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Abstract. Cybersecurity worries intensify as Big Data, the Internet of Things, and 5G technologies develop. 
Based on code reuse technologies, malware creators are producing new malware quickly, and new malware 
is continually endangering the effectiveness of existing detection methods. We propose a vision transform-
er-based approach for malware picture identification because, in contrast to CNN, Transformer’s self-attentive 
process is not constrained by local interactions and can simultaneously compute long-range mine relationships. 
We use ViT-B/16 weights pre-trained on the ImageNet21k dataset to improve model generalization capability 
and fine-tune them for the malware image classification task. This work demonstrates that (i) a pure attention 
mechanism applies to malware recognition, and (ii) the Transformer can be used instead of traditional CNN for 
malware image recognition. We train and assess our models using the MalImg dataset and the BIG2015 dataset 
in this paper. Our experimental evaluation found that the recognition accuracy of transfer learning-based ViT 
for MalImg samples and BIG2015 samples is 99.14% and 98.22%, respectively. This study shows that training 
ViT models using transfer learning can perform better than CNN in malware family classification.
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1   Introduction

The growth of the Internet sector in recent years has benefited customers and significantly accelerated societal 
and national development, but it has also given rise to several network security concerns. According to a recent 
Accenture analysis, malware assaults have devastating economic repercussions; it is estimated that each attack 
[1] results in an average loss of $2.6 million. In response, a popular area of research has been how to successfully 
detect malware.

Malware detection techniques are classified into two types: static [2] and dynamic [3]. The extraction of static 
features does not require running the program to be tested. The static method does not need to run executable file 
samples and directly analyzes the bytecode sequences, opcode sequences, DLLs, APIs, and PE format structures 
of the samples. It is only necessary to determine the location of the corresponding data and the extraction meth-
od during the extraction process. The fastest way to ascertain a program’s semantics is by static code analysis, 
however the most significant barrier to static inspection techniques is software encryption, shelling, and obfusca-
tion. Real-time program execution in a sandbox, dynamic call tracking, and traffic analysis are all possible with 
dynamic analysis. Dynamic detection techniques are not limited by shelling and obfuscation and enable a more 
direct analysis of PE file behavior characteristics, but they are also not without drawbacks. Dynamic detection is 
less efficient and challenging to deploy, and some malware can detect the operating conditions or computing envi-
ronment in which it is running and thus escape detection [4].

Most malware samples have structural differences but share some standard functionality, “Family” refers to 
this collection of malware [5]. To save costs associated with domain knowledge and feature extraction, scien-
tists have developed a method of visualizing malware as part of their malware detection research, the reason for 
this is the visual similarity between variants within the same family. Unlike other traditional malware analysis 
techniques, the visual-based analysis does not require statically rich semantics or dynamic execution of binaries. 
Texture features can be extracted from malware images and used to train classifiers.

Inspired by the recent success of Transformer on numerous computer vision tasks, this paper presents a new 
scheme for malware detection based on vision converters, aiming to replace traditional CNN classification mod-
els. Our solution balances the malware dataset under study while utilizing transfer learning techniques, thus it 
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does not necessitate a high level of cybersecurity experience. This strategy incorporates concepts and methods 
from malware image visualization methods. The malware samples are first represented as byte graph graphics, 
where each byte is equivalent to a pixel in a grayscale image. The created grayscale image is then sent into a vi-
sion converter so that useful characteristics can be extracted and the detection model can be trained. The malware 
is then categorized and examined using the trained model. Experiments are conducted on the BIG2015 as well as 
MalImg dataset to evaluate the proposed method. In summary, the main contributions of this work:

1. This study is the first malware image classification method using a vision transformer that detects malware 
samples without feature engineering, such as binary disassembly or reverse engineering.

2. We use transfer learning methods to efficiently and correctly classify unbalanced datasets. We also conduct-
ed extensive experimental tests using precision, recall, f1 score, confusion matrix, and other metrics to achieve 
more than 98% classification accuracy on the BIG2015 as well as MalImg datasets.

