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Abstract. Deep learning has been widely used in single image rain removal and demonstrated favorable uni-
versality. However, it is still challenging to remove rain streaks, especially in the nightscape rain map which 
exists heavy rain and rain streak accumulation. To solve this problem, a single image nightscape rain removal 
algorithm based on Multi-scale Fusion Residual Network is proposed in this paper. Firstly, based on the mo-
tion blur model, evenly distributed rain streaks are generated and the dataset is reconstructed to solve the lack 
of nightscape rain map datasets. Secondly, according to the characteristics of the night rain map, multi-scale 
residual blocks are drawn on to reuse and propagate the feature, so as to exploit the rain streaks details repre-
sentation. Meanwhile, the linear sequential connection structure of multi-scale residual blocks is changed to 
a u-shaped codec structure, which tackles the problem that features cannot be extracted effectively due to in-
sufficient scale. Finally, the features of different scales are combined with the global self-attention mechanism 
to get different rain streak components, then a cleaner restored image is obtained. The quantitative and qual-
itative results show that, compared to the existing algorithms, the proposed algorithm can effectively remove 
rain streaks while retaining detailed information and ensuring the integrity of image information. 

Keywords: deep learning, nightscape rain removal, Multi-scale Fusion Residual Network, global self-atten-
tion mechanism

1   Introduction

With the rapid development of computer vision, many computer vision technologies have been applied to deal 
with practical problems in daily life. Such as pedestrian detection [1], object tracking [2], semantic segmentation 
[3], etc. Since the video or image is captured outdoors, the quality of the image and the subsequent image pro-
cessing effect can be decreased for a large number of reasons. Among them, rain is one of the common outdoor 
factors affecting image quality. With the universality of autonomous driving and more outdoor applications based 
on computer vision, rain removal becomes an integral part of low-level computer tasks once again.

In recent years, researchers have proposed many effective algorithms for the problem of removing rain from 
a single image. Yang et al. [4] divided them into two categories: model-based methods and data-driven meth-
ods. Between them, model-based methods can be further classified into filtering-based methods and prior-based 
methods. Using a single de-rain as a signal filtering task is a filter-based approach that uses edge retention and 
physical property filtering to recover images with rain [5-6]. However, the solution equation is considered as an 
optimization problem in the prior-based methods. Besides, the prior-based method applies traditional image pro-
cessing methods such as discriminative sparse [6-7], Gaussian mixture model [8], and low-rank representation 
[7]. Unlike model-based methods, data-driven methods view rain removal as a process of learning a nonlinear 
function and map rain streaks into the background image by finding suitable parameters [4].

Convolutional Neural Networks (CNN) have shown good performance in image rain removal with prom-
ising successes in recent years [9-11]. [12] considered the location information of rain streaks in the image by 
learning the rain content at different scales and using them to estimate the final de-rained output. [13] proposed a 
scale aggregation module to learn features at different scales. At the same time, feature aggregation can adapt to 
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each channel and has a superior de-noising effect because of the introduction of the attention module. [14] used 
the proximal gradient descent technique to design an iterative algorithm containing only simple operators and 
proposed a deep neural network with fully interpretable. A VNet network structure containing a spatial pyramid 
is described to predict water vapor propagation based on rain patterns and ANet's encoder is utilized to estimate 
atmospheric light [15]. [16] designed an optimization model-driven deep CNN. The unsupervised loss function 
of the optimization model is enforced on the proposed network for better generalization. A novel dual hetero-
geneous complementary networks are proposed to explore both detailed structure and semantic contexts [17]. 
Numerous studies have demonstrated that neural networks can bring significant performance improvement in 
image rain removal. 

Most of the above studies were conducted for daytime rain maps. However, the nightscape rain map differs 
from the daytime rain map in two ways: on the one hand, the rain removal network based on the daytime rain 
map dataset will remove rain streaks excessively in the nightscape rain map, and on the other hand, the lamps 
in the nightscape can easily be removed by mistake because of the similarity of light and rain streaks at night. 
Considering the unique features of nightscape rain maps, there is still a lack of thorough research on rain removal 
in nightscape maps, and there is no public nightscape rain map dataset. In this paper, a rain removal network for 
nightscape rain maps is built by using multi-scale fusion residual blocks. 

