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Abstract. Efficient noise filtering is the difficulty of image denoising on the premise of preserving the edge 
and internal texture information of the image. Therefore, this paper focused on adaptive Gaussian variational 
model and block matching image denoising method in the wave domain from the non-local point of view. At 
first, a 3D block match harmonic filtering model was establish in that wavelet domain, 3D transform was use 
to represent that real signals in the match block group in a sparse form, then the shrinkage threshold was used 
to achieve the purpose of pre-denoising, and the wavelet transform was then used to extract the high frequency 
part of the predictor image for filtering. In order to avoid edge blurring, Laplace-Gaussian algorithm was used 
to construct a new operator into the diffusion model, and the wavelet coefficients were reconstructed to obtain 
the final approximation of the original image. Secondly, a block matching denoising model based on shear 
wave was proposed. In order to avoid ill-conditioned problem, The multi-scale geometric analysis method us-
ing shearlet transform can improve the edge protection ability, and a block matching denoising model based on 
shearlet is proposed. The new model predicts the scaling threshold according to the statistical characteristics of 
the histogram, performs hard threshold filtering on the high-frequency sub-band to obtain the processed sub-
band coefficients, and performs block matching 3D filtering on the decomposed low-frequency sub-band coef-
ficients to obtain the processed coefficients. All processed subband coefficients are inversely transformed and 
reconstructed to obtain a denoised image. The analysis and simulation results showed that the two new models 
can effectively suppress noise and improve the clarity, and the block matching denoising based on shear wave 
had more advantages. 

Keywords: image denoising, wavelet transform, Laplace-Gaussian algorithm, block matching, shear wave 
transform 

1   Introduction

With the increasing combination of computer vision and multimedia applications, image processing technology 
will be used in almost all areas of life. However, in the process of image acquisition, compression or transmis-
sion, noise is very easy to be introduced, which affects the subsequent work. Therefore, image denoising is par-
ticularly important in the process of image processing. At present, image processing methods mainly include two 
categories: spatial domain processing and transform domain processing. In the transform domain processing, it 
will be divided into frequency domain processing and wavelet domain processing. 

Perona and Malik [1] proposed an adaptive diffusion (PM) model in 1990, and Rudin et al. [2] first proposed 
a total variation (TV) regularization model in 1992. Because the model does not completely conform to the mor-
phological principles of image processing, there are likely to be step-like oscillations at the edges of images. In 
order to avoid this oscillation effect, Zhou Xianchun et al. proposed a fully variational coupled image denoising 
model [3], which uses the edge detection characteristics of Canny operator to design a control function, effective-
ly suppressing the “stair-step effect” of TV model. 

Yu et al. [4] introduced two new diffusion coefficients and a residual term, using the fractional differentiation 
operator in the PM model and introducing local variance to adaptively adjust the order of fractional differentia-
tion. In 2021, Zhao et al. proposed an RFSB model based on the TV model [5]. The model first separates edges 
and smooth regions according to structural features, and uses the split-Bregman method and the region fusion 
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method, to fuse the TV model and the TV least squares function model. Effective protection of edge information.
Donoho [6] has proved the feasibility of wavelet threshold denoising method in theory, and has greatly im-

proved the effect of noise removal and edge structure protection. Since then, the relevant research based on wave-
let theory has gradually become a hot topic in image denoising field [7-10]. In 2005, Buades proposed Non-Local 
Means (NLM) [11] filtering based on the properties of Gaussian white noise. This algorithm is simple to compute 
and has been studied deeply by many scholars [12-13]. In 2007, Dabov et al proposed a Block of 3Dimension 
(BM3D) [14] image denoising algorithm based on sparse representation, combining NLM method and wavelet 
transform method. Because of its outstanding effect, many scholars have studied and improved BM3D image de-
noising algorithm [15-17]. Denoising methods based on BM3D have been proposed one after another, but there 
is no good balance between noise removal and edge information protection. Guo et al. [18] propose that by use 
of a framework of affine systems with synthetic expansion. Although the Shearlet geometric transform denois-
ing method based on multi-dimensional function sparse representation has a good sparse representation effect, it 
does not have the translational property because of the down-sampling operation, which makes the image prone 
to phase distortion in the denoising process and pseudo-Gibbs effect to a certain extent, and there are some draw-
backs, which need to be further developed and improved.

