datasets SVHN, CIFAR-10 and CIFAR-100  under 
the L∞  norm constraint ( 8 / 255ε = ) applying PreAct ResNet-18 model for 200 epochs 
(Blue, Green, and Red curves represent the accuracy of train robust, test robust, and robustness generalization gap respective-
ly)

Recalling that weight loss landscape is a commonly used approach to represent the standard generalization 
gap in standard training scenarios [17-18], however, there have been few investigations into adversarial training 
framework, among which Prabhu et al. [19] and Yu et al. [20] attempted to use the pre-generated adversarial ex-
amples to investigate but were unable to reach the desired conclusions. In this article, we investigate the weight 
loss landscape under adversarial training framework using on-the-fly produced adversarial examples, and we ver-
ify a strong relationship between the flatness of the weight loss landscape and robust generalization gap as well 
as robust overfitting. A few well-known adversarial training framework refinements, such as AT with pre-training 
[13], TRADES [21], MART [11], and RST [22], all implicitly flatten the weight loss landscape to alleviate the 
robust generalization gap and robust overfitting. Motivated by this, we propose to incorporate an explicitly flatten 
weight loss landscape strategy, Adversarial Model Perturbation (AMP) [23], into adversarial training framework, 
which directly bounds the flatness of the weight loss landscape to facilitate the DNNs model to find a more flat 
minimum. Unlike random perturbations [24], the AMP technique can infuse the strongest worst-case weight 
perturbations, establishing a double perturbation mechanism such as inputs and weights parameter are both ad-
versarially perturbed in the adversarial training framework. The explicit flatness of weight loss landscape AMP 
approach is universal and can be conveniently introduced into existing improved adversarial training framework 
method with small computational expense. We have carried out a lot of experimental comparisons, and confirmed 
that AMP method has effectively improved the adversarial robustness of DNNs models in the adversarial training 
framework.

The main contributions of this paper are as follows:
(1) We verify the fact that flatter weight loss landscape to facilitate the DNNs model to find a more flat mini-

mum often contributes to smaller robust generalization gap and robust overfitting in adversarial training frame-
work utilizing on-the-fly produced adversarial examples.

(2) We propose to incorporate an explicitly flatten weight loss landscape Adversarial Model Perturbation 
(AMP) strategy into adversarial training framework, establishing a double perturbation mechanism that infuses 
the worst-case input and weight parameter perturbations, which directly bounds the flatness of the weight loss 
landscape to facilitate the DNNs model to find a more flat minimum.

(3) Experiments demonstrate that by incorporating the AMP strategy into adversarial training framework, 
it can boost the robust accuracy by 1.14% ~ 5.73%, across diverse types of adversarial training approach such 
as AT, TRADES, MART, AT with pre-training and RST, three different datasets, two threat models and diverse 
white-box and black-box attacks, achieving the state-of-the-art performance in adversarial training framework. 
In addition, we explore the optimal hyperparameter for using the AMP method. We compare several classical and 
modern deep learning tricks for robust overfitting and robust generalization, including regularization and data 
augmentation, with the AMP method and the experimental research results consistently indicate that AMP ac-
quires advanced adversarial robustness.

The rest of this paper is organized as follows. Section 2 introduces a review of related work. In Section 3, a 
method is proposed to improve model adversarial robustness in the adversarial training framework. Section 4 
presents the experiment setup, experiment results and experiment effect discussion. Finally, Section 5 concludes 
the paper.
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2   Related Work

In this part, we will briefly review these recent adversarial example defense methods and robust generalization 
and robust overfitting problems in adversarial training.

2.1  Adversarial Defense

A series of previous works have proposed many defense methods to defend adversarial attacks, such as defensive 
distillation [8], feature denoising [25], input denoising [26], adversarial detection [27], gradient regularization 
[28], gradient masking [29], model compression [30], activation pruning [31], adversarial training [6-7, 12] and 
so on. However, many defense methods either provide little improvement in robustness or have been evaded by 
new attack methods. At present, one of the recognized relatively effective defense approach is AT, which has not 
been completely attacked up to now and has relatively excellent adversarial robustness [32]. A variety of addi-
tional strategies are presented based on adversarial training to improve its performance even more. A brief review 
is as follows:

AT [12] formalize a min-max problem to seek the model parameter θ  to minimize the adversarial loss, and 
adversarial training approach solves the following optimization problems to improve the robustness of the DNNs 
model.

        min ( )
θ

ρ θ , where '

'
1

1( ) max ( ( ), )
i i p

n
i ii x x

f x y
n

ε

θρ θ
≤

= −
= ∑  , (1)

where fθ  is DNNs with parameter θ , n  is the quantity of training examples, '
ix  is the adversarial example gen-

erated under the pL  norm constraint, (*)
 is the standard loss function, and ( )ρ θ  is the adversarial loss.