3. Our study compares the ViT model with other CNN models and shows that the ViT model offers superior 
accuracy for classification.

The remainder of the essay is structured as follows: The study relating to the visual classification of malware 
is presented in Section 2. The strategy suggested in this study as well as the dataset are both covered in detail in 
Section 3. The analysis of our experimental findings is presented in Section 4. In Section 5, we summarize our 
findings and discuss our next steps.

2   Related Work

Static analysis of malware has yielded many results in recent years, and researchers have discovered many kinds 
of static features through data mining techniques. Researchers have discovered many kinds of static features 
through data mining techniques, which provide a rich theoretical basis for current research. Among them, mal-
ware Since first presented in 2011, the malware’s static image texture feature has been widely adopted. Since its 
debut in 2011, this functionality has been extensively used in numerous malware studies and has undergone con-
tinual improvement.

H. Naeem et al. [6] transformed the field information of malware into grayscale images and then extracted 
D-SIFT local features and GIST global features of grayscale images. They achieved 97.4% accuracy for 25 mal-
ware families using a machine learning SVM model. This approach innovates the traditional grayscale image by 
combining global and local features to achieve better model robustness and classification accuracy. H. Yakura et 
al [7] proposed to incorporate the attention mechanism into CNN models so as to extract the attention mechanism 
feature map of each class of malware family, through which the attention mechanism can filter the grayscale im-
ages with The attention mechanism can filter the highest value pixel regions in grayscale images and reduce the 
time of manual analysis.

X. Huang et al [8] proposed a combination of dynamic and static malware classification method. In order to 
fill the blue channel and red channel of the image, you must first extract the malware’s byte frequency and byte 
stream into pixel points. Install the Windows operating system and Cuckoo Sandbox software in the virtual ma-
chine after adjusting the image’s blue, green, and red channels. Using Cuc Cuckoo, one may gather reports from 
dynamic malware analysis, extract the API call sequences from the reports, and highlight the crucial APIs with 
more conspicuous colors. In the aforementioned red and blue channel map, the more significant colors are used 
to indicate the key APIs, while the cooler colors are used to indicate the less significant APIs. Using the VGG16 
depth model for classification, the results show that the combination of static and dynamic classification results is 
10% more accurate than using only static analysis. 

The malware classification method proposed by Rezende et al [9] first converts malware to grayscale images, 
extracts the bottleneck features of malware (the feature map activated in the last layer before the fully connected 
layer) using a VGG16 network pre-trained on ImageNet through transfer learning, and then uses the features to 
train an SVM classifier. This method is able to reduce the training time and achieve 92.97% correct rate in the 
task of classifying 20 malware families.

Cui et al. [10] combined the bat algorithm with CNN architecture to deal with the multiclass imbalance prob-
lem while using data enhancement methods to increase the number of samples. The location structure of the 
malware itself is altered when image enhancement methods are applied to the malicious domain. This technique 
may lessen the importance of structural features that are crucial for malware classification because the final ful-
ly connected layer of the neural network used in their study is sensitive to positional features. According to the 
experimental findings, the validation set accuracy for the results of image enhancement alone is also the lowest, 
even lower than in the case of no processing at all.
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3   Models and Methods for Malware Classification

3.1   Vision Transformer 

Transformer was proposed by Google in 2017 in the literature [11] which brought great shocks to the field of 
natural language processing and was a landmark model. With the advancement of research, some recent papers 
[12-14] innovatively introduced Transformer technology across domains to computer vision tasks. The Image 
Transformer [12], released in 2018, first migrated the Transformer architecture to the computer vision domain. 
From 2019 to the present, Transformer-based vision models have evolved rapidly, with many noteworthy new 
results. For instance, Carion et al. [13] developed a novel object detection framework called DETR (detection 
Transformer) in May 2020, which was the first time Transformer was applied to the field of target detection. In 
order to investigate the GPT-2 [15] algorithm on images and the performance of unsupervised accuracy, Chen 
et al. [14] suggested the iGPT model in July 2020. The ViT (vision Transformer) model, a self-attentive mecha-
nism-based picture categorization technique, was proposed by Dosovitskiy et al. in October 2020 [16]. It is the 
first effort to use Transformer instead of conventional convolution.