In order to make up for the lack of analysis of the overall structure and the complexity of the operation in the 
traditional BM3D algorithm, this paper firstly establishes a wave-domain harmonic filter diffusion model to im-
prove the BM3D denoising algorithm, and extracts the block matching pre-estimation through wavelet decompo-
sition. The high-frequency part of the image is filtered. In order to avoid edge blurring, the Laplacian Gaussian 
algorithm is used to construct a new operator and bring into the diffusion model. Finally, the wavelet coefficients 
are reconstructed to obtain the final denoised image. Due to the wavelet method of non-geometric transformation 
The anisotropic elements at the edge line position are limited when extracting transform coefficients. The multi-
scale geometric analysis method using shearlet transform can improve the edge protection ability. A block match-
ing denoising based on non-subsampling shearlet (NSST) is proposed. Model. In Section II, the paper proposes a 
new model 1, and proposes an improved model 2 for the shortcomings of the model 1 in Section III, and proves 
the superiority of the two new models through experimental renderings and experimental data. Finally, conclud-
ing observations are made in Section IV.

2   Block Matching Based Gaussian Harmonic Filtering

At present, many improved BM3D can effectively denoise, but the defects that lead to blurred edge details need 
to be improved. In order to make up for the lack of analysis of the overall structure and the complexity of the 
current image denoising algorithm, this section establishes a harmonic filtering diffusion model to improve the 
BM3D image denoising algorithm. The algorithm first combines similar two-dimensional image blocks into 3D 
arrays by using the traditional Euclidean distance method, and then converts the filtered 3D arrays into predictor 
data. Secondly, wavelet decomposition transform is used to extract the high frequency part of the predictor image 
and filter it. In order to avoid edge blurring, Laplace-Gaussian algorithm is used to construct a new operator into 
the diffusion model. Finally, wavelet reconstruction is performed to obtain the final approximation of the original 
image.

2.1   Theoretical Implementation of the Algorithm 

(1) Preliminary denoising 
The reference image block of ,x y R∈  is defined as ,x y R∈  , where ,x yB  is a matching block positioned in 

the noisy image 0( , )x yI . An image with a similar block is searched from another region similar to the region of the 
center pixel point of the current reference block by using the Euclidean distance measurement criterion, as shown 
in Eq. (1):

                  .                                  (1)

Where ,R Rx yB , ,x yB  are image blocks of size 1 1N N× . Parameter 2DΓ , representing a two-dimensional linear 
transform performed by DCT, that is, the original subimage N N×  is replaced by subimage 2 2N N×  with sym-
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metric pixels. In addition, the transform coefficient will only have the cosine term of the real number, thus avoid-
ing the Gibbs phenomenon. γ  is a threshold operator defined as follows:

                                ( )
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γ λ λ
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Where matchτ  is the maximum distance for searching similar blocks of an image block, and the result obtained 
by block matching using Eq. (1) is defined as follows: 

                          { }, , ,, ( , )
R R R Rx y x y x y matchS x y R d B B τ= ∈ <  .                                                     (3)

The similar blocks in set 
,R Rx yS  are combined and stacked into a 

,1 1 R Rx yN N S× ×  3D array, and then a normal-
ized 3D linear transform is performed, followed by a 3D inverse transform to obtain a preliminary approximation 
of the matched blocks: 
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Processing results 
,

ˆ
x yR RSI in Eq. (4) are stacked as ,

x,y
ˆ R Rx yI , where ,x y  is the position of the estimated block, and 

,R Rx y  represents the position of a similar block. The weighted average of pixel points of all the image blocks are 
calculated to avoid overlapping of the estimates [19], thereby obtaining a preliminary approximation of the origi-
nal image: 
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Where b̂asicI  is the processed image, ,xm ymψ is the feature function positioned at block ( , )xm ym , and ,R Rx yω

represents the weight assigned by the group estimate; it is defined as
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Where , 
R Rx yN represents the number of nonzero coefficients after normalization and linear transform of a 3D 