TRADES [21]. TRADES optimizes an upper bound of adversarial risk that is a trade-off between accuracy and 
robustness:
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where KL denotes the Kullback-Leibler divergence, CE denotes the cross-entropy loss, and β  is the hyperparam-
eter that controls the trade-off between natural accuracy and robust accuracy.

MART [11]. As a regularizer of adversarial risk, MART includes an explicit differentiation of misclassified ex-
amples:
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where ' ' '( ( ), ) log([ ( )] ) log(1 max [ ( )] )
i ii i i y k y i kBCE f x y f x f xθ θ θ≠= − − − , λ  is a tunable scaling parameter that bal-

ances the two parts of the final loss, KL denotes the Kullback–Leibler divergence, [ ( )]
ii yf xθ  denotes the iy -th 

element of output vector ( )if xθ .
Semi-Supervised Learning (SSL) [11, 22, 33]. SSL-based approaches make use of additional unlabeled data. 

They begin by training a natural model on the labeled data to produce pseudo labels for unlabeled data. Then, 
using both labeled and unlabeled data, adversarial loss ( )ρ θ  is used to train a robust model:

      ( ) ( ) ( )SSL labeled unlabeledρ θ ρ θ λ ρ θ= + ⋅ , (4)

where λ  is the weight applied to unlabeled data. ( )labeledρ θ  and ( )unlabeledρ θ  generally refer to the same adver-
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sarial loss. For example, RST in Carmon et al. [22] uses TRADES loss, whereas semi-supervised MART in Wang 
et al. [11] employs MART loss.

The above work of adversarial defense is based on promising adversarial training framework. They have intro-
duced some new ideas and techniques to further improve the adversarial robustness of the DNNs model under ad-
versarial training framework. The main difference between our ideas and methods and above work methods is that 
we propose to incorporate an explicitly flatten weight loss landscape the AMP techniques into adversarial training 
framework, establishing a double perturbation mechanism that infuses the worst-case input and weight parameter 
perturbations, which directly bounds the flatness of the weight loss landscape to facilitate the DNNs model to 
find a more flat minimum. However, the DNNs model to find a more flat minimum often contributes to smaller 
robust generalization gap and robust overfitting in adversarial training framework. In addition, more importantly, 
our ideas and methods are not related to specific methods and general, which can be incorporated into the above 
work improved adversarial training framework to further enhance the adversarial robustness of the corresponding 
methods.

Unfortunately, the method proposed in this paper has the same shortcomings as the above related work im-
proved methods based on adversarial training framework. Although the adversarial robustness accuracy of the 
DNNs model has been improved, the natural accuracy of the normal examples will be damaged in some scenari-
os, and the introduction of the double perturbation mechanism proposed in this paper will increase some compu-
tational overhead.

2.2  Robust Generalization and Robust Overfitting

It is more difficult to train a DNN with robust generalization on adversarial examples than standard generalization 
on normal examples [12], and it needs more training data [14] and has higher examples complexity [34]. Preetum 
Nakkiran et al. [35] show that the model needs large capacity to become more robust. Dimitris Tsipras et al. [36] 
and Hongyang Zhang et al. [21] prove that the adversarial robustness accuracy may be inherently incompatible 
with accuracy on natural examples. Recently, Leslie Rice et al. [13] confirmed that robust overfitting is a crucial 
problem in adversarial training and suggested early stop as an effective mitigation measure. Furthermore, there is 
a body of work that investigates robust generalization and robust overfitting from the perspective of the loss land-
scape. There are two kinds of loss landscape in the adversarial training framework: 1) The input loss landscape, 
which is the change in loss with regard to the input. It represents the change in loss around training examples. By 
training on adversarially perturbed examples, AT explicitly flattens the input loss landscape. 2) The weight loss 
landscape, which is the change in loss with regard to the weight. It discloses the loss landscape geometry in the 
vicinity of model weights. In contrast to the standard training scenario, where various researches have indicated 
a correlation between the weight loss landscape and their standard generalization gap and overfitting [18, 37-38], 
whether the correlation occurs in adversarial training framework is currently being investigated.

Different from these studies, we propose to introduce explicitly flatten weight loss landscape in adversarial 
training framework, establishing a double perturbation mechanism that infuses input and weight parameter per-
turbations, which directly bounds the flatness of the weight loss landscape to facilitate the DNNs model to find 
a more flat minimum. A large number of experimental results identify a more flat minimum often contributes to 
smaller robust generalization gap and robust overfitting in adversarial training framework.