The major contributions of our work are summarized as follows:
1) A large dataset of nightscape rain maps is developed with digital image processing methods, which extends 

existing datasets and handles the lack of nightscape rain map datasets. Besides, it does not require a lot of effort.
2) A deep learning approach with a Multi-scale Fusion Residual Network (MFR-Net) for tiny rain streaks fea-

ture extraction is proposed. It results in an end-to-end model that jointly learns multi-scale rain streak features to 
remove rain streaks efficiently.

3) Superior performance of our method is achieved against popular rain removal algorithms. In addition, our 
algorithm proves the soundness of each module in ablation experiments, which shows that our algorithm has 
good generalization and robustness.

The rest of this paper is organized as follows. In Section 1, we propose a rain removal algorithm in the 
nightscape rain map. In Section 2, a method of synthesizing rain using a digital image processing algorithm is 
described. In Section 3, we introduce Multi-scale Attentive Residual Dense Network (MARD-Net) [18], Global 
Self-attention (GSA) module, and explain MFR-Net in detail. In Section 4, the relevant experimental results are 
given. Finally, this paper is concluded in Section 5.

2   Construction of the Dataset

In image de-raining models, a rainy image is considered to be a linear superposition of a clean (no rain) back-
ground image and a rain component. Equation 1 is expressed as:

  
I = B + R, (1)

	
where B, R and I represents the background image, the rain component and the synthesized image, respectively.

In the real world, a large number of rain streaks are accumulated from various sizes of rain streaks. Rain 
streaks of the same size will show in different sizes depending on the photographer's viewpoint. When the rain 
streaks are densely accumulated, individual rain streaks will overlap and intersect. This accumulated rain streak 
has a visual effect, which is similar to haze or fog for distant scenes, leading to atmospheric occlusion and blur-
ring effects. Therefore, the real rain streaks are approximated through random generation, superposition, rotation 
and blur. Besides, while ensuring the diversity of nightscape rain dataset, a large number of nightscape rain maps 
in batches are generated.

2.1   Generation of Rain Streaks 

In the process of synthesizing the dataset, the key is how to build the  R  layer. Since rain presents approximately 
linear information in free fall, this paper considers the  R  layer as point-like noise that increases motion blur. A 
random number is generated between 0-255 as the generated pixel noise, and it is multiplied by the scale factor 
to control the size of the generated noise. In order to make the noise raindrops more realistic, the noise informa-
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tion of the generated pixel is convolved with a blur matrix, so that the pixel noise has a preliminary motion blur 
effect.

On the basis of obtaining pixel point noise, point noise can be transformed into line noise through affine trans-
formation, thereby generating rain streak. In one-dimensional space, for any vector x, the translation amount is b, 
and the affine transformation of the zoom factor A is as follows: 

	   
y = Ax + b. (2)

	
Generalize Equation 2 to a two-dimensional image, assuming the origin is O, f (O)∈B, B denoted the original 

image, then for any vector x it is represented as: 
	   

 f (O + x) → φ (B + x). (3)
	

After the noise map is obtained, a diagonal matrix d is generated, and the noise map is affinely transformed to 
the diagonal matrix d at this time, the raindrops are transformed into rain streaks. Next, use Gaussian blurring the 
rain pattern to make the rain pattern possess a "width", so that the complete rain component R is obtained. 

         Clean image        Rainy image          Clean image       Rainy image 

(a) Training set (b) Testing set

Fig. 1. Synthetic dateset

2.2   Construction of Synthetic Datasets

According to Equation 1, after getting the rain component R, the final rain-containing image I can be obtained 
only by selecting clean background picture B for channel superposition. In this method, the rain information is 
superimposed on each channel. The part representing black in each channel of the rain component R will give 
different weights to the value on the channel at the same position in the background image B. The weights are 
adjusted according to the distance of the simulated raindrop to the lens. This method based on different weights 
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makes the final image appear as clear or blurry rain streaks, increasing the spatial information of rain. The final 
image produced by this method does not change the brightness information of daytime and night images. In this 
paper, the channel superposition method is used to reconstruct the night and day rain datasets required for the ex-
perimental part of this paper. 