array, as defined in Eq. (3).
(2) Final denoising 
Because the noise and edge details of the image mainly exist in the high-frequency region of the image, the 

result obtained by Eq. (5) is decomposed using the Mallat algorithm to extract the high-frequency part of the de-
tailed information (horizontal direction h, vertical direction v, and diagonal direction d) in the predictor image, 
and the high-frequency coefficients are processed through diffusion filtering. The diffusion function proposed by 
Perona and Malik [1] has the ability of edge sharpening and forward diffusion as well as backward diffusion; thus, 
it can be used as a diffusion model to remove noise. The specific PM models are as follows: 
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Where b̂asicI  is the preliminary estimated BM3D image, W represents the wavelet transform decomposition 

of the image, and ( )c g represents a decreasing function related to gradient information. This function is used to 
control the diffusion degree of each position in the diffused image and is consistent with the definition of the PM 

model, i.e., ( )
2

exp( )xc x
k

 = − 
 

 , where k is a threshold coefficient. Edge blurring occurs during wave domain 

transform, and the edge corners are easily smoothened. The second derivative of the Laplace operator is very sen-
sitive to noise, and its zero-crossing property is used to locate the image in edge detection. The Laplace operator 
can be derived as follows: a new filter can be constructed by combining Laplace–Gaussian stress distribution bal-
ance with gradient operator and can be expressed as:   
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By substituting Eq. (8) into Eq. (7), a new diffusion model is established: 
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Where ( ) ( )ˆc c * basicG Iσ= ∇  is used to enhance the edge of the image and control the diffusion velocity. Gσ is 

Gaussian kernel function and is defined as
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To solve Eq. (9), a numerical discretization scheme can be used to simplify the implementation of the algo-
rithm, and the grid coordinates are defined as et ( , , )N il jl t= ∆ , where l is the grid length and t∆ is the time-step 
size. Therefore,   

                         ( )
( )

,

,

2
,

ˆc *

ˆ̂

n
i j

n
i j basic

n
i j basic basic

I I Net

a G I Net

b c W I I Net

σ


= ⋅

 = ∇ ⋅


  = × ∇ +∇ ⋅   

 .                                                      (11)

Definition of ( )2~ ˆ̂
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Thus, the discrete expression of I
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obtained by the same method is expressed as Eq. (14). By substituting the discrete expressions in Eqs. (13) and 
(14) into the diffusion equation, Eq. (9), the implicit difference scheme is obtained as Eq. (15): 
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By defining ( ) [ ( )]n n
l ijI a I=M , Eq. (16) can be written in matrix form and further simplified to 
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The evolutionary equation is 

                        ( ) 11 1 ( )n n n
lI t I I

−+ = − ∆ M  .                                                                          (17)

(3) Specific steps of the algorithm are as follows:
Step 1: Parameter initialization. The noisy image is divided into image blocks of 1 1N N×  different sizes, 

and similar blocks of the reference blocks are found and collected as set 
,R Rx yS , according to the conventional 

Euclidean distance criterion. 
Step 2: Normalize the stacked 3D array through linear transform filtering on set 

,R Rx yS , and obtain matched 

block estimation 
,

ˆ
x yR RSI  through inverse transform. 

Step 3: Obtain preliminary estimate b̂asicI of the original image according to the weighted average of 
,

ˆ
x yR RSI . 

Step 4: Use wavelet decomposition to extract the high-frequency components of b̂asicI  obtained in Step 3, and 
use the diffusion model of Eq. (9) to denoise the image. 

Step 5: Reconstruct the high- and low-frequency coefficients processed in Step 4 to obtain the final approxima-
tion, ˆ

finalI , of the original image.
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2.2   Model Verification and Analysis

To verify the noise removal effect of new model 1 proposed in this section, add Gaussian noise of intensity 20 to 
the original image, MATLAB simulation software was used to conduct Gaussian noise removal analysis to veri-
fy the feasibility of this algorithm. The filter model was used to set the time step, 0.2t∆ =  , and iteration times, 

7n = . In wavelet threshold denoising, natural images, Lena, Barbara, Dxy and Tsg (pixel size of 512 × 512) were 
denoised with the same parameters. WHT, PM, NLM, BM3D, and the new algorithm were used to smoothen 
the denoising. The denoising effect graphs are shown in Fig. 1, Fig. 3, Fig. 5, and Fig. 7. The effectiveness of 
the algorithm was compared and evaluated through subjective visibility observations, peak signal-to-noise ratio 
(PSNR), and objective indicators of structural similarity (SSIM) (Table 1). To accurately display the edge infor-
mation before and after filtering, a Canny operator was used to detect the edge of the denoising effect image of 
each algorithm, and the results are shown in Fig. 2, Fig. 4, Fig. 6, and Fig. 8.