3   Methods

Recently, some research work focuses on using smoothness to improve robustness [39] or using smoothness to 
improve the generalization performance of standard training models [23]. Inspired by the smoothness of research 
work and implicitly flattening the weight loss landscape, we pay attention to explicitly flattening the weight loss 
landscape in the adversarial training framework, establishing a double perturbation mechanism that infuses input 
and weight parameter perturbations that directly bound the flatness of the weight loss landscape to facilitate the 
DNN model to find a more flat minimum. Previous work [38] shows that a flat minimum corresponds to a simple 
model, which can prevent overfitting. A widely accepted and empirically verified viewpoint is that models trained 
on normal data corresponding to the flat minimum of the weight loss landscape tends to be better generalized [40-
41]. Overall, intuition and experience motivate us to do this research. In this paper, we explore the robust model 
corresponding to finding the flat minimum of the weight loss landscape under the adversarial training framework, 
applying on-the-fly generated adversarial examples, and identify a strong correlation between the flat minimum 
of the weight loss landscape and robust overfitting as well as robust generalization gap. Some research work im-
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plicitly flattens the weight loss landscape to alleviate the robust generalization gap and improve robust overfitting. 
For the first time, we introduce an explicit AMP method to flatten the weight loss landscape in the adversarial 
training framework, which directly bounds the flatness of the weight loss landscape to facilitate the DNN model 
to find a more flat minimum. Details are as follows.

Assume that under a classification setting, where the task is to seek a classifier :fθ →   maps the input 

space   to the label space  , the function fθ  as a deep neural network is parameterized by θ , θ  comes from 

the weight space Θ , and for each training sample ( , )x y ∈ ×  , ( ( ), ; )f x y θ  is the loss function (cross-entropy 
loss).

Under the traditional empirical risk minimization (ERM) criterion [42], a deep neural network is trained by us-
ing a training set   to minimize the empirical risk loss of equation (5), which is abbreviated as ERM loss.

       ( , )
( ( ), ;1 )( )ERM x y

f x y θθ
∈

= ∑ 




 . (5)

However, it is well known that ERM loss training is subject to overfitting [42], and the learned parameters can 
never be well generalized on unknown data.

Fig. 2. Two kinds of minima: flat and sharp [38]

The AMP is a state-of-the-art method based on the principle of finding a flat minimum in ERM, which can be 
proved theoretically to be capable of flattening the weight loss landscape, which directly bounds the flatness of 
the weight loss landscape to facilitate the DNN model to find a more flat minimum. The AMP method does not 
minimize the traditional empirical risk loss but minimizes an AMP loss, as shown in Equation (6), which is de-
scribed in detail below.

       ( , )(0; )

1 ( ( ), ; )( ) maxAMP x yB
f x y

δ
θ θ
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+ ∆= ∑ 
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For any positive value δ  and any µ ∈Θ , define ( ; )B µ δ as a 2L  norm ball with a radius of δ  centered on µ  
in Θ  space. Its parameter δ  is a small positive value as a hyperparameter, which can be expressed as in equation 
(7).

    2
( ; ) { : }B µ δ θ θ µ δ= ∈Θ − ≤ . (7)

In actual use of AMP, the factors of computation cost and training speed are considered, and then the method 
of minimizing mini-batch is adopted to minimize AMP loss AMP . In more detail, a mini-batch   from a random 
small batch is adopted to approximate AMP loss in equation (6), as shown in equation (8).
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Then, introducing the AMP method into the adversarial training framework to minimize the adversarial loss 
( )ρ θ  in equation (1) can be approximately formalized as an optimization problem, which is called the AT-AMP 

method, as shown in equation (9).

         
*
min ( )
AT AMPθ
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2 1
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Algorithm 1. AT-AMP algorithm process

Symbol description: Training dataset {( , )}x y= , Batch scale m , Loss function 


, Initial DNN model pa-

rameter 0θ , Outer learning rate η , Inner learning rate ν  and ξ  Inner iteration quantity N , 2L norm δ , 
Adversarial examples norm constraint ε

1: while kθ  not converged do

2:     Update epoch: 1k k← +  

3:     Sample mini-batch 1{( , )}m
i i ix y == from training dataset 

4:     Initialize perturbation vector: 0∆ ←




5:     for 1n ←  to N  do

6:         while(
'
i i p

x x ε− ≤  and the preset number of iterations is completed)

7:            Compute gradient:

( ( ), ; )x i i ka f x y θ←∇ + ∆

8:            Update AE: '
i ix x aυ← +



9:         end while
10:       Compute gradient:

'
1

1 ( ( ), ; )m
i i ki

b f x y
m θ θ

=
← ∇ + ∆∑


 

11:        Update perturbation vector: b∆ ← ∆ + ξ


 

12:        if 2
δ∆ > then

13:              Normalize perturbation: 
2

δ
∆

∆ ←
∆





14:        end if
15:    end for
16:    Compute gradient:

'
1

1 ( ( ), ; )m
i i ki

c f x y
m θ θ

=
← ∇ + ∆∑


 