Fig. 1 depicts the model’s whole end-to-end architecture. It is made up of three layers: an embedding lay-
er, an encoder, and a final head classifier. The first step is to partition the image X  into 9 patchs, respectively, 

921 ,...,, xxx , after that, flatten this 9 patchs. By linearly transforming the flattened vector ix  with the matrix W
, the image encoding vector iz  is obtained. The calculation formula is shown in Equation 1.

  { }9,...,1,. ∈= ixWz ii  .                                                                               (1)

 The input coding vector is obtained by summing the image coding vector iz  and the class coding vector 0z
with the corresponding position coding, input the input encoding vector into Vision Transformer Encoder to get 
the corresponding output { }9,...,0, ∈ioi . Finally, the class coding vector 0o  is input to the fully connected neu-

ral network MLP to obtain the class prediction vector ŷ , and the cross entropy loss is calculated with the actual 
class vector y  to obtain loss values and update the weight parameters of the model using the optimization algo-
rithm.

Fig. 1. The structure of vision Transformer
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Positional Encoding.  The order information of the words is naturally kept during processing because the typical 
RNN model handles the words in a phrase one at a time in a sequential pattern, therefore additional processing is 
not necessary. Transformer, on the other hand, loses the sequential information because each word in the phrase 
is entered into the network at the same time for processing. Transformer needs to be processed further in order to 
determine the relative position of each word. Positional encoding is one of the solutions, which includes adding 
an encoding that symbolizes the position information to the input so that the network is aware of the location and 
order of each word. In the literature [11], position encoding is introduced by the sine/cosine function as shown in 
Equation (2-3).

PE pospos i
i d

( , )

/sin( / )2

210000= .                                                                    (2)

PE pospos i
i d

( , )

/cos( / )2 1

210000� � .                                                                 (3)

Where pos refers to the position of a feature at a moment in a sequence, d signifies the position encoding dimen-
sion, 2i denotes the even dimension, and 2 +1i  denotes the odd dimension ( i.e., 2 ,  2 1i d i d≤ + ≤ ).

Self-Attention.  To prevent the neural network from using recursion, the Transformer architecture adds a self-at-
tentive mechanism. The mapping of the global interdependence between inputs and outputs is fully dependent on 
the self-attentive mechanism. In the literature, scaled dot-product attention is used [15]. Scaled dot-product atten-
tion is faster and more space-efficient than general attention since it uses dot products for similarity calculation. 
The input is linearly transformed to obtain the matrices Q  (query), K (key value), and V (value), and the calcu-
lation formula is shown in Equation 4.

Attention Q K V soft QK
d

V
T

k

( , , ) max�
�

�
��

�

�
�� .                                                      (4)

kd  denotes the number of columns of the matrices Q , K , commonly known as the vector dimension.

Multi-head Attention.  The essence of the multi-headed attention mechanism is to split the query, key, and value 
multiple times while keeping the overall number of parameters constant. The query, key, and value parameters are 
split multiple times. Each set of split parameters is mapped to different subspaces of the high-dimensional space 
to calculate attention weights, thus focusing on different parts of the input. After multiple parallel calculations, the 
attention information in all subspaces is finally combined. The attention information in all subspaces is combined, 
and the formula is shown in Equation (4-5). 

1 2 ( , , )  ( , ,..., ) o
hMultiHead Q K V Concat head head head W= .                        (5)

 ( , , )Q K V
i i i ihead Attention QW KW VW=  .                                                       (6)

Where oW , Q
iW , K

iW , and V
iW are the parameter matrices in the linear transformation.

