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Abstract. Traditional feature selection methods are only concerned with high relevance between selected 
features and classes and low redundancy among features, ignoring their interrelations which partly weak clas-
sification performance. This paper developed a dynamic relevance strategy to measure the dependency among 
them, where the relevance of each candidate feature is updated dynamically when a new feature is selected. 
Protecting sensitive information has become an important issue when executing feature selection. However, 
existing differentially private machine learning algorithms have seldom considered the impact of data correla-
tion, which may cause more privacy leakage than expected. Therefore, the paper proposed a differentially pri-
vate feature selection based on dynamic relevance measure, namely DPFSDR. Firstly, as a correlation analysis 
technique, the weighted undirected graph model is constructed via the correlated degree, which can reduce the 
dataset’s dimension and correlated sensitivity. Secondly, as a feature selection criterion, F-score with differ-
ential privacy is adopted to measure the feature importance of each feature. Finally, to evaluate the effective-
ness of feature selection, differentially private SVM combined with dynamic relevance measure is utilized to 
choose features. Experimental results show that the proposed DPFSDR algorithm can effectively obtain the 
optimal feature subset, and improve data utility while preserving data privacy.  

Keywords: feature selection, correlated data, differential privacy, associated attribute, dynamic relevance mea-
sure

1   Introduction

With the rapid development of information technology, privacy preservation in data mining increasingly has be-
come an important issue. The main aim is to protect the sensitive information that data owner is reluctant to dis-
close, which has been growingly concerned in financial records, medical records, web search histories, and social 
networks. Because of the advancements in the internet throughput technologies, the collected data of individuals 
by the online systems are mostly high dimensional, which will make the data mining tasks more difficult, and 
cause the curse of dimensionality.

Feature selection is known to be an essential pre-processing technology in data mining. Traditionally, fea-
ture selection can not only reduce data dimension by eliminating irrelevant and redundant features as many as 
possible, but also lower computation consumption and improve classification performance. Apart from the iden-
tification of irrelevant and redundant features, an important but commonly ignored issue is feature interaction. 
Interacting features are those that appear to be irrelevant to the class individually, but when combined with other 
features, they may be highly correlated to the class.

Although some recent research has pointed out the effect of feature interaction on classification performance, 
there is little work on explicit treatment of feature interaction. A linear feature selection method, namely, the dy-
namic change of selected feature with the class (DCSF) was proposed [1], but it failed to take into account the in-
teraction among candidate features, selected features, and classes in the feature selection process, resulting in the 
decline of classification performance. 

Unfortunately, the process of feature selection has the potential to reveal private information, but the existing 
feature selection methods are seldom concerned with the issues of privacy loss. Moreover, the collected data may 
contain some associated attributes and correlated records due to temporal correlation or user correlation, which 
will further increase the risk of privacy leaks. Therefore, it is essential to preserve the private information of cor-
related data during feature selection.



158

Differentially Private Feature Selection Based on Dynamic Relevance for Correlated Data

As a popular technique for privacy preservation, differential privacy proposed by Dwork has attracted consid-
erable attention due to its rigorous mathematical framework and independent background knowledge [2]. Current 
studies on differential privacy mainly focus on data independence, but the fact is not usually true, the collected 
data usually have complex correlation rather than complete dependency. Kifer et al. confirmed that the correlated 
data might reveal more privacy information than expected [3]. Thus, it is greatly necessary to consider the impact 
of the data correlation when designing differentially private machine learning algorithms. At present, data correla-
tion mainly involves temporal correlation [4], trajectory correlation [5], and attribute association [6-7]. This paper 
focuses on the loss of privacy caused by attribute association. 

Moreover, the correlated sensitivity of a dataset is commonly related to the number of features. This means 
more features may have a lower correlated sensitivity and vice versa. Dimensionality reduction and important 
feature selection play a dominant role in improving the machine learning classification performance, but dimen-
sional reduction causes a further increment of sensitivity due to data correlation, which degrades the data utility. 

Based on the above analysis, the main challenges are as follows.
(1) Lack of feature interaction during feature selection may cause performance to decline. 
(2) Correlate data will make more privacy leak, so it is crucial to protect the private information of correlated 

data in the process of feature selection. 
(3) Dimensionality reduction further increases correlated sensitivity due to data correlation, which reduces the 

data utility. 
These challenges imply that a novel mechanism for differentially private feature selection for correlated data is 

in high demand. With respect to the first challenge, to measure feature interaction among selected features, candi-
date features, and classes, a dynamic relevance strategy is explored, where the relevance of each candidate feature 
is dynamically modified when a new feature is added to the selected feature set. For the second challenge, to re-
duce data correlation, the weighted undirected graph model is used to filter the associated attributes and correlat-
ed records. As regards the third challenge, the correlation variation caused by dimensionality changes is analyzed, 
and the number of features selected is determined by private SVM combined with Sequential Forward Floating 
Search (SFFS).