17:    Update parameter: k k cθ θ η← −


18: end while
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Formalizing the description based on the above formula, each batch   corresponds to a perturbation vector 
∆  on the parameter θ . This training involves the maximization of two inner layers and the minimization of 
an outer layer: The first maximization of the inner layer is used to perturb normal input examples searching for 
adversarial examples; the second maximization of the inner layer is used to update ∆  in the direction of aug-
menting ERM loss as a way to perturb weight parameter; The minimization of the outer layer loops on random 
batches and uses mini-batch SGD to minimize the adversarial loss ( )ρ θ . The detailed AT-AMP algorithm process 

is shown in Algorithm 1. It should be noted that the learned *
AT AMPθ −  is used to predict as a parameter of the deep 

neural network model after training, but it is used without perturbation in the testing stage.
The flat minima of neural networks can generalize better than the sharp ones. A convincing reason is that a 

flat minimum of the training function loss curve can acquire lower generalization loss when the test function loss 
curve is shifted from the training function loss for random perturbations, as shown in Fig. 2. For the improved ad-
versarial robustness, why is the flatter minimum more work? Our insight is that the adversarial training optimizes 
the weight loss landscape over the adversarial examples, which are then generated by adding small perturbations 
to each example as a way to obtain a worst-case, which means that the AT method considers a local worst-case on 
a sample-by-sample basis but does not cover the overall situation over multiple samples. The reason for the AT-
AMP method’s working is that it looks for the flatter minimum of the weight loss landscape, which affects the 
loss of all examples to the extent that a global worst-case at the model level can be obtained.

4   Results and Discussion

In this section, we conduct comprehensive experiments to evaluate the effectiveness of incorporating AMP 
approach into AT framework establishing double perturbation mechanism including its vanilla AT robustness, 
benchmarking the state-of-the-art robustness and comparisons to other classical regularization techniques and 
modern data augmentation techniques. Moreover, we discuss AMP approach in improving the robust generaliza-
tion gap and the robust overfitting effect.

4.1  Experimental Settings

Datasets.  Our experiments were conducted primarily using two threat models ( L∞ norm constraint and 2L  norm 
constraint) and three different datasets of SVHN [43], CIFAR-10 [15] and CIFAR-100 [15].

Training and Evaluation Details.  We default to using PreAct ResNet-18 for most experiments, with the excep-
tion of the experiments in Table 2 and Table 3 with the large-capacity network structure WideResNet34-10 [44]. 
In all training, an SGD optimizer with momentum of 0.9 was used for 200 epochs, and a piece-wise learning 
rate schedule (in the 100th and 150th epoch, the learning rate is reduced by a factor of 10 and the initial learning 
rate is 0.1) was used. Simple image data augmentation methods such as 32-size random crop with four pixel size 
padding and random image horizontal flip tricks are applied. We use two common metrics that are widely used: 
natural test accuracy and robust test accuracy, which are the classification accuracies on the original and the at-
tacked testsets, respectively.

Attack Methods.  For the 2L  threat model, perturbation constraint 128 / 255ε = , step size 15/255 for all data-

sets. For L∞  threat model, perturbation constraint 8 / 255ε = , step size 2/255 for CIFAR-10 and CIFAR-100 
datasets, and step size 1/255 for SVHN datasets. Unless otherwise specified, our default training and test attacks 
use PGD, which is recognized as one of the strongest algorithms for first-order attacks. Training attack uses PGD-
10 and test attack uses PGD-20 or other attacks.
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Fig. 3. The curve of the accuracy of PGD-AT and PGD-AT-AMP on CIFAR-10 dataset under the L∞  norm constraint 
( 8 / 255ε = ) applying PreAct ResNet-18 model for 200 epochs
(Dash lines show the PGD-AT; solid lines represent the PGD-AT-AMP. Blue, Green and Red curves represent the accuracy of 
train robust, test robust and robustness generalization gap respectively.)

Fig. 4. The curve of the test robust accuracy of PGD-AT-AMP varies with hyperparameters δ  on CIFAR-10 dataset applying 
PreAct ResNet-18 model under the L∞  norm constraint ( 8 / 255ε = )
(The experimental results show that 0.1δ =  is the best hyperparameters setting.)