3.2   Dataset

MalImg dataset was developed by Vision Research Lab so that signal and image processing techniques could 
be assessed as malware detection and classification techniques. There are 9339 malware samples in the Vision 
Research Lab’s collection from 25 families, they discuss how to convert malware binaries into images. This col-
lection contains a variety of malware, including worms, backdoors, Trojans, and password stealers (PWS). Some 
of these instances are obfuscated, and the code has a polymorphic engine. The distribution of the number and 
names of each malware family in the MalImg dataset is shown in Fig. 2.
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Fig. 2. Description of the MalImg dataset

Microsoft made the BIG2015 dataset available in 2015 as part of the kaggle challenge, which contains 21,741 
samples from 9 malicious families, the training set with labels has 10,868 samples, whereas the test set without 
labels contains the remaining data. Two files are included in each malware sample: a hexadecimal representation 
of the binary file without the PE header and a metadata file created by the disassembly program IDA that contains 
the malware samples’ machine code, assembly instructions, and other information. The distribution of the number 
and families of malware samples in the BIG2015 training set, which are utilized as the benchmark for model vali-
dation, is displayed in Fig. 3. This is because only the training set is labeled in BIG2015.

Fig. 3. Description of the BIG2015 dataset

3.3   Pre-processing Dataset

Bin2Pixel algorithm is an algorithm proposed by Nataraj et al. [5] in 2011 to handle malware. It is currently the 
most widely used algorithm for malware visualization, which can convert malware into grayscale images of dif-
ferent sizes. The process is that the malware is opened in binary form with an 8-bit binary number as an unsigned 
integer as a pixel point, and the value of the pixel point ranges from 0 to 255, and the image height is adaptive 
according to the sample size to convert the sample into a grayscale image. The malware grayscale image width 
corresponds to Table 1.

Table 1. Image dimensions based on malware size
File size Width (Pixels)
Less than 10kB 32
10kB-30kB 64
30kB-60kB 128
60kB-100kB 256
100kB-200kB 384
200kB-500kB 512
500kB-1000kB 768
More than 1000kB 1024
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We use “.bytes” files and the Bin2Pixel algorithm to convert them into images. Fig. 4 depicts the binary for-
mat of the bytes file. Fig. 5 shows the similarity between different samples of the Adialer. C family and the Gatak 
family. 

Fig. 4. Bytes file fragment

Fig. 5. Samples of Adialer. C family and Gatak family

The code image texture resembles one another somewhat, as seen in the previous figure, because malware 
from the same family reuses the majority of the code, although the differences between dangerous code images of 
various families are very considerable. Therefore, based on this attribute, malware families that correlate to dan-
gerous code grayscale images can be identified using image classification techniques.

3.4   Learning Style

Transfer Learning.  Transfer learning is an approach for improving learning outcomes in new, related domains 
by applying previously learned knowledge from one domain to another that is connected to the first. Large data-
sets are frequently needed for traditional deep learning as training data, however gathering these datasets may be 
costly and time-consuming for small businesses and people. It’s not always possible to get optimum training and 
testing results with a single and growing quantity of data. Models can frequently employ knowledge that has a 
proven track record of success through migration learning to achieve faster convergence, shorter training times, 
and improved test accuracy in new domains. Typically transfer learning is implemented in two ways, one is to di-
rectly freeze all layers of a trained model, making it untrainable, by which the output of a new sample is extracted 
as a feature description of the new sample. The other is based on a fine-tuning approach, which uses a new dataset 
to continue training the already trained model so that the model can be further adapted to the new data. The pri-
mary example diagram is shown in Fig. 6.
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Fig. 6. Examples of transfer learning

Fine Tuning.  Fine-tuning is a means to achieve migration learning [17], which is further training and tuning of 
the model based on an already trained model so that the model can output the desired results. It helps the model 
to adapt to new data in a shorter period [18] and has the advantage of being able to converge in a minimum num-
ber of epochs and being very friendly to small datasets than a pre-trained model. When pre-training is required 
to create a deep learning model The weights of the model that have been trained using a large amount of data can 
be used by fine-tuning when a large amount of data is not available. This significantly reduces the time needed 
for training and data collection, and the weights that are most frequently used are those based on ImageNet data 
training. The softmax layer of the model is transformed into the desired number of classifications, and then the 
weights from github are used. We then download the weights of the model without the fully connected layer from 
the weight repository of github.