For the nightscape rain map dataset, since it is difficult to obtain rain image datasets by cameras in the real 
environment, a widely acceptable method for constructing datasets is to apply synthetic rain to construct data-
sets. The nightscape rain map dataset Rain_dark100L constructed in this paper adopts 200 city night background 
images as the base images of the training set. The rain streaks are set to be lightweight, including the angle range 
from -30° to 30°, and various rain streak lengths; the test set utilizes rain streaks addition twice, including two 
rain streaks from -30° to 30°. Multiple experiments are proved that when two kinds of rain streaks information 
are added to the same image, the network learning effect is the best. This paper adds the rain streak information 
twice on the test set. After two additions, two different kinds of rain streak information will appear in the imag-
es in the test set and are used to test the learning effect of each round of rain streak information of the network. 
Rain_dark100H adopts the same addition mode as Rain_dark100L, but increases the density of rain streaks.

Scholars are now widely applying the Rain100L [19], Rain100H [19], and Rain14000 [20] datasets. Among 
them, Rain100L contains 1800 pairs of rainy/clean images as a training set, and 200 pairs of rainy/clean images 
as a test set. Rain100H and Rain100L have the same number of images in the training set and test set, and the 
background images are also the same, but the densities of rain streaks are different. Rain14000 contains a train-
ing set of 12,600 pairs of images with/without rain, and a test set of 1,400 pairs of images with/without rain.

In order to verify the effectiveness of the algorithm in this paper, while constructing the nightscape dataset, 
the method was used to reconstruct the dataset Rain100L and Rain100H renamed as Rain2000L and Rain2000H. 
Fig. 1 presents part of synthetic rain datasets.

3   The Proposed Multi-scale Fusion Residual Network

The performance of existing rain removal algorithms is limited due to excessive smoothing effect, poor general-
ization ability, and differences in rainfall intensity in spatial location and color channel. This paper proposes an 
end-to-end based multi-scale fusion residual dense network. The network model uses a completely symmetric 
U-shaped structure to enable feature fusion and further integrates the Multi-scale Fusion Residual Blocks into the 
U-shaped network to improve the capabilities of rain feature extraction and representation. Also, the GSA mod-
ule is introduced before output, which can better extract the information of the tiny rain streak, so as to achieve 
an overall improvement in the rain removal performance. In the following subsections, Multi-scale attention 
residual block, GSA module and Multi-scale fusion residual network will be discussed in detail. The network ar-
chitecture is illustrated in Fig. 2.

Fig. 2. The structure of MFR-Net
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3.1   Multi-scale Attention Residual Block

The multi-scale residual network is composed of basic Multi-Scale Attentive Residual Blocks (MARB). This 
module can take rain images of different scenes as input, and it can well represent rain streak features after 
MARB processing. The input features of MARB are concatenated after passing through a 3×3 and 5×5 convo-
lutional layers so that to complete multi-scale information fusion. In order to further improve the representation 
capability of the network, MARB also introduces inter-layer multi-scale information fusion to fuse multi-scale 
information with features of different scales. This structure enables MARB to learn the main features of imag-
es through different scales and features, ensuring that the input information of the network can be propagated 
through all parameter layers. In order to speed up the training process of the network, this paper also introduces 
a global skip connection between different MARBs, and updates the parameters by calculating the back-propaga-
tion gradient. This skip connection method can directly propagate the lossless information in the whole network, 
and realize the effective extraction of the final image.

Since the distributions of rain density are varied greatly among different color channels, Bright Channel Prior 
(BCP) is also adopted in MARD-Net to obtain the feature weighting information of different color channels [21]. 
The BCP-based channel attention scheme [22] can assist the network to maintain the pixel brightness of the ex-
tracted image, helping to extract crucial features of the image. Moreover, due to the inhomogeneous distribution 
of rain streaks, there may be differences in different spatial locations. In this paper, multi-scale information fusion 
is achieved through convolutional layers of 1×1 and 3×3, and chan-nel-level and spatial-level attention modules 
are introduced to notice the rainfall areas.

3.2   Attentional Mechanism

Attention Mechanism, as an overwhelmingly paramount part of neural network research, has invariably been 
concerned by scholars. The transformer [23-25] was recently introduced in the field of Natural Language 
Processing (NLP), its performance is extremely excellent. The traditional CNN and RNN architectures are no 
longer applied in transformer. The entire network structure is completely composed of the Attention mechanism, 
which has better parallelism and conforms to the existing GPU framework. Thus, the Attention mechanism re-
places the convolutional layer in this paper.