In summary, the major contributions of this paper are as follows.
(1) A differentially private feature selection based on dynamic relevance (DPFSDR) is proposed in this paper. 

It can select features privately by calculating the feature importance of every feature while concerning the de-
pendency with dynamic relevance measure among selected features with dynamic relevance measure, candidate 
features, and classes, thus maintaining a desirable data utility.

(2) A correlation analysis technique is used to reduce the dataset’s dimensionality and correlated sensitivity 
when implementing differential private machine learning algorithms, and thus improve data utility.

(3) To evaluate the performance of the proposed feature selection scheme, the differentially private SVM is 
designed. The experimental results from four different UCI datasets demonstrate that the proposal can achieve a 
better trade-off between data privacy and data utility than existing methods.

The rest of this paper is organized as follows. Section 2 summarizes the previous work in differentially private 
feature selection and correlated differential privacy. Section 3 introduces some preliminaries and basic definitions. 
Section 4 describes the proposed method. Section 5 demonstrates the experiment results and analysis in detail. 
Finally, Section 6 gives the conclusions.

2   Related Work

2.1   Differentially Private Feature Selection

Differentially private feature selection mainly solves the problems of reducing the high dimensionality of the 
dataset privately and thus improving the data utility. In related literature, Li et al. [8] proposed a local learn-
ing-based feature weighted framework, and output perturbation and objective perturbation were adopted to im-
prove privacy preserving property for local learning-based feature selection algorithm, where logistic loss with 
L2-regularizer was utilized to design the evaluation criterion of feature selection. Le et al. [9] developed a private 
Evaporative Cooling algorithm, which used Relief-F for feature selection and random forest for classification 
with an exponential differential privacy mechanism while avoiding over-fitting caused by the feature number be-
ing far larger than the sample number. In order to query data aggregation from high-dimensional data sets under 
differential privacy protection, He et al. [10] proposed a differentially private feature selection method based on a 
data sampling process with a K-D tree. It returned differentially private data aggregates from a low-dimensional 
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dataset, and a two-stage noise injection was used to satisfy the trade-off between privacy and utility of data aggre-
gates. To solve the privacy problem caused by automatic selection techniques based on MI ranking, Srivastava et 
al. [11] proposed a Distributed Differentially Private Mutual Information (DDP-MI), as a privacy-safe batch MI, 
and was used in some scenarios such as feature selection, segmentation, ranking and query expansion. Moreover, 
the distributed implementation provided a strong guarantee against various privacy attacks and substantially im-
proved the efficiency of MI calculations. Previous works focused on the adding of privacy preservation to the 
single feature selection algorithm, Liu et al. [12] proposed a differentially private ensemble feature selection to 
improve the classification accuracy and stability of feature selection. 

Many researchers have accumulated diverse results on privacy protection. However, these existing studies paid 
little attention to data correlation issues. 

2.2   Correlated Differential Privacy

Differential privacy provides a rigorous mathematical method for defining indistinguishability to protect priva-
cy and ensures that adding or removing any single record does not change the analysis results. Previous studies 
have shown that the correlated data give rise to more privacy loss problems. In practice, completely independent 
data rarely exists. There have been two types of differential privacy mechanisms for correlated data. One is mod-
el-based mechanisms, where the correlation model is built and noise conforming to the model is generated to out-
put perturbation. The other is to optimize the sensitivity function in terms of the number of correlated records or 
correlation coefficient matrix.

On the one hand, in the model-based mechanisms, Kifer et al. [3] conceived the Pufferfish framework, which 
analyzed the impact of data correlation on differential privacy in detail, but it failed to satisfy differential privacy. 
Inspired by the Pufferfish framework, He et al. [13] proposed the Blowfish model, which balanced privacy loss 
and data utility with specifying secrets and constraints. Another privacy definition of Pufferfish was Bayesian dif-
ferential privacy [14], which introduced the Gaussian correlation model to describe the structure of data correla-
tion, and analyzed the privacy level of different perturbation algorithms based on this model. Because of the lack 
of an appropriate privacy mechanism for Pufferfish, Song et al. [15] presented the Wasserstein mechanism, which 
was applied to any Pufferfish instantiation. Liu et al. [16] utilized the hide Markov model to express trajectory 
correlation, and measured sensitivity with the Markov model, which determined the scale of noise. Liao et al. [17] 
combined game theory and the Markov model to achieve the trade-off between data privacy and data utility. Ju 
et al. [18] designed a correlation-based privacy protection scheme for social graph data. In order to add adequate 
noise to the query results, the data sensitivity between the original graph and the randomized graph was recalcu-
lated according to the data correlation. These above mechanisms were based on conditional probability and gen-
erated Laplace noise whose joint probability density complies with a given model, such as the Gaussian model or 
Bayesian model, so there was some strict restriction on original data structure in model-based mechanisms.