It is clear post-analysis that the dataset used in this paper primarily categorizes malware images, in contrast to 
the ImageNet dataset. This paper does not freeze any layer of the model after loading the ImageNet weights so 
that the model can continue to be classified on the basis of the weights already loaded, despite the fact that the 
types of datasets in this paper are quite different from those of ImageNet and the classification tasks share a high 
degree of task similarity. Keep working out to achieve convergence. As a consequence, utilizing fine-tuning to 
apply model weights learnt in other domains to the dataset in this work should yield better results, and when the 
target dataset is significantly less than the source dataset, the fine-tuning helps to increase the model’s generaliza-
tion ability.

4   Experiment and Analysis

4.1   Experimental Environment

The studies were carried out on a Linux operating system using an Intel(R) Xeon(R) CPU E5-2670 v3 12-core 
CPU, 14GB RAM, a 128GB SSD, and an NVIDIA GeForce RTX 3060 with 12GB visual memory, and other ex-
perimental environments including Python3.8, Pytorch1.10, CUDA11.3. In addition, the model uses the matplot-
lib library to plot evaluation metrics for confusion matrices, accuracy scores, and classification reports.

4.2   Evaluation Metrics

In this paper, we classify the malware, and the most critical classification problem is the classification accuracy 
(Accuracy), Precision, Recall, and F1-Score are the most widely utilized measures.

Accuracy TP TN
TP TN FP FN

�
�

� � �
 .                                                                 (6)

Precision TP
TP FP

 �
�

   .                                                                                 (7)
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Recall TP
TP FN

�
�

  .                                                                                      (8)

F score Precision call
Precision Recall

1
2

� �
� �

�
Re

 .                                                             (9)

TP (True Positive) reflects the number of positive samples accurately predicted, FP (False Positive) represents 
the number of negative samples misclassified as positive samples, TN represents the number of negative samples 
correctly classified as negative samples, and FN (False Negative) represents the number of positive samples mis-
classified as negative samples.

4.3   Results and Analysis

Train and Test Results. ViT was built on the basis laid by Transformer, which was the first project to replace 
conventional convolution on huge datasets. It has made strides, but there are also unavoidable downsides. The 
Transformer model does not generalize the task successfully when there are inadequate data because it lacks in-
ductive bias and does not have the translational invariance and local sensitivity of convolution. As a result, we 
selected the ViT-B/16 weight, which was initially trained on the ImageNet21K dataset before being adjusted. 

In this paper, ViT-B/16 is modified by changing the output of its fully connected layer to 25 and 9, which 
represents the number of malware dataset family species in this paper, and the input picture resolution is set to 
224 224 3∗ ∗ , which allows for a better understanding of the influence of different models on the same image cat-
egorization by adjusting. The fine-tuning technique in migration learning is also used in this model. In the model, 
the model is initially “knowledgeable”. The starting LR is 0.01 and decreases with the number of repeats. Fig. 7 
to Fig. 8 show the performance changes of the MalImg dataset and the BIG2015 dataset during the training of the 
model, the red line represents the training set, whereas the green line represents the test set. When Epoch is 10 or 
12, we can observe that the model has converged on both datasets. Following training and testing, the accuracy of 
fine-tuning ViT-B/16 is 99.14 percent and 98 percent, respectively, while the loss is 0.6328 and 0.1044.

Fig. 7. Train and validation accuracy and loss for the MalImg dataset
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Fig. 8. Train and validation accuracy and loss for the BIG2015 dataset

To clearly see the model’s classification details, Table 2 to Table 3 displays the classifier results for each mal-
ware family after applying the fine-tuned ViT-B/16 classifier, as well as the overall mean value for each evalu-
ation measure. The results show that the proposed fine-tuned ViT-B/16 model achieves near-optimal significant 
values for all the evaluated metrics examined. Specifically, most of these features are correct, with an accuracy 
rate close to 98% or higher among the 34 malware families. 