In comparison to the Attention mechanism, the Self-attention mechanism, which is the core of the Trans-
former, reduces the dependence on external information and is good at capturing the internal correlation of data 
or features. Self-attention mechanism is widely used in one-dimensional language processing in the field of NLP, 
and is also extended to the two-dimensional image, such as VIT [24]. Self-attention mechanism adopts the calcu-
lation method of scaled dot-product, as expressed in Equation 4:

  
T

k

( )=softmax( ) ,
d

f QKQ,K,V V (4)

where Q, K and V are the query vector, the key vector, and the value vector respectively. These three vectors are 
created by multiplying word embedding with three weight matrices.

Global self-attention mechanism (GSA) [26] works similarly to Self-attention mechanism. GSA also exploits 
three vectors of key, query and value to generate new features, and is focus on the content and spatial position of 
pixels through the content attention layer and the position attention layer. Equation 5 gives the calculation meth-
od of GSA: 

F = Q ( ρ(KT) V), (5)
	   	

where KT is the transposed matrix of K, ρ denotes the softmax normalization operation for each row, and the Q   
function means that the pixels in V utilize the ρ(KT) weight.

In this paper, using GSA to replace Self-attention mechanism can resolve the problems of secondary compu-
tation and storage complexity. Furthermore, GSA can better extract rain features based on the ability to interact 
with remote pixels.
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3.3   Multi-scale Fusion Residual Network Architecture

Although the MARD network makes good use of 3×3 and 5×5 convolution kernels and 1×1 and 3×3 convolution 
kernels to achieve multi-scale information fusion. Nevertheless, the features are only limited to the stacking of 
3×3 and 5×5 convolutional layers, and there is still a problem of insufficient scale. Inspired by Pyramid Attention 
Networks (PANet) [27] and U-Net [28], this paper proposes a Multi-scale Fusion Residual Network (MFR-Net), 
a structure diagram of the MFR-Net is given in Fig. 2. MFR-Net changes the linear sequential connection struc-
ture in the original MARD-Net to the U-shaped Encoder-Decoder structure. When going down to the Encoder, 
the original 3×3 and 5×5 convolutional layers are changed to double the number of kernels every time they pass 
through one layer. Denote the input feature of Multi-scale Fusion Residual Block (MFRB) as F0 , after different 
convolution kernels (respectively 1×1 and 3×3), the output results are presented in equations 6 and 7:

1 1 1 1
1 1 1 0 0( ; ),f µ× ×

×=F F (6)

	
3 3 3 3

1 3 3 0 0( ; ),f µ× ×
×=F F (7)

	   	
among them, n n

1
×F  indicates that the output size of the convolution is n × n ,  f n × n (.) indicates that the size of the 

convolution is n × n , and n n
0µ
× indicates that the size of the hyperparameter convolution is n × n . The activation 

functions of these convolutional layers mentioned above generally utilize Leaky-ReLU, α = 0.2.
The outputs of the above equations are further passed through concat, which are given by equations 8:
	   

1 1 3 3
1 1 1 1 0( + ; ) ,µ× ×= +F F F F’ (8)

	
where C is for performing a concat operation, and μ1 is the hyperparameter. At this point, the output is corrected 
to obtain equation 9:

 
1 1 3 3

out 1 1 1 0 1 0( ( ( + ; ); ); ) ,sa ca C µ ϑ ϑ× ×= +F F F F (9)

	
where Fout denotes the output of MFRB, sa(.) and ca(.) are the spatial attention mechanism and the channel atten-
tion mechanism, respectively, and {μ1 ϑ0; ϑ1} are the hyperparameters of the MFRB output. Using this network 
structure allows the network to better explore and reorganize features at different scales. Fig. 3 presents a sche-
matic diagram of the internal module structure of MFRB.

Fig. 3. MFRB internal structure
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3.4   GSA Enhancement Module

GSA is introduced in this paper because of its superiority in quadratic computation and storage complexity and 
its ability to model long-range pixel interactions in the entire network. Through experiments, it is found that if 
GSA is introduced before and after each convolutional layer or directly replaces all convolutional layers with 
GSA, some no-rain features will be over-enhanced when the image feature is output, resulting in the overall dark 
or blurred image. However, when it is added to the last layer before the output, the network has learned the main 
features of rain. Therefore, connecting GSA is able to strengthen the feature, so that the original difficulties to 
recognize tiny rain streaks are removed well, more conducive to the learning of rain features.