On the other hand, in the study of optimizing sensitivity function, to avoid large-scale noise caused by exces-
sive correlated data, Liu et al. [19] introduced dependent differential privacy (DDP) framework incorporating 
probabilistic dependence relationship between tuples in the statistical database. Besides, the dependent pertur-
bation mechanism (DPM) was used to achieve the privacy guarantees in DDP. Similarly, the refined sensitivity 
function through the dependence coefficient obtained less noise. Lv et al. [20] proposed k-CRDP and r-CBDP 
models to protect the privacy of correlated data in big data. Firstly, r-CBDP combined the Maximum Information 
Coefficient (MIC) and machine learning algorithms to determine dependencies between data, accurately calculat-
ed the sensitivity, then divided the big data set into several independent blocks, and implemented k-CRDP for the 
blocks to achieve correlated differential privacy of big data. Liang et al. [21] generalized the Pufferfish model and 
designed a privacy leakage computation model (PLCM) as a quantitative analysis of the maximum privacy leak-
age caused by temporal correlations. Almadhoun et al. [6] calculated the sensitivity function with the probability 
dependence between data tuples and the “adjustable” value, which helped to decrease the noise magnitude and 
provided a rigorous privacy guarantee. Zhu et al. [22] introduced the correlation coefficient matrix to describe the 
data correlation, the correlation coefficient was used as the weight of global sensitivity to calculate the sensitivity 
function, and feature selection was implemented to lower data correlation. However, Zhu et al. [22] overlooked 
the dependency among selected features, candidate features, and classes. Moreover, adding or deleting features 
from the adjusted feature set decreased data correlation in the whole dataset, but such adjustment scheme failed to 
reflect the influence of modifying a record on the change of query results. Thus, these above schemes effectively 
reduce the noise for privacy protection by optimizing sensitivity function but still have a poor utility when dealing 
with large-scale correlated records.
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3   Preliminaries

3.1   Differential Privacy

Differential privacy is a rigorous privacy model that does not involve any assumptions regarding the background 
knowledge of adversaries and guarantees that the change of any single record in the dataset does not significant-
ly shift the output distribution [2]. In brief, given two datasets  D  and  Di  that contain a set of records, they are 
neighboring if having the same cardinality but differ in only one record. Let  ri  be that record, then  D  represents 
the dataset with  ri  and  Di  represent the dataset with  ri  deleted from  D . A query  f  is a function that maps the 
record  r D∈  into outputs ( )f D S∈ , where  S  is the whole set of outputs. The formal notion of differential pri-
vacy is shown as follows.

Definition 1.  ε -Differential Privacy. A random algorithm  A  satisfies  ε -differential privacy if for any pair of  
D  and  Di , and for any possible outcome ( )f D S∈ ,  A  will be satisfy  ε -Differential Privacy, if 

                                          [ ( ) ] exp( ) [ ( ) ]iP A D S P A D Sε∈ ≤ × ∈  , (1)

where  ε  refers to the privacy budget that is used to tune the privacy level of the mechanism  A . The lower  ε  
means the higher privacy level.

Definition 2. Global Sensitivity. For any query :f D →  , the sensitivity of  f  is defined as

                          1,
max ( ) ( )

i

i

D D
f f D f D∆ = −  , (2)

where  D  and  Di  are neighboring datasets which is only related to the type the query  f . Global sensitivity mea-
sures the maximal difference on the result of query  f  when removing one record from the dataset  D . The larger 
∆f  is, the greater will be the addition of noise required to mask the effect of all the records of the datasets [23].

Definition 3. Laplace Mechanism. For any query :f D →  , Laplace mechanism satisfies  ε -differential pri-
vacy if

                    ( ) ( ) ( )fA D f D lap
ε
∆

= +  , (3)

where  lap(∙)  denotes Laplace noise drawn from a Laplace distribution with probability density function 
/1( | )

2
xp x e λλ

λ
− , and  λ  depends on the sensitivity and the privacy budget.

Theorem 1. Sequence composition [24]. Suppose random algorithm  A1, A2, ..., An , and their privacy budgets 
are  ε1, ε2, ..., εn . As for the same dataset  D , A(A1(D), A2(D), ..., An(D)) , the combination algorithms of  A1, A2, ..., 

An  on  D , satisfies  ε -differential privacy and 1

n
ii

ε ε
=

= ∑ .