  

                                          (a) Noisy Image                       (b) WHT                                 (c) PM   

  

                                          (d) NLM                                  (e) BM3D                            (f) New Method 1
Fig. 1. Filter denoising effect diagram for different methods (Lena)

  

                                            (a) Noisy Image                       (b) WHT                                 (c) PM   

  

                                             (d) NLM                                  (e) BM3D                          (f) New Method 1
Fig. 2. Smooth edge extraction diagram for different denoising models (Lena)
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                                           (a) Noisy Image                       (b) WHT                                 (c) PM   

  

                                       (d) NLM                                  (e) BM3D                          (f) New Method 1
Fig. 3. Filter denoising effect diagram for different methods (Dxy)

  

                                           (a) Noisy Image                       (b) WHT                                  (c) PM   

  

                                           (d) NLM                                  (e) BM3D                          (f) New Method 1
Fig. 4. Smooth edge extraction diagram for different denoising models (Dxy)

  

                                      (a) Noisy Image                       (b) WHT                                  (c) PM   
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                                               (d) NLM                              (e) BM3D                          (f) New Method 1
Fig. 5. Filter denoising effect diagram for different methods (Barbara)

  

                                           (a) Noisy Image                       (b) WHT                                 (c) PM   

  

                                            (d) NLM                                 (e) BM3D                          (f) New Method 1
Fig. 6. Smooth edge extraction diagram for different denoising models (Barbara)

  

                                            (a) Noisy Image                       (b) WHT                                (c) PM   

  

  (d) NLM                              (e) BM3D                            (f) New Method 1
Fig. 7. Filter denoising effect diagram for different methods (Tsg)
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                                    (a) Noisy Image                          (b) WHT                                   (c) PM   

  

                                            (d) NLM                              (e) BM3D                         (f) New Method 1

Fig. 8. Smooth edge extraction diagram of different denoising models (Tsg)

The denoising effect diagram and local method diagram of the natural image Lena, Dxy, Barbara, Tsg are 
shown in Fig. 1 to Fig. 8. Fig. 1(b), Fig. 3(b), Fig. 5(b), and Fig. 7(b) show that visibility of the WHT method, it 
can be found that the smoothing effect of the WHT method is relatively poor from the visual effect, because this 
method will remove the wavelet coefficients in the high-frequency subband as noise coefficients during denois-
ing, thereby losing texture information. Fig. 1(c), Fig. 3(c), Fig. 5(c), and Fig. 7(c) show that the gradient value 
of the PM model is extremely susceptible to the influence of noise points, and it is easy to produce a staircase 
effect. Fig. 1(d), Fig. 1(e), Fig. 3(d), Fig. 3(e), Fig. 5(d), Fig. 5(e), and Fig. 7(d), Fig. 7(e) show that that visibility 
of the BM3D method is more improved than that of the NLM filtering method. This is demonstrated from the 
edge-filtering detection images, shown in Fig. 2(e), Fig. 4(e), Fig. 6(e), and Fig. 8(e). However, Fig. 3(e) shows 
that the BM3D method does not accurately represent complex images, and when the noise variance is large, many 
“mosaics” phenomena are prone to occur, leading to blurring of important details and lack of the grasping of the 
overall structure. Therefore, the source information is lost in the edge detection result diagram in Fig. 6(e). Fig. 
3(f) shows that the new method can improve the effect of the denoising effect of the Dxy image, and it can effec-
tively recover the information of the wall surface texture, that is, the word “Telecommunication House,” and the 
surrounding wall surface texture information.