Table 2. Experiment results for MalImg dataset
Model Precision Recall F1-score Support
Adialer.C 1.0000 1.0000 1.0000 25
Agent.FYI 1.0000 1.0000 1.0000 25
Allaple.A 1.0000 1.0000 1.0000 125
Allaple.L 1.0000 1.0000 1.0000 100
Alueron.gen!J 1.0000 1.0000 1.0000 25
Autorun.K 1.0000 1.0000 1.0000 25
C2LOP.gen !g 0.9231 0.9600 0.9412 25
C2LOP.P 1.0000 0.9200 0.9583 25
Dialplatform.B 1.0000 1.0000 1.0000 25
Dontovo.A 1.0000 1.0000 1.0000 25
Fakerean 1.0000 1.0000 1.0000 75
Instantaccess 1.0000 1.0000 1.0000 75
LolydaAA1 1.0000 1.0000 1.0000 60
Lolyda.AA2 1.0000 1.0000 1.0000 25
sLolyda.AA3 1.0000 1.0000 1.0000 25
Lolyda.AT 1.0000 1.0000 1.0000 25
TMalex.gen!J 1.0000 1.0000 1.0000 25
Obfuscator.AD 1.0000 1.0000 1.0000 25
Rbot!gen 1.0000 1.0000 1.0000 25
Skintrim.N 1.0000 1.0000 1.0000 25
Swizzor.gen!E 1.0000 0.8000 0.8889 25
Swizzor.gen!I 0.8065 1.0000 0.8929 25
IVB.AT 1.0000 1.0000 1.0000 25
Wintrim.BX 1.0000 1.0000 1.0000 25
Yuner.A 1.0000 1.0000 1.0000 25

Table 3. Experiment results for BIG2015 dataset
Model Precision Recall F1-score Support
Ramnit 0.9461 0.9870 0.9661 231
Lollipop 0.9946 0.9892 0.9919 371
Kelihos_Ver3 1.0000 1.0000 1.0000 441
Vundo 0.9595 1.0000 0.9793 71
Simda 0.7143 0.8333 0.7692 6
Tracur 0.9817 0.9554 0.9683 112
Kelihos_Ver1 1.0000 1.0000 1.0000 59
Obfuscator.ACY 0.9773 0.9348 0.9556 184
Gatak 0.9800 0.9735 0.9767 151
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However, As shown in the confusion matrix in Fig. 9 to Fig. 10, there were also some malware samples, 
including Swizzor.gen!E and Swizzor. gen!I, since both families have similar structures and patterns and are 
wrapped by the UPX wrapper, it is difficult for ViT to separate them. However, ViT still achieved more than 84% 
accuracy. As for the experiments on the BIG2015 dataset, most of the malware families can be accurately classi-
fied, except Simda, the identification accuracy can only reach 77% due to its tiny sample size.

Fig. 9. Confusion matrix for the ViT-B/16 on the MalImg dataset

Fig. 10. Confusion matrix for the ViT-B/16 on the BIG2015 dataset

Comparison of Results for Different Architectures.  We conducted many sets of comparison tests to illustrate 
the practicality of the suggested strategy in this research. To demonstrate the advantages of vision Transformer 
classification, fine-tuned CNN models are added for comparison on the above two datasets. In the realm of mal-
ware classification, ResNet152, BiT-L, EfficientNet-B7, and other models have been widely employed. These 
models are used to categorize the harmful dataset for comparison. We divide the dataset into a ratio of 8:2 for 
training as well as model evaluation. We used the adam optimizer and the softmax activation function for all deep 
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learning architectures with a classification-cross-entropy loss function.
Table 4 displays the comparative trials of the four models using the ImageNet fine-tuning approach on the two 

datasets, and it can be seen that under the fine-tuning approach, when using pre-trained model weights on a large 
dataset like Imagenet21k, the ViT-B/16 model we used beats convolutional neural networks with the same mi-
gration learning in terms of malware identification performance. However, the classification performance on the 
BIG2015 dataset is weaker than that of the MalImg dataset for either model. Its accuracy is less than 99%, caused 
by its severely unbalanced dataset.