3.2   Correlated Sensitivity

For a query, real-world datasets often cover some records partially correlated, that is to say, modifying one record 
has a probability to change other correlated records. Correlated sensitivity is introduced to measure how much 
effect on other records when modifying one record.
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Definition 4. Correlated sensitivity [22]. For a query  f , the correlated sensitivity  ∆CSQ  is based on the cor-
related degree and the number of correlated records, which is defined as,

                                                     1
0

max | | ( )( ) ( )
n

Q iji Q

j

j

jCS f D f Dθ
∈ =

−∆ −= ∑    , (4)

where  Q  is a record set of all records responding to query  f ,  θij  is the correlated degree between record  i  and 
record  j .  Dj  and  D−j  are neighboring datasets that differ by record  j . Correlated sensitivity covers all the sen-
sitivity of records with the query  f . When a query just contains the independent or weak correlated record, the 
correlated sensitivity will not generate additional noise. For any query, the perturbed answer is adjusted with 
Equation (5).

                                        )Laˆ pl (a) ) e( ( c QCS
f D f D

ε
∆

= +  . (5)

4   The Proposed Method

The proposed feature selection scheme mainly involves three steps, shown as follows. 
Step 1: Design the weighted undirected graph of associated attributes, and eliminate the attributes whose cor-

related degree is higher than the given threshold, as described in Section 4.1;
Step 2: Compute the importance of every feature via differentially private F-score, and sorted these features in 

descending order according to their feature importance, as described in Section 4.2;
Step 3: Implement DPFSDR with SFFS strategy, as described in Section 4.3. (DPFSDR Algorithm 

Description.)

4.1   The Weighted Undirected Graph Model 

Given the dataset  D , the attribute set is represented with  X = { X1, X2, ..., Xi, ..., Xm }( 1 ≤ i ≤ m ) , where  m  de-
notes the number of dimension of dataset  D . The Pearson correlation coefficient is an efficient way to discover 
associated attributes and correlated records in dataset. 

Definition 5. Correlated degree. Suppose two attributes  Xi  and  Xj , then correlated degree between  Xi  and  Xj  
can be described by Pearson correlation coefficient as follows,

                                                       
[( )( )]

( , ) i j

i j

i X j X
ij i j

X X

E X u X u
p X Xθ

σ σ

− −
= =  , (6)

where  uXi 
, uXj

  are mean of  Xi  and  Xj  respectively,  σXi 
, σXj  are covariance of  Xi  and  Xj  respectively. 

Corollary 1. If  θij = θji = 0 , it indicates no relationship between  Xi  and  Xj ; if  | θij | = 1 ,  Xi  and  Xj  are fully 
correlated; if  0 < θij < 1 , then have a positive correlated; if  −1 < θij < 0 , they have a negative correlated. 

From correlated data analysis, a weighted undirected graph of associated attributes is constructed in this paper, 
where the vertex set represents the attribute set, the edge set represents the correlation between attributes, and the 
weight of edge  θij  represents the correlated degree between  Xi  and  Xj . The weighted undirected graph is for-
mally described by adjacency matrix  M .

Definition 6. Correlated Degree Adjacency matrix  M . It is possible to list all relationships between attributes,

                                               
,   

[ ][ ]    1 ,
0,   
ij ij

ij
M i j i j m

θ θ δ
θ δ

 <
≥


= ≤ ≤


 , (7)
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where,  θij  is the correlated degree between  Xi  and  Xj , the threshold  δ  is used to filter the attributes with the 
higher correlated degree, and  M[i][j] = 0  implies they have no relationship at all. 

Here are two properties of  M ,
(1) It is symmetrical with  θij = θji .
(2) The elements on the diagonal are equal to 0.
The Correlated Degree Adjacency matrix  M  is generated in detail as Algorithm 1. 

Algorithm 1. Generate correlated degree adjacent matrix  M
Input: dataset D, the attribute set  X = { X1, X2, ..., Xi, ..., Xm }, the threshold  δ
Output: Adjacent Matrix  M
1.    for  i =1  to  m
2.       for  j = 1  to  m
3.          M[i][j] = 0
4.       end for
5.    end for
6.    for  i = 1  to  m 
7.        for  j = 1  to  m 
8.           Compute  θij

9.           if  θij >= δ  then
10.              θij = 0
11.          end if
12.           M[i][j] = θij

13.        end for
14.     end for
15.    Output  M             

From Algorithm 1, the computational complexity is  O(m2) , and its elements on the diagonal are equal to zero. 
So, with the idea of compression storage, the elements in  M  is stored with  m(m−1) / 2  units. Besides, lower as-
sociated attributes are selected according to the given threshold  δ .