The Barbara image of Fig. 5(f) shows the stripe information of the trouser foot and tablecloth, and the Tsg 
image of Fig. 7(f) shows the texture pattern on the tripod. Compared with the previous algorithm, the texture in-
formation is well preserved and slight residual noise is obtained; this was proved by the results of the Canny edge 
detection image shown in Fig. 8(f). In addition, the evaluation index in Table 1 is consistent with the visibility 
effect of the filtering result.

Table 1. Comparison of PSNR and SSIM for different images using different denoising models

Noisy image WHT PM NLM BM3D New

Lena
PSNR 22.0442 25.2876 27.8168 28.2839 29.9878 33.0076
SSIM 0.3421 0.5840 0.6310 0.6566 0.8213 0.9887

Dxy
PSNR 22.3339 25.0643 27.6380 28.2220 29.6441 32.4449
SSIM 0.4114 0.5799 0.6086 0.6577 0.8071 0.9992

Barbara
PSNR 22.0442 23.9802 25.2078 27.4264 28.7015 31.7782
SSIM 0.3421 0.6072 0.7082 0.7238 0.8376 0.9899

Tsg
PSNR 23.3026 24.0988 25.6755 27.2801 28.5177 30.9052
SSIM 0.3714 0.6022 0.6985 0.7189 0.8381 0.9904
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The comparison of the evaluation indexes in Table 1 shows that the new method is not higher than the PSNR 
and SSIM of the previous methods; however, the improved algorithm is superior to the previous methods only 
from the perspective of visibility.

3   Block Matching Denoising of Non-Subsample Shearlet Transform

Because the wavelet method of a nongeometric transform relies on isotropic elements at all scales when extract-
ing transform coefficients and has a limitation for anisotropic elements at edge lines, the Gibbs effect is easily 
produced. In order to improve the preservation of edge detail information by wavelet transform algorithm. This 
section fully studies the theoretical knowledge of Shearlet, NSST and BM3D. The performance of image denois-
ing depends largely on the ability of sparse representation of images. In Reference [17], a Shearlet geometric 
transform for constructing sparse representation of multidimensional functions using a frame of an affine system 
with synthetic expansion is proposed. In Reference [20], He. et al proposes a new method for denoising using 
deep neural network NSST-UNET to improved BM3D, adopt NSST coding layer and skip connection design 
based on multi-scale convolution module to identify edges and smooth regions of noisy images, and then use im-
proved BM3D to complete denoising in two steps.

Theoretically, the multiscale geometric analysis method of Shearlet transform has an optimal sparse representa-
tion of the image. The digital implementation of the transform is simple, effectively captures multiscale and mul-
tidirectional information, and has good directional sensitivity and edge-holding ability. Therefore, a block-match-
ing denoising model based on non-subsample Shearlet transform (NSST) is proposed in this section. The new 
model first predicts the scaling threshold according to the statistical properties of the histogram, performs hard 
threshold filtering on high frequency subbands, and performs block-matched 3D filtering on the decomposed low 
frequency subband coefficients. All processed subband coefficients are inverse transformed and reconstructed to 
get denoised image. New model can effectively remove image noise while retaining edge details and other infor-
mation.

3.1 Shearlet Transform and Its Multiscale Geometric Analysis 

According to the Shearlet theoretical analysis, the Shearlet transform into the frequency domain is tightly support-
ed and has good localization characteristics. The calculation steps of the discrete shear wave transform can gener-
ally be divided into two processes: multi-scale decomposition and direction localization. The Laplacian pyramid 
algorithm calculates the resolution in the discrete domain, completes multi-scale decomposition, and decompos-
es K  high-frequency images and one low-frequency image through K-level downsampling, which can realize 
multi-scale analysis; in addition, it is necessary to construct scale and the window function of the direction change 
to realize the localization of the direction to obtain the high frequency components in each direction. However, 
since the shearlet transform adopts the down-sampling operation, it is easy to produce phase distortion due to the 
lack of translation invariance when the coefficients are reconstructed. Pseudo-Gibbs phenomenon caused by re-
covering the edges of the image. That is, in the process of direction localization, the Cartesian coordinate system 
is used to replace the pseudo-polarization network system, the Fourier transform is calculated by the pseudo-polar 
coordinate system and the band-pass filtering is performed, and then the two-dimensional inverse Fourier trans-
form method is used, and finally the shear wave transform coefficients in all directions are obtained. Fig. 9 shows 
a schematic diagram of multi-directional decomposition of NSST, in which ( ),d

kC x y  represents the set of shear 

wave high-frequency subband coefficients of the two-dimensional image ( ),x y , and ( ),a
kC x y  represents the set 

of separated low-frequency sub-band coefficients.
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Fig. 9. NSST multidirectional explosion schematics 