4.2  A Case Study on Vanilla AT and AT-AMP

At first, we use PreAct ResNet-18 to carry out PGD-AT-AMP experiments under the L∞  norm constraint of the 
CIFAR-10 dataset, in which the hyperparameter of the AMP method follows the best hyperparameter 0.5δ =  
in the original paper [23]. For other detailed settings, please refer to Section 4.1 Experimental Settings. It is ob-
served that the model trained by the PGD-AT-AMP method does improve the robust generalization gap (the red 
solid line is lower than the red dotted line) and the robust overfitting (accuracy curves no longer get worse after 
more than 100 epochs), as shown in Fig. 3. Therefore, we further explored the influence of the AMP hyperpa-
rameter setting on the robust test accuracy and provided some guidance for further experimental exploration. We 
refer to the original paper [23] and explore several cases of test robust accuracy in the PGD-AT-AMP method 
with hyperparameters 0, 0.1, 0.2, 0.3, 0.4, 0 }.5, 0.6, 0.7, 0.8, 0.9, 1{           δ ∈ , as shown in Fig. 4. The experimental 
research results show that 0.1δ =  is the best hyperparameter setting, and we will adopt this best hyperparameter 
setting in the subsequent experiments.

In view of the fact that under the constraint of L∞ norm of the CIFAR-10 dataset, the PreAct ResNet-18 model 
trained by the PGD-AT-AMP method further improves the test robustness, so we further experimented under two 
threat models (i.e. L∞  and 2L  norm) of two datasets (SVHN and CIFAR-100 dataset) and the CIFAR-10 dataset 

2L  norm constraint, and also achieved more advanced test robustness than PGD-AT. The experimental results are 
shown in Table 1. For detailed analysis and discussion, see sections 4.4 and 4.5.
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As the previous research work [12] shows that the network model with a larger capacity is needed to 
achieve the model’s adversarial robustness, we have conducted experiments on the larger network structure 
WideResNet34-10, and the results show that the PGD-AT-AMP method has been proved to promote the adversar-
ial robustness of the model again. The detailed results are shown in Table 2. For detailed analysis and discussion, 
see sections 4.4 and 4.5.

Table 1. Accuracy (%) of PGD-AT and PGD-AT-AMP applying PreAct ResNet-18 model on different datasets and threat 
models ( L∞ norm: 8 / 255ε = ; 2L  norm: 128 / 255ε = ) over 5 random runs
(The best signifies the highest accuracy in the whole epoch while last signifies the accuracy at the end of the 200 epochs. The 
best results are marked in bold.)

Dataset Norm Method Robustness Accuracy Natural Accuracy
Best Last Best Last

SVHN
L∞

PGD-AT 53.34 ± 0.07 44.46 ± 0.25 92.14 ± 0.13 89.56 ± 0.37
PGD-AT-AMP 58.47 ± 0.18 57.38 ± 0.21 93.25 ± 0.09 92.19 ± 0.34

2L PGD-AT 66.63 ± 0.26 65.05 ± 0.21 93.34 ± 0.09 93.12 ± 0.24
PGD-AT-AMP 72.36 ± 0.32 67.86 ± 0.26 95.25 ± 0.16 94.76 ± 0.11

CIFAR-10
L∞

PGD-AT 51.77 ± 0.19 44.36 ± 0.34 81.68 ± 0.19 81.57 ± 0.21
PGD-AT-AMP 53.85 ± 0.32 53.26 ± 0.18 80.36 ± 0.14 80.44 ± 0.11

2L PGD-AT 68.13 ± 0.11 65.90 ± 0.31 89.54 ± 0.06 88.93 ± 0.15
PGD-AT-AMP 71.25 ± 0.09 71.13 ± 0.08 90.03 ± 0.26 89.13 ± 0.21

CIFAR-100
L∞

PGD-AT 27.26 ± 0.14 20.34 ± 0.20 56.36 ± 0.16 54.85 ± 0.36
PGD-AT-AMP 30.52 ± 0.21 29.69 ± 0.18 53.69 ± 0.26 53.36 ± 0.28

2L PGD-AT 41.39 ± 0.18 35.54 ± 0.27 62.83 ± 0.09 60.34 ± 0.23
PGD-AT-AMP 44.93 ± 0.16 44.63 ± 0.23 63.85 ± 0.22 62.51 ± 0.31

Table 2. Accuracy (%) of PGD-AT and PGD-AT-AMP on WideResNet34-10 across different datasets on L∞  norm constraint 
threat models ( 8 / 255ε = ) over 5 random runs
(The best signifies the highest accuracy in the whole epoch while last signifies the accuracy at the end of the 200 epochs. The 
best results are marked in bold.)

Dataset Norm Method Robustness Accuracy Natural Accuracy
Best Last Best Last

CIFAR-10 L∞
PGD-AT 54.16 ± 0.16 43.52 ± 0.22 84.16 ± 0.13 84.57 ± 0.21

PGD-AT-AMP 55.54 ± 0.19 53.89 ± 0.26 83.89 ± 0.06 83.59 ± 0.12
CIFAR-100 L∞

PGD-AT 29.95 ± 0.06 24.02 ± 0.09 56.69 ± 0.16 56.23 ± 0.24
PGD-AT-AMP 31.93 ± 0.15 31.54 ± 0.11 55.88 ± 0.13 55.25 ± 0.08

4.3  Benchmarking the State-of-the-art Robustness

In this section, we benchmark the state-of-the-art robustness of our proposed AT-AMP double-perturbation mech-
anism method against white-box and black-box attacks on CIFAR-10 dataset. Two types of adversarial training 
framework approaches are discussed: One is only dependent on original data: 1) AT; 2) TRADES; and 3) MART. 
The other makes advantage of extra data: 1) Pre-training; and 2) RST.