4.2   Differentially Private F-score Feature Selection

Definition 7. F-score [25]. Given training dataset m
kx R∈ ,  k = 1, 2, ..., n , and number of datasets is  l , if the 

number of  i -th dataset is  nj ,  j = 1, 2, ..., l , then the F-score of  i -th feature is

                                   

2

1

2
,

1 1

( )

1 ( )
1

j

l
j

i i
j

i nl
j j

k i i
j kj

x x
F

x x
n

=

= =

−
=

−
−

∑

∑ ∑
 , (8)

where, ix , j
ix  are average of the  i -th feature of whole data set, and the  j -th data set respectively, ,

j
k ix  is the  i  

-th feature of  k -th record in  j -th dataset. The numerator represents the discrimination between each dataset, and 
denominator denotes the one within each of dataset. Thus, the larger the F-score is, the more likely discriminative 
this feature is. F-score is used to calculate the importance of each feature, namely fim, and neighboring data are 
obtained when deleting record  ri .
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Definition 8. Feature Importance. Given the dataset  D , the feature importance of  i -th feature is defined as

               fim /i i i
i

F F= ∑  , (9)

where  Fi  is calculated by Equation (8). The larger  fimi  is, the more likely discriminative this feature is, and the 
more important the feature to the class is. 

Definition 9. Record Sensitivity of Feature Importance. For a query  f , the record sensitivity of feature impor-
tance of record  ri  is denoted as 

                               
1max min  fim fim fimi i

i∆ = −  , (10)

where maxfimi  and minfimi  represent maximum and minimum of feature importance for record  ri  respectively.

Definition 10. Sensitivity of Feature Importance. For a query  f , the sensitivity of feature importance is deter-
mined by the maximal record sensitivity of feature importance,

                       fim max( fim )Q ii Q∈
∆ = ∆  , (11)

where  Q  is a set of records related to a query  f . It is easy to know  ΔfimQ ≤ 1 , since the range of feature impor-
tance is from 0 to 1. Besides, Laplace mechanism is used to added noise to the feature importance, and the per-
turbed feature importance is defined as 

                               
1

fim
ˆfim fim Lap( )Q

i i ε
∆

= +  . (12)

Then the perturbed feature importance is normalized as

                       .  (13)

According above descriptions, Feature selection with Differential Private F-score is shown as follows.

Algorithm 2. Differentially private F-score feature selection

Input: dataset  D , the privacy budget  ε1 
Output: The new sequence of feature importance  Fcd

1. Calculate  Fi  for each feature according to Equation (8)
2. for  i = 1  to  m 

3.         Normalize fim /i i i
i

F F= ∑  

4.         Perturb 
1

fim
ˆfim fim Lap( )Q

i i ε
∆

= +  

5. Normalize ,  i = 1, ..., m  

6. Sorted 'fimi  in descending order, denotes  f1 > f2 > ... > fm 
7. Output the new sequence of feature importance  Fcd = { f1, f2, ..., fi, ..., fm }  

 

 

'

1

ˆ ˆfim fim / fim
m

i i i
i=

=   

 

 

'

1

ˆ ˆfim fim / fim
m

i i i
i=

= ∑  
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4.3   Proposed DPFSDR Method

Dynamic Relevance Measure.  Although the feature importance can measure effectively the discrimination of 
the feature to class, it fails to evaluate the interrelation among selected features, candidate features, and classes. 
So, a dynamic relevance measure is proposed in this paper, where the relevance of each feature in the candidate 
feature set is dynamically updated through selected features and classes. The average redundancy between a can-
didate feature and the selected feature subset is defined as

              1
| |

| |

selF
ijj

i
sel

R
F

θ
==

∑  , (14)

where  Fsel  denotes selected feature subset,  |Fsel|  denotes the number of selected features in  Fsel , the correlated 
degree  θij  between the candidate feature  Xi  and the  j -th feature in  Fsel  is calculated by Pearson correlation co-
efficient.

Combining the average redundancy and the importance of each feature in candidate feature subset, the dynam-
ic relevance measure is represented as

        
'fimi

i
i

DR
R

=  , (15)

where  DRi  denotes the dynamic relevance of  i -th feature in candidate feature subset. The larger 'fimi  and the 
smaller  Ri  is, the more likely discriminative to classes and lower redundancy with selected features is. 

DPFSDR Algorithm Description.  The DPFSDR procedure is implemented with SFFS as the following:
Step 1: Initialize the selected feature subset empty and the candidate feature subset with all features, ranking 

in descending order according to their feature importance; 
Step 2: Select the top one feature from the candidate feature subset and add it to the selected feature subset;
Step 3: Build the predictor model to classify the training subset of samples according to the current selected 

feature subset, get the classification accuracy of the training subset, and then use the output perturbation test;
Step 4: Compute the dynamic relevance of each feature in the candidate feature subset, and sort them in de-

scending order;
Step 5: Select the top one feature from the candidate feature subset and copy it to the selected feature subset;
Step 6: Build the predictor model to classify the training subset of samples according to the current selected 

feature subset, get the classification accuracy of the training subset, and then use the output perturbation test;
Step 7: If the prediction accuracy is improved, eliminate the feature from the candidate feature subset that has 

just been copied to the selected feature subset, and then go to Step 4;
Step 8: Else eliminate the feature from the selected feature subset that has just been copied to the selected 

feature subset, select the next top one feature from the candidate feature subset and copy it to the selected feature 
subset, and then go to Step 6;

Step 9: Execute the procedure until the candidate feature subset is empty or all features in the candidate fea-
ture subset have been processed but they have no change to the prediction accuracy.