3.2   Selection of New Method Threshold

In this section, the NSST method is introduced to generate a large number of Shearlet coefficients in the process 
of decomposing noisy images; thus, it is necessary to separate the noise in sub-bands from the original signal. If 
the threshold value of coefficient processing is too large, the edge structure will be lost; however, if the value is 
too low, the noise will remain; thus, it is important to select an appropriate threshold value. Because Donoho’s 
shrinkage threshold equation is 2 lnT Nσ= , the conventional wavelet threshold denoising method achieves 
good results in the asymptotic sense. With the development of the later theory, many scholars have proposed 
many improved methods based on Donoho threshold according to the hypothesis of model distribution. Moreover, 
the inadequacy of data and correlation aggravates the uncertainties in the process of noise reduction as an inverse 
problem. Therefore, the key to successful noise reduction lies in understanding the prior information of the signal 
and the mechanism and characteristics of noise [21]. Chang [22] assumed that the wavelet coefficients obey the 
generalized Gaussian distribution, and defined the shrinkage threshold as 2 /T σ σ= , which is called the Bayesian 
threshold. Under the assumption that the wavelet coefficients obey Laplace distribution, Moulin [23] proposed 
a Mapshrink threshold based on the Laplace distribution λ . In addition, the GCV threshold criterion [24], as 
shown in Eq. 18, is increasingly becoming popular among scholars. This method does not need to estimate the 
noise variance and can be used directly:   
     

                                           
( )
( )

2

2
0

ˆ1min
/

GCV

w w
T

N N N

−
= ∑  ,                                                                      (18)

Where N  is the number of coefficients after wavelet transform, 0N  is the number of coefficients representing 

the signal being set to zero, w  and ŵ  represent the coefficient containing noise and the coefficients after thresh-
old shrinkage processing are represented. Vidakovic et al. processed the wavelet coefficients with hard thresholds 
combined with the different characteristics of the “main signal” coefficients and “main noise” coefficients in the 
cross-scale distribution based on Bayes framework. In image processing, the choice of threshold value still needs 
to depend on the specific situation. Generally, the denoising should be limited according to the known character-
istics of the signal to avoid the occurrence of pathological problems. Therefore, we define ( ),d

kC x y  as the set of 

high-frequency sub-band coefficients of the shear wave as a two-dimensional image ( ),x y ; ( ),a
kC x y  represents 

the set of separated low-frequency sub-band coefficients. According to the hard threshold function, 
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Where ( )ˆ ,d
kC x y  represents the coefficients of the shear wave sub-bands after the conversion processing are 

represented and T represents the histogram threshold value. The statistical characteristics of the image can be 
accurately reflected by histogram, that is, the intensity distribution of the gray value in the image pixels can be 
represented by the intensity distribution. This method has the invariance of translation, scaling, rotation, etc., and 
the computational cost is small. Here, the initial threshold 0T  is used to divide the coefficient range into equal-

sized intervals 1B 2B 3B to construct histograms, and to calculate the mean values, i.e., 1 2 3, ,Mean Mean Mean , of 
the number of points in each type of dataset. Threshold T  is defined as

                                        ( )1 2 3 01/ 3 ,T Mean Mean Mean T T= + + <  .                                                (20)

3.3   Concrete Step of Algorithm

Based on the above-mentioned theoretical analysis, the experimental steps for this section of the model can be 
obtained, and the implementation block diagram is shown in Fig. 10.