For CIFAR-10 under L∞  attack with 8 / 255ε = , we train WideResNet34-10 for AT, TRADES, MART, Pre-
training and RST, as described in their original works. For pre-training, we fine-tune 50 epochs using a learning 
rate of 0.001 as described in [45].

In the white-box attack scenario, we use FGSM, PGD-20, PGD-100 and CW∞  [46] attacks, where PGD-x 

denotes the number of iterations using PGD attack as well as CW∞  attack implemented in the form of PGD-100 
using CW loss. 

In order to eliminate the suspicion of obfuscated gradients in the proposed method, the black-box attack meth-
od of SPSA attack is implemented. In the black-box attack scenario, we use the query-based attack SPSA [47], 
where for gradient estimation we use a perturbation size of 0.001, step size of 0.01 and a batch size of 256 sam-
ples for each gradient estimation.

Finally we also tested a more powerful parameter-free attack method Auto Attack (AA) [48], which contains 
three white-box attack methods: APGD-CE [48], APGD-DLR [48], FAB [49] and a black-box attack method 
Square Attack [50]. The great advantage of the AA attack is the use of an ensemble of multiple parameter-free 
attacks to verify the robustness of the model. Other base hyperparameters of the baselines are configured as per 
their original paper. The experimental results are shown in Table 3. 
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The experimental results show that the proposed double perturbation mechanism consistently improves the ro-
bustness of improved methods (AT with pre-training, TRADES, MART, and RST) based on the adversarial train-
ing framework under various attacks, and also show that the Auto Attack is the strongest attack among several 
attacks, which also demonstrates the power of the integrated attack. 

The results in Table 3 show that the proposed double perturbation mechanism still has robustness improvement 
under the white-box attack and the black-box attack, thus indicating that the proposed double perturbation mech-
anism improves the model robustness not due to obfuscated gradients or masking, improper tuning of hyper-pa-
rameters of attacks.

Table 3. Robustness accuracy (%) of AT and improved method based on AT with WideResNet34-10 model across different 
attacks (white-box and black-box attacks) on CIFAR-10 datasets under L∞  norm constraint threat models ( 8 / 255ε = ) over 5 
random runs 
(Limited to space and all standard deviations are less than 0.4% so they are ignored. The best results are marked in bold.)

Defense Natural FGSM PGD-20 PGD-100 CW∞ SPSA AA
PGD-AT 84.45 61.55 54.18 53.43 52.32 61.13 51.30

PGD-AT-AMP 83.74 62.83 56.26 55.83 53.46 62.53 53.16
TRADES 82.27 61.26 54.56 54.03 52.36 61.25 52.22

TRADES-AMP 83.65 63.52 57.37 57.21 55.11 63.56 55.86
MART 82.19 61.65 56.39 55.86 52.69 59.02 50.23

MART-AMP 83.24 63.83 58.69 57.43 54.42 61.96 53.49
Pre-training 85.56 63.15 55.43 54.32 53.67 62.19 53.85

Pre-training-AMP 86.36 65.63 59.56 58.61 57.35 64.43 56.45
RST 87.53 69.31 60.19 60.03 58.63 67.15 58.32

RST-AMP 86.34 67.45 61.86 61.53 59.35 68.85 59.63

4.4  Effect on Robust Generalization Gap

As shown in Fig. 1 for the robust generalization gap in the CIFAR-100 dataset, we used PreAct ResNet-18 for 
adversarial training under different threat models on the SVHN and CIFAR-10 datasets (with the same parame-
ter settings as Section 4.1), and similar robust generalization gap phenomena were observed. Among them, the 
CIFAR-10 and CIFAR-100 datasets have similar phenomena where the robust generalization gap becomes larger 
after the first learning rate drop. However, for the SVHN dataset, unlike the CIFAR-10 and CIFAR-100 datasets, 
the robust generalization gap becomes significantly larger much earlier, which appears in about 10 epochs. In 
conclusion, the robust generalization gap issue is across different threat models and different datasets. 

Therefore, we conduct experiments to explore whether finding a flatter minimum of the weight loss landscape 
in adversarial training framework is beneficial to narrow the gap of robust generalization. We use the PGD-AT-
AMP method to conduct experiments under three different datasets and two threat models, and the histogram of 
experimental research results is shown in Fig. 5. The experimental results in Fig. 5 show that finding a flatter min-
imum of the weight loss landscape in the adversarial training framework does directly result in a smaller robust 
generalization gap in the training process.