The specific DPFSDR procedure is shown in Algorithm 3.
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Algorithm 3. DPFSDR algorithm
Input: The privacy budget  ε2 , the candidate feature subset  Fcd

Output: The optimal feature subset  Fsel

1.    Initialize  Fsel = ϕ
2.    f1 = arg max(Fcd),  f1 ∈  Fcd

3.    Fsel  = { f1 }, Fcd = Fcd − { f1 }
4.    For  Fsel , use linear SVM classifier to obtain classification hyperplane (w, b)

5.    Perturb 
2

: ' Laplace( )QCS
w w w

ε
∆

= +

6.    Get the prediction results  Acc  according to  w' 
7.    Do while  Fcd ≠ ϕ 
8.          Flag=False
9.          Calculate  DRi  for each feature in  Fcd , 

         and sort them in descending order according to Equation (15)

10.         Select the top one feature  fp  from  Fcd ,  fp = GetFirstElem(Fcd) , p cdf F∈

11.         Do While  fp ≠ ϕ 

12.                 *
selF  = Fsel + { fp }

13.                  For *
selF , use linear SVM classifier to obtain classification hyperplane (w, b)

14.                  Perturb 
2

: ' Laplace( )QCS
w w w

ε
∆

= +

15.                  Get the prediction results  Acc*  according to  w'
16.                  if  Acc* > Acc  then
17.                       Flag=True
18.                       Acc = Acc*

19.                       Fsel =
*

selF  
20.                       Fcd = Fcd − { fp } 
21.                       goto 7
22.                  else
23.                     fp = GetFirstElem(Fcd  − { fp })
24.                       goto 11
25.                  end if
26.                  if Flag==False then
27.                      goto 31
28.                  end if
29.          end Do
30.    end Do
31.    Output the optimal feature subset  Fsel 
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To validate the effectiveness of the DPFSDR algorithm, it is compared with the proposed Differential Private 
Feature Selection (DPFS) algorithm, where SFFS is used to conduct the feature selection process, and the fea-
ture with highest feature importance in the candidate feature subset is selected and added to the selected feature 
subset, then evaluate the classification performance with output perturbation. If the classification accuracy is not 
improved, then eliminate the feature that has been added to the selected feature subset. The DPFS procedure is 
executed until all features in the candidate feature subset have been processed. DPFS is described in detail as 
Algorithm 4. 

Algorithm 4. DPFS algorithm
Input: dataset  D , the privacy budget  ε2 , the candidate feature subset  Fcd

Output: The optimal feature subset  Fsel 
1. Initialize  Fsel = ϕ 
2.  f1 = arg max(Fcd),  f1 ∈  Fcd

3.  Fsel = { f1 },  Fcd = Fcd − { f1 }
4. For  Fsel , use linear SVM classifier to obtain classification hyperplane (w, b)

5. Perturb 
2

: ' Laplace( )QCS
w w w

ε
∆

= +

6. Get the prediction results  Acc  according to  w' 
7. Do while  Fcd ≠ ϕ 

8.     Select the top feature  fp = GetFirstElem(Fcd), p cdf F∈

9.     }{*
pselsel fFF +=

10.     For *
selF , use linear SVM to obtain classification hyperplane (w, b)

11.     Perturb 
2

: ' Laplace( )QCS
w w w

ε
∆

= +

12.     Get the prediction results  Acc*  according to  w'
13.     if  Acc* > Acc  then
14.         Acc = Acc* 

15.         Fsel =  *
selF

16.     end if
17.      Fcd = Fcd − { fp }
18. end Do
19. Output the optimal feature subset  Fsel

4.4   Privacy Analysis

Theorem 2. The proposed DPFSDR scheme satisfies  ε -differential privacy.
To prove the DPFSDR method satisfies  ε -differential privacy, this paper first analyzes which steps consume 

the privacy budget in the DPFSDR scheme. From Algorithm 2 and Algorithm 3, the dataset is used in two places: 
1) feature selection procedure with differentially private F-score, 2) data training stage. To protect data privacy, 
noise is added to these two places. The total privacy budget  ε  is divided into  ε1  and  ε2 , and allocated to these 
two places respectively. First, the privacy budget  ε1  is analyzed in the process of feature selection.