The final improved network structure is shown in Fig. 2. When the picture is input, adopt 3 × 3 convolution 
for channel transformation, and transform the input 3 channels (RGB) into 32 channels. A skip connection is 
performed after each MFRB, so that the features between layers can be fully fused by the residual network. 
After each skip layer connection, a 1×1 convolution channel transformation is added to change the 64 channels 
obtained by the skip layer connection back to 32 channels. After 8 MFRBs, access a GSA module for feature en-
hancement, and then go through a 3×3 convolution to change back to 3 channels to get the final output.

4   Experiment and Analysis

In order to verify the effectiveness of the algorithm in this paper, the nightscape datasets selected in this paper are 
Rain_dark100L, Rain_dark100H and Rain_dark9000. Among them, Rain_dark100L and Rain_dark100H include 
1800 pairs of rainy/clean training set images and 200 pairs of rainy/clean test set images. Rain_dark9000 in-
cludes 8400 pairs of rainy/clean training set images and 600 pairs of rainy/clean test set images. The reconstruct-
ed daytime rain datasets Rain2000L and Rain2000H both contain 1800 pairs of rainy/clean images as training set 
and 200 pairs of rainy/clean images as test set.

4.1   Experimental Environment and Parameter Setting

All the experimental results in this paper are completed on the same server running Linux (Ub-untu18.04). The 
CPU is Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz, the GPU is Nvidia RTX-2080Ti, and the training plat-
form is built on the deep learning framework Pytorch1.7.1 based on IDLE (Python 3.7 64-bit). In order to ensure 
the consistency of the experiment, this paper applies our proposed datasets Rain_dark100L, Rain_dark100H and 
Rain_dark9000 for model training, the learning rate is set to 0.01, and 200 batches are used, and the trained mod-
el is tested for the real rain maps.

4.2   Validation of Dataset Reliability

In order to verify the effectiveness of the proposed dataset construction method, this paper utilizes the same 
background image to construct training set and test set. And tested in MARD-Net, GridDerainNet [29], SPANet 
[30] and MSPFN [31], using the same real picture to test the actual rain removal effect. Finally, the experimental 
results in Table 1, Table 2 and the actual rain removal effect in Fig. 4 are obtained.

Table 1. Quantitative analysis of common data sets

Rain removal algorithms Rain100L Rain100H
PSNR SSIM PSNR SSIM

Literature [18] 37.84 0.9814 37.84 0.9153
Literature [29] 31.21 0.9287 31.21 0.8654
Literature [30] 35.33 0.9694 35.33 0.9153
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Table 2. Quantitative analysis of synthetic data sets

Rain removal algorithms Rain2000L Rain2000H
PSNR SSIM PSNR SSIM

Literature [18] 37.83↓ 0.9830↑ 33.70↑ 0.9449↑
Literature [29] 31.38↑ 0.9627↑ 27.75↓ 0.8889↑
Literature [30] 35.31↓ 0.9702↑ 30.15↓ 0.9342↑

Input Literature [25] (Rain100H) Literature [25] (Rain2000H)

Input Literature [14] (Rain100H) Literature [14](Rain2000H)

Fig. 4. The effect of removing rain in the actual pictures

In Table 1 and Table 2, the upward or downward trend is indicated by arrows. The experimental results sug-
gest that the indicators generally have an upward trend, among which the PSNR has slightly decreased, with 
a maximum decrease of 0.07, while the SSIM has improved to some extent. At the same time, the actual rain 
removal effect in Fig. 4 is also significantly improved. It can be seen that the dataset constructed in this paper is 
to improve the structural similarity by reducing the peak signal-to-noise ratio, and the criti-cal information is the 
change of rain streak.

Fig. 4 shows the comparison of rain removal effects of various networks for the actual construction dataset in 
this paper. It can be seen from the actual results that in the process of removing rain from the real scene, various 
networks cannot effectively remove the rain streak information in most of the real rain for Rain_100H, but have 
remarkable results for Rain_2000H. It was analyzed that the real rainfall this time was mostly heavy rain with 
long rain streaks and the rain streaks are superimposed on each other. Consequently, the neural network does not 
learn the required rain features for rain removal in the real scenes well on Rain_100H dataset. By comparing the 
dataset proposed in this paper with the current popular datasets, it can be found that the rain streak information 
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is generally bright in the current popular datasets. These datasets only have the characteristics of rain and cannot 
reflect the real rain information. The synthetic rain method presented in this paper can be more suitable for the 
rain in the real environment, and also contains various rain streak information.