4.5  Effect on Robust Overfitting

The PGD-AT obtains the best test robustness accuracy after the first learning rate drop and begins overfitting on 
CIFAR-10 and CIFAR-100 datasets. However, overfitting of the SVHN dataset occurs much earlier at around 10 
epochs. In comparison, PGD-AT-AMP stays stable and continues to improve test robust accuracy along with more 
training epochs (In addition to the case on SVHN dataset under the 2L  norm constraint), as shown in Fig. 6. The 

PGD-AT-AMP method improves the robustness of all datasets ( 2L  and L∞  threat models) but sacrifices the natu-

ral accuracy on CIFAR-10 and CIFAR-100 datasets ( L∞  threat model), as shown in Table 1 and Table 2. 
This is consistent with the results of Preetum Nakkiran [35], and the adversarial robustness accuracy may be 

inherently at odds with natural classification accuracy. We perspective is that the pictures in the CIFAR dataset 
are more complex than color digits in the SVHN dataset, so they are more challenging. However, experiments 
show that PGD-AT-AMP is a general method to consistently improve the best and final robustness across diverse 
datasets and different threat models by finding the flatter minimum of the weight loss landscape.
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(a) PGD-AT                                                            (b) PGD-AT-AMP
Fig. 5. Comparison of best test robust accuracy and test robust generalization gap (the difference between best train robust 
accuracy and best test robust accuracy) of PGD-AT and PGD-AT-AMP methods on different three datasets and different two 
threat models ( L∞ norm 8 / 255ε =  and 2L  norm 128 / 255ε = )
( Yellow and Red curves represent the accuracy of test robust and robustness generalization gap respectively.)

(a) SVHN                                            (b) CIFAR-10                                     (c) CIFAR-100
Fig. 6. The curve of the test robust accuracy of PGD-AT and PGD-AT-AMP on three different benchmark datasets under the 
L∞  norm constraint ( 8 / 255ε = ) and the 2L  norm constraint ( 128 / 255ε = ) applying PreAct ResNet-18 model for 200 ep-
ochs
(Red, Green, purple and Blue curves represent the test robust accuracy of PGD-AT-AMP method under the 2L  norm con-

straint, PGD-AT method under the 2L  norm constraint, PGD-AT-AMP method under the L∞  norm constraint and PGD-AT 

method under the L∞  norm constraint respectively.)

                                             (a) CIFAR-10 L∞  norm                                               (b) CIFAR-10 2L  norm
Fig. 7. The curve of the test robust accuracy of PGD-AT + L1 regularization, PGD-AT + L2 regularization, PGD-AT + Mixup, 
PGD-AT + Cutout, PGD-AT and PGD-AT-AMP on CIFAR-10 dataset under the L∞  norm constraint ( 8 / 255ε = ) and the 2L  
norm constraint ( 128 / 255ε = ) using PreAct ResNet-18 for 200 epochs
(Green, yellow, Blue, purple, black and Red curves represent the test robust accuracy of PGD-AT + L1 regularization method, 
PGD-AT + L2 regularization method, PGD-AT + Mixup method, PGD-AT + Cutout method, PGD-AT and PGD-AT-AMP 
method respectively.)
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4.6  Comparisons to Regularization Techniques and Data Augmentation 

Due to the existence of robust generalization gap and robust overfitting problem, we consider using classical reg-
ularization technique and classical dataset augmentation technique to conduct adversarial training under different 
threat models (i.e. L∞  and 2L  norm) of CIFAR-10 dataset, and further compare them with PGD-AT-AMP meth-
od. Detailed experimental research results are shown in Table 4 and Table 5. These experimental results manifest 
the generalizability of our approach across different datasets, different threat models, different network structures 
and diverse attack.

In this part, we compare the AMP with 1L  and 2L  regularization techniques and mixup [51] and cutout [52] 

data augmentation techniques. For the two threat models 2L  and L∞  norm, we refer to the best hyperparameter 

settings found in Leslie Rice et al. [13]. The hyperparamete λ  for 1L  and 2L  regularization is, 6 35 10 / 5 10− −× ×

respectively, the hyperparameter 1.4α =  for mixup, and the hyperparameter patch length for cutout is 14. For 
AMP method, we set best hyperparameter 0.1δ = , and we follow Section 4.1 for other training settings. We dis-
play the test robustness accuracy and natural accuracy in Table 4 ( L∞  norm threat model) and Table 5 ( 2L  norm 
threat model). Our experimental results are consistent with the previous section in that AMP approach does im-
prove the test robustness in the best case and last case scenarios by some margin. In addition, we visualized the 
learning curve in Fig. 7. The learning curve shows that PGD-AT-AMP shows better performance than other reg-
ularization techniques and data augmentation techniques. However, the Table 4 and Table 5 experimental results 
show PGD-AT-AMP method compared to other methods (except for the PGD-AT+Mixup method) impairs its 
natural accuracy on CIFAR-10 dataset under L∞  threat model, which shows that PGD-AT-AMP is also affected 