Lemma 1. The feature selection procedure with differentially private F-score satisfies  ε1 -differential privacy.
The neighboring datasets  D  and  Di  are obtained by deleting the record  ri  from the dataset  D , and  f1(∙)  is 

the query of feature selection.  px(z)  and  py(z)  are the probability density function as following: 
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where the first inequality is from triangle inequality, and the second inequality is from Equation (11). Therefore, 
the feature selection procedure with differentially private F-score satisfies  ε1 -differential privacy. Second, the 
privacy budget  ε2  is analyzed in the data training.

Lemma 2. The data training procedure satisfies  ε2 -differential privacy.
The neighboring datasets  D  and  Di  are obtained by deleting the record  ri  from the dataset  D , and  f2(∙)  is 

the query of feature selection.  vx(z)  and  vy(z)  is the probability density function as following: 
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The ratio of two probability density can be represented as
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where first inequality is from triangle inequality, and second inequality is from Equation (4). So, the data training 
procedure satisfies ε2 -differential privacy.

From the above analysis, the privacy budget  ε1  and  ε2  are added to the DPFSDR scheme sequentially. 
Combined with Theorem 2, Lemma 1 and Lemma 2, it is proved that the DPFSDR scheme satisfies  ( ε1 + ε2 ) -dif-
ferential privacy.
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5   Experiments Results and Analysis 

In this section, to evaluate the performance of the proposed solution, the experiments are conducted on four well-
known datasets in terms of data analysis tasks and the utility for data analysis is tested with private SVM. 

5.1   Dataset and Confi guration

The experiments involve four datasets, WDBC, Semeion Handwritten Digit (Semeion), Dermatology, and 
Ionosphere, respectively. They are available in the UCI machine learning repository [26], and have diff erent ex-
tent of data correlation and the diff erent number of features. Each experiment is executed 1000 times. Table 1 
shows the experimental datasets, given the threshold  δ  used to fi lter the attributes with the higher correlated de-
gree, and the number of lower correlated features obtained by Algorithm 1.

Table 1. Descriptions of the experimental datasets, the threshold  δ  and No. lower correlated features
Datasets No. samples No. features No. classes δ No. lower correlated features
WDBC 569 30 2 0.95 23
Semeion 1593 256 10 0.7 196

Dermatology 358 34 6 0.9 29
Ionosphere 351 34 2 0.95 33

5.2   Data Correlation Analysis

Our proposed scheme is to improve the utility of data analysis according to the accuracy of the predicted results. 
SVM is chosen as a machine learning algorithm and is used to test the output perturbation to assess data utility. 
However, correlated data can expose more privacy information in machine learning algorithms when applying 
diff erential privacy. Not always easing to capturing the data correlation or describing accurately in the real world, 
previous studies do not always guarantee good performance. The proposed scheme using the weighted undirected 
graph reduces data correlation and can be applied to data analysis. Fig. 1 and Fig. 2 show the trend of correlation 
and correlated records on four diff erent datasets with the number of features respectively.

(a) WDBC (b) Semeion (c) Dermatology (d) Ionosphere
Fig. 1. Correlation with the number of features on diff erent datasets
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(a) WDBC (b) Semeion (c) Dermatology (d) Ionosphere
Fig. 2. Number of correlated records with the number of features on diff erent datasets

It can be seen from Fig. 1 and Fig. 2, data correlation and correlated records generally decrease with increasing 
number of features but eventually tend to be stable. For example, Fig. 1(a) and Fig. 1(c) demonstrate that data 
correlation eventually stabilizes at 24 features with the WDBC dataset and at 20 features with the Dermatology 
dataset. This observation in Fig. 1 indicates that data correlation across the entire dataset can be reduced while 
preserving a suitable number of features for data analysis because more features mean less data correlation, and 
the same is true for correlated records from Fig. 2. Therefore, our method reduces the data correlation eff ectively, 
and accordingly decreases the sensitivity of corrected data while maintaining good training performance.

5.3   Diff erentially Private F-score Feature Selection Performance Evaluation

To measure the utility of diff erentially private F-score feature selection, Mean Absolute Error (MAE) is used as 
performance evaluation, and set the privacy budget to  ε1 = 0.01, 0.05, 0.1, 0.5, 1, respectively. The MAE is de-
fi ned as

                                   
1

1 ˆMAE | ( ) ( ) |
N

i i
i

f x f x
N =

= −∑  , (20)

where  fi (x)  is the true statistic result for one query, ˆ ( )if x  is the perturbed statistic result,  N  indicates the num-
ber of statistic queries. For each dataset, 1000 random statistical queries are executed, and the results are shown 
in Fig. 3.
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(a) WDBC (b) Semeion (c) Dermatology (d) Ionosphere
Fig. 3. Privacy protection performance of diff erentially private F-score

As seen from Fig. 3 that the privacy protection performance changes with the privacy budgets. MAE has a 
downward trend as the privacy budget  ε1  increases, and tends to be stable toward the end, that is, the private data 
utility improves as the level of privacy preservation decreases. For example, Fig. 3 at  ε1 = 0.2 shows an MAE of 
around 0.028, 0.011, 0.061, 0.063 respectively for four diff erent datasets using our proposed scheme. It can be 
concluded that reducing noise injecting also has a positive eff ect on improving the data utility.