Compared with ViT-B/16, migration learning-based convolutional neural networks can also achieve excellent 
classification results, with the latest BiT-L model having an accuracy of even more than 98%. But ViT relies on 
an attention mechanism to capture global contextual information and can extract more powerful features. It is also 
pre-trained on large-scale datasets and can obtain better results than CNNs in image classification tasks.

Table 4. Experiment results for four different architectures
Model MalImg dataset BIG2015 dataset

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score
ViT-B/16 0.9914 0.9928 0.9914 0.9915 0.9822 0.9826 0.9822 0.9822
BiT-L 0.9840 0.9844 0.9840 0.9834 0.9797 0.9804 0.9797 0.9798
EfficientNet-B7 0.9754 0.9782 0.9754 0.9738 0.9748 0.9763 0.9748 0.9751
ResNet152 0.9722 0.9789 0.9722 0.9679 0.9736 0.9742 0.9736 0.9736

Comparison of Results for Different Architectures.  There are numerous additional deep learning architectures 
available for the categorization of malware. We also contrasted our outcomes with those from earlier studies, as 
shown in Table 5, to further assess the effectiveness of our proposed approach. These methods include traditional 
classification methods [22], deep learning methods [19-21, 23, 25] deep forest models [24], and our proposed 
method. The majority of models rely too heavily on feature generation, picture transformation, and data improve-
ment, call for specialist algorithms, or involve some form of feature engineering approaches [19, 22, 24]. To de-
liberately pre-process data or generate or choose malware features calls for too much human involvement. These 
types of pipelines have become useless due to the exponential growth in the rate of newly generated malware. In 
the face of all this complexity, we propose a simple model that produces better results with almost no complexity. 
It takes advantage of visual converters that both mine long-range dependencies and compute in parallel, allowing 
it to outperform most other deep learning models for malware identification.

Table 5. Comparison with existing state-of-the-art methods on MalImg as well as on the BIG2015 dataset
Dataset Methods Accuracy (%) Year & Reference
MalImg GRU-SVM 84.92 (2019) [19]

SPPNet 96.60 (2020) [20]
LSTM 98.50 (2021) [21]
Our method 99.14

BIG2015 KNN-3 93.10 (2018) [22]
CNN 97.50 (2019) [23]
Deep Forest 97.20 (2020) [24]
Alexnet + Resnet 50 96.50 (2021) [25]
Our method 98.22

Through comparison, it is easy to see that traditional machine learning algorithms have been difficult to 
achieve better results in the field of malicious image recognition, and the future research will focus more on the 
field of deep learning [20-21, 25]. Our method also has some drawbacks, ViT itself has the disadvantage of being 
computationally intensive and relying on large-scale datasets. Our dataset suffers from severe class imbalance, 
with some classes having less than 50 numbers and thus being divided into the wrong classes. In future research, 
we will explore the performance of the model in terms of efficiency, size, etc. In addition, we will use data aug-
mentation as well as class balancing algorithms to improve the identification of malware.

5   Conclusion

The purpose of this work is to devise a technique for detecting malicious code that uses a vision Transformer. We 
chose two public datasets and the traditional Bin2Pixel algorithm is mainly used to directly transform malware 
into grayscale images, a process that does not require much domain expertise and is fast, accurate and at the same 
time resistant to obfuscation. The vision Transformer is used as a classification model for malware images. vision 
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Transformer model has achieved very good results in other image classification domains, but the model has not 
been well used in the malware classification domain. In this paper, we innovate the use of the model to classify 
images of malware. The model is trained using fine-tuning, it effectively utilizes the model’s image categoriza-
tion “knowledge” gained from other areas, and is capable of achieving high test accuracy on tiny dataset. We also 
compare other CNN models with fine-tuning. Our findings demonstrate that the vision Transformer model obtains 
greater accuracy than the CNN model by fine-tuning, further demonstrating that the ViT model can be well used 
in malware classification scenarios.
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