by the trade-off between robustness accuracy and natural accuracy [21]. Under the 2L  threat model on CIFAR-10 
dataset, PGD-AT-AMP method has superior natural classification accuracy compared to all other methods and 
many methods are observed to have similar natural classification accuracy. The above experimental results sug-
gest that the L∞  threat model may be more difficult and more challenging compared to the 2L  threat model.

Table 4. Accuracy (%) of PGD-AT and PGD-AT with other techniques on CIFAR-10 dataset applying PreAct ResNet-18 
model under L∞  threat model ( 8 / 255ε = ) over 5 random runs
(The best signifies the highest robustness accuracy in the whole epoch while last signifies the robustness accuracy at the end of 
the 200 epochs. The best results are marked in bold.)

Method Robustness Accuracy Natural Accuracy
Best Last Best Last

PGD-AT + L1 regularization 51.92 ± 0.32 48.74 ± 0.36 82.72 ± 0.32 83.42 ± 0.26
PGD-AT + L2 regularization 51.71 ± 0.21 47.38 ± 0.42 81.09 ± 0.41 81.95 ± 0.45

PGD-AT + Mixup 52.83 ± 0.24 49.76 ± 0.81 78.76 ± 0.61 78.50 ± 1.21
PGD-AT + Cutout 52.79 ± 0.14 50.35 ± 0.38 80.99 ± 0.26 83.65 ± 0.24

PGD-AT 51.77 ± 0.19 44.36 ± 0.34 81.68 ± 0.19 81.57 ± 0.21
PGD-AT-AMP 53.85 ± 0.32 53.26 ± 0.18 80.36 ± 0.14 80.44 ± 0.11

Table 5. Accuracy (%) of PGD-AT and PGD-AT with other techniques on CIFAR-10 dataset applying PreAct ResNet-18 
model under 2L  threat model ( 128 / 255ε = ) over 5 random runs
(The best signifies the highest robustness accuracy in the whole epoch while last signifies the robustness accuracy at the end of 
the 200 epochs. The best results are marked in bold.)

Method Robustness Accuracy Natural Accuracy
Best Last Best Last

PGD-AT + L1 regularization 67.96 ± 0.26 63.73 ± 0.42 88.24 ± 0.13 88.34 ± 0.25
PGD-AT + L2 regularization 67.87 ± 0.35 63.69 ± 0.38 88.75 ± 0.16 87.57 ± 0.21

PGD-AT + Mixup 70.19 ± 0.39 68.27 ± 0.26 87.92 ± 0.23 86.96 ± 0.34
PGD-AT + Cutout 69.56 ± 0.24 67.59 ± 0.32 88.45 ± 0.29 88.03 ± 0.15

PGD-AT 69.15 ± 0.13 65.93 ± 0.35 89.57 ± 0.09 88.96 ± 0.18
PGD-AT-AMP 71.25 ± 0.09 71.13 ± 0.08 90.03 ± 0.26 89.13 ± 0.21
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5   Conclusions

This paper is a further step towards solving the troubles of adversarial training framework robust overfitting and 
robust generalization gap found in recent studies. Inspired by the idea of smoothness, we seek a solution to ex-
plicitly flatten the weight loss landscape in the adversarial training framework, establishing a double perturbation 
mechanism that infuses input and weight parameter perturbations that directly bound the flatness of the weight 
loss landscape to facilitate the DNN model to find a more flat minimum, called AT-AMP method. Although the 
idea is plain, improving robust overfitting and robust generalization gap in adversarial training framework is sur-
prisingly effective. A large number of experiments have shown that our idea achieves advanced performance in 
adversarial training framework. A substantial body of experimental results has also proved the fact that a flatter 
weight loss landscape to facilitate the DNNs model to find a more flat minimum often leads to smaller robust gen-
eralization gap and robust overfitting in adversarial training framework utilizing on-the-fly produced adversarial 
examples.

Unfortunately, although promising progress have been made, the underlying causes of the trouble with robust 
overfitting and robust generalization gap are still left outstanding. Despite the fact that the adversarial robustness 
accuracy of the DNNs model has been improved, the natural accuracy of the normal examples will be damaged in 
some scenarios, and the introduction of the double perturbation mechanism proposed in this paper will increase 
some of the computational overhead in the adversarial training framework. Our future research work will be con-
ducted in this way because we believe that these are very intriguing and momentous questions.
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