4.3   Optimization Network Comparative Experimental Results Analysis

Based on the above-constructed nightscape synthetic rain dataset Rain_dark100H, the performance of the MFR-
Net proposed above is compared with multiple networks through the PSNR and SSIM indicators. The experi-
mental results obtained are shown in Table 3.

In addition, Fig. 5 and Fig. 6 illustrate the comparison of the effects of different network models on real-world 
rain removal after training with synthetic datasets.

Table 3. The mean PSNR and SSIM of the composite dataset Rain_dark100H

PSNR SSIM
Literature [18] 30.02 0.8864
Literature [29] 30.47 0.8419
Literature [30] 27.23 0.8522
Literature [31] 26.79 0.8053

Ours 31.36 0.8978

It can be seen from the comparative experimental results that the algorithm designed in this paper can more ef-
fectively extract the scale features and shape features of the rain streak in the real rain removal scene, maximize 
the model performance, and reduce the transmission loss and gradient disappearance. 

Input Literature [18] Literature [29]

Literature [30] Literature [31] Ours

Fig. 5. Real rain image de-raining result

From Fig. 5 and Fig. 6, it can be seen that the obvious rain streaks have been removed, especially in Fig. 5 
showing a clean background. The main drawbacks of Literature [18] in the comparison show that it fails to re-
move the rain streaks completely. Clearly, Literature [29] and Literature [30] have the ability to remove most 
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of rain streaks in different rain cases, but bring serious rain artifacts and blurred regions to the de-rained image. 
Some detailed information is lost in Literature [31] and leads color degradation to a certain extent. In general, the 
proposed MFR-Net can remove rain streaks and preserve color and detailed information, even in heavy rain con-
ditions.

Input Literature [18] Literature [29]

Literature [30] Literature [31] Ours

Fig. 6. Real rain image de-raining 

However, blur and rain-like fog appear in the resulting image at the same time, which is one of the most com-
mon problems of image de-raining, especially in nightscapes. Through in-depth analysis of nightscape pictures, 
this paper makes a reasonable guess regarding the cause of the phenomenon: taking a photograph in nightscape 
requires a certain intensity of light source illumination, and only through the reflection of the light source can the 
camera capture the rain streak information. At the same time, for the raindrops that just stay on the light beam, 
after the rain removal is completed, the light beam information will still remain, resulting in the rain and rain-like 
fog phenomenon shown in the above picture. 

4.4   Ablation Experiments

In order to verify the effectiveness of the improved network in removing rain from nightscape rain maps, an 
ablation experiment is carried out in this paper. All ablation experiments apply the Rain_dark100H dataset and 
are performed in the same operating environment. The main improvement of the MARD-Net in this paper is to 
increase its scale (the number of layers DS is set to 8 layers) and add the Global self-attention module. The base-
line module is set as a Single-scale Attentive Residual Network and does not contain the GSA module, and then 
the GSA module, the deep-level scale DS and the superposition of the two are added respectively. The compari-
son results are depicted in Table 4.

Table 4. Ablation results

PSNR SSIM
Baseline 30.02 0.8864

GSA 30.67 0.8868
DS 30.43 0.8897

GSA+DS 31.36 0.8978
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The experimental results show that for the same dataset, both PSNR and SSIM evaluations are improved by 
adding modules to the baseline module. Especially, the effect of the two modules working together is better than 
the effect of each module acting alone, which further proves the necessity and effectiveness of module fusion.

5   Conclusion

In this work, we make a study on the rain removal of nightscape rain maps. We exploit the characteristics of rain 
formation, and proposed a convenient method to build rainy images that complements the blank of nightscape 
rain image dataset. Then, we develop an end-to-end MFR-Net for rain images, which adopts a U-shape codec 
for exploring the features of rain streaks and follows by a GSA module to remove tiny rain streaks. Experimental 
results indicate that our proposed MFR-Net outperforms popular algorithms and effectively removes rain streaks 
while retaining the image details well. In future research, we will further strengthen the exploration of the fea-
tures at different levels of the image. Meanwhile, we tried to find a solution to the problem of blurring and rain-
like fogging of images after image de-rain.
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