NSST

Low Frequency 
Coefficient

High Frequency 
Coefficient

Fixed Threshold 
FilteringBM3D

Reconstruction 
Coefficient

( )0 ,I x y

( ),I x y

Fig. 10. Algorithm framework for the new model

Step 1: Three-layer NSST transform is performed on the image containing noise, namely, ST coefficients in 
each scale direction are obtained; 

Step 2: Block-matched 3D filtering is performed on the decomposed low-frequency sub-band coefficients to 
obtain the processed coefficients, ( )a

kC x y ; 
Step 3: Performing hard threshold filtering on the high frequency sub-band according to histogram estimation 

to obtain the processed coefficients, ( ),d
kC x y ; 

Step 4: Finally, the ST coefficients processed in Step 3 and Step 4 are inversely transformed to obtain the de-
noised image.

3.4   Model Verification and Analysis

To verify the denoising effect of new model 2 based on shear wave transform, the MATLAB simulation software 
and ShearLab toolkit are used to verify the feasibility of the new algorithm, The comparison algorithms include 
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BM3D, shearlet, hard threshold NSST method (NSST-hard) and the new algorithm in this chapter. The denoising 
experiments of Lena, Dxy, Barbara, and Tsg (pixel sizes are 512 × 512) are conducted with the same parameters. 
The denoising effect diagram is shown in Fig. 11 to Fig. 18. We performed a subjective visibility comparison with 
the denoising effect diagram in Fig. 19 according to shear wave denoising. Objectivity indexes, such as PSNR 
and structural similarity (SSIM) after denoising in different variance, were used to evaluate the effectiveness of 
the algorithm, as shown in Table 2. The comparison of Fig. 13, Fig. 15 and Fig. 17 shows that the new algorithm 
in this section significantly improves many artifacts and visibility in shear wave denoising. The texture of the 
ground and stone column in Fig. 13(a) Lena show that the details of the image is well preserved. In addition, the 
tablecloths and trouser legs of Barbara in Fig. 13(c) show that the Gibbs phenomenon affects visibility during 
reconstruction. Observing Fig. 15 and Fig. 16, some texture details are lost after NSST-hard denoising, and some 
directional textures on the hat in the Lena image and some direction textures on the pants in the Barbara image 
are lost. The window edges and shadows in the Tsg image of Fig. 17(d) are not affected; however, some blurring 
still exists in the distant steps, which should be further improved. Overall, the new algorithm retains the edge 
detail information relatively well while effectively denoising. To better display the filtered edge information, the 
Canny operator was used to detect the edge of the denoising image of each algorithm, and the results are shown in 
Fig. 12, Fig. 14 , Fig. 16 and Fig. 18. The noise filtering are relatively clean, and the edge texture structure have a 
certain degree of protection. The denoising performance and texture feature protection of this difficult point was 
broken through.

(a) Lena                           (b) Dxy                                  (c) Barbara                          (d) Tsg
Fig. 11. Effect diagram of different images denoised by BM3D

(a) Lena                           (b) Dxy                                  (c) Barbara                          (d) Tsg
Fig. 12. Edge detection diagram of different images denoised by BM3D

(a) Lena                           (b) Dxy                                  (c) Barbara                          (d) Tsg
Fig. 13. Effect diagram of different images denoised by Shearlet
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(a) Lena                           (b) Dxy                                  (c) Barbara                          (d) Tsg
Fig. 14. Edge detection diagram of different images denoised by Shearlet

(a) Lena                           (b) Dxy                                  (c) Barbara                          (d) Tsg
Fig. 15. Effect diagram of different images denoised by NSST-hard

(a) Lena                           (b) Dxy                                  (c) Barbara                          (d) Tsg
Fig. 16. Edge detection diagram of different images denoised by NSST-hard

(a) Lena                           (b) Dxy                                  (c) Barbara                          (d) Tsg
Fig. 17. Effect diagram of different images denoised by the new algorithm 2 in this section

(a) Lena                           (b) Dxy                                  (c) Barbara                          (d) Tsg
Fig. 18. Edge detection diagrams of different images denoised by new algorithm 2 in this section
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The comparison of the evaluation indexes in Table 2 shows that the improved algorithm is not much higher 
than the PSNR of the shear wave transform method; however, the new method is superior to the shear wave trans-
form method only from the perspective of visibility. The complexity of the algorithm should be further optimized. 
Fig. 19 is a simulation diagram showing the PSNR of the experimental image processed by the new algorithm in 
this section and the PSNR of the noisy image.