5.4   Feature Selection Based on Dynamic Relevance Measure with Private SVM

To verify the eff ectiveness of DPFSDR on private machine learning algorithms, classifi cation accuracy is uti-
lized in this subsection as an indicator to assess the algorithm’s performance. In the process of training data, the 
Laplace noise is added to the linear SVM classifi er to achieve to data privacy guarantee. The feature importance 
sequence is calculated with  ε1 = 0.1, and the adding noises depend on the number of correlated records obtained 
similarly according to Algorithm 1, where the threshold of correlated degree between records is set to  δ = 0.8  
and the privacy budget is set to  ε2 = 0.01, 0.05, 0.1, 0.5, 1, respectively. When  ε2 = 0, our DPFSDR algorithm is 
regarded as non-private-SVM, so named DFS (Dynamic Feature Selection). For better comparisons, four schemes 
are used in the experiments.

(1) DFS scheme.
(2) DPFS scheme.
(3) CR-FS scheme [22].
(4) Our DPFSDR scheme.
Fig. 4 demonstrates the classifi cation accuracy varies with the growing budget  ε2  on four diff erent datasets 

according to four schemes and corresponding the number of selected features under diff erent budgets is shown in 
Fig. 5. In all cases, the classifi cation accuracy is the average performance equal to 1000 runs of each algorithm.
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(a) WDBC (b) Semeion (c) Dermatology (d) Ionosphere
Fig. 4. The classifi cation accuracy under diff erent budgets with four schemes

(a) WDBC (b) Semeion (c) Dermatology (d) Ionosphere
Fig. 5. The number of selected features under diff erent privacy budgets
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It can be seen from Fig. 4, that in most cases, with the increase of privacy budget, the classification accuracy 
of DPFS, DPFSDR, and CR-FS is gradually close to DFS. Accuracy of DFS with non-private scheme remains 
constant as privacy budget increases and also generally performs better than other schemes. This result shows 
injecting any form of privacy requirement on a dataset degrades data utility. For the three private schemes, as the 
privacy budget  ε2  increases, the privacy protection level weakens so that the accuracy tends to rise. For example, 
when  ε2 < 0.1, the classification performance of DFS is significantly better than DPFS, DPFSDR, and CR-FS; 
when  ε2 ≥ 0.1, the classification accuracy of four schemes is very similar; when  ε2 = 1, the difference of accuracy 
with four schemes is less than 0.02 on WDBC and Ionosphere, and the accuracy of DPFSDR on Semeion and 
Dermatology is greater 0.011 and 0.002 than that of DFS respectively, that is, when  ε2 = 1, the classification per-
formance with four schemes is almost the same. In general, DPFSDR is superior to DPFS and CR-FS in terms of 
classification performance as a whole. 

The experiment in Fig. 5 exposes a rising trend of numbers of selected features with increasing privacy budget. 
This means the number of correlated records is reduced, and thus classification performance is improved, which 
is consistent with the conclusion in Fig. 4. Compared with the CR-FS, DPFS and DPFSDR select fewer features 
and obtain lower feature redundancy. Combined with Fig. 4 and Fig. 5, DPFSDR has better classification perfor-
mance when the number of selected features is the same, and vice versa. Therefore, the DPFSDR has better utility 
in the feature selection process.

6   Conclusions

This paper focuses on dealing with the privacy leakage issue of feature selection for correlated data and proposes 
a differentially private feature selection based on dynamic relevance (DPFSDR) scheme, whose steps consider the 
data correlation and high dimension in the dataset, the accuracy of predict results, and the privacy preservation. 
The DPFSDR optimizes data utility by private feature selection and correlated sensitivity reduction operation. 
The method also provides the private machine learning algorithms to meet data analysis requirements of users and 
improves training accuracy effectively. According to the privacy analysis, the DPFSDR is proved to satisfy dif-
ferential privacy. The DPFSDR strikes a better tradeoff between data utility and privacy leak for correlated data. 
The method’s performance is evaluated via extensive experiments, and the results prove the DPFSDR scheme 
provides better utility for data analysis tasks compared to other schemes. The proposed theory and algorithm have 
certain theoretical and practical reference values for data analysis with correlated differential privacy.

However, the proposed private feature selection adds noise with the same amount, which may influence the 
data utility. In future work, adaptive differential privacy is an interesting direction, and it is used to further im-
prove data utility by dynamic allocation of privacy budget. Other future work includes investigating high-dimen-
sional data releasing in a distributed multi-party scenario under correlated differential privacy.
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