Table 2. Comparison of objectivity of denoising methods under different variances
Method σ Lena Dxy Barbara Tsg

BM3D

10 PSNR 33.7390 32.9046 31.6980 31.9012
SSIM 0.8979 0.9074 0.8562 0.8599

20 PSNR 29.9878 29.6441 28.7015 28.5177
SSIM 0.8213 0.8071 0.8376 0.8381

30 PSNR 28.0378 27.2511 26.0317 25.7390
SSIM 0.6993 0.6799 0.6298 0.6421

40 PSNR 25.0024 25.3094 24.2015 23.9076
SSIM 0.5997 0.6010 0.5783 0.5590

Shearlet

10 PSNR 35.0076 34.7524 33.7449 33.4231
SSIM 0.9024 0.8905 0.9125 0.9172

20 PSNR 31.8955 31.1490 30.0313 29.5293
SSIM 0.8122 0.7481 0.8558 0.8540

30 PSNR 30.0041 29.1557 27.7397 27.2708
SSIM 0.7113 0.6661 0.7705 0.7451

40 PSNR 27.0324 27.2104 26.1319 25.2825
SSIM 0.6257 0.6149 0.7012 0.6816

NSST-hard

10 PSNR 35.0133 34.8085 33.6997 33.5078
SSIM 0.9101 0.9001 0.9134 0.9176

20 PSNR 31.9377 31.2842 30.0197 29.7960
SSIM 0.8359 0.8023 0.8213 0.8601

30 PSNR 30.0097 29.1922 27.8023 27.3975
SSIM 0.7220 0.6676 0.7735 0.7590

40 PSNR 27.0976 27.2198 26.2370 25.2980
SSIM 0.6985 0.6571 0.7124 0.7038

New
Method 2

10 PSNR 35.0098 34.9554 33.6561 33.9531
SSIM 0.9016 0.8903 0.9160 0.9258

20 PSNR 33.0783 32.7965 31.1167 30.7842
SSIM 0.8499 0.8316 0.8566 0.8562

30 PSNR 30.1341 29.2282 28.0874 27.6865
SSIM 0.8001 0.7826 0.7925 0.7894

40 PSNR 27.2652 27.2483 26.6362 25.3351
SSIM 0.7874 0.7459 0.7371 0.7451
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                                                         (a) Lena                                                                (b) Dxy
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                                                        (c) Barbara                                                            (d) Tsg
Fig. 19. PSNR simulation comparison diagram after noise removal for new algorithm 2

4   Conclusion

Based on the theoretical analysis of transform domain and block matching denoising methods, a diffusion model 
based on harmonic filtering in the wave domain was proposed to improve the BM3D technique. The algorithm 
extracts a high-frequency part of the predictor image through wavelet decomposition and filtering. Considering 
the possibility of edge blurring, the Laplace-Gaussian algorithm was used to construct the diffusion model. 
Subsequently, wavelet reconstruction was performed to obtain the final approximation of the original image. To 
better display the edge information before and after filtering, a Canny operator was used to verify and compare 
the edge display effect of each algorithm. Because the wavelet method of non geometric transform relies on iso-
tropic elements appearing in all scales when extracting transform coefficients, it has limitations for anisotropic 
elements at the edge line position, which is easy to produce Gibbs effect. Therefore, a block matching denoising 
model based on NSST was proposed by the theoretical analysis of shear waves. The coefficients of each scale 
direction were obtained using a three-layer NSST transform, by block matching 3D filtering of the decomposed 
low-frequency sub-band coefficients. And the coefficients were obtained through hard threshold filtering of the 
high-frequency sub-band according to histogram estimation, and finally the denoised image was obtained through 
an inverse transform. The PSNR of the new model has been significantly improved, which can not only effec-
tively remove the noise in the image, but also retain the details such as edge texture, which is conducive to the 
acquisition of image feature information. However, some simple and effective transformation methods need to be 
optimized and improved, and the selection of the best threshold should also be further developed and improved.
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