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Abstract. With the development of high-speed trains in recent years, security issues have received more at-
tention. Automatic visual inspection of the train operation system for detecting abnormalities has become a 
fundamental element to guarantee the safety of the train operation. Train body sign patterns like the loss and 
fracture of signs and lock catch (SLC) on the electrical box cover (EBC) affect the regular operation of the 
train electrical system. In this paper, to ensure the safe operation of the train, a novel method combining a 
faster region-based convolutional neural network (Faster R-CNN) and similarity metrics is proposed to detect 
the abnormality of SLCs on train EBC. First, the positions of body train signs of multiple sizes are located by 
Faster R-CNN. Then, the regions of interest (ROI) are cut out and resized to the same size as the correspond-
ing template images. Finally, by similarity measures, the status of the train body sign pattern is judged by 
comparing with the given threshold similarity value between ROIs and the template images. It is worth noting 
that the combination of Faster R-CNN and cosine similarity renders high accuracy in small target detection 
and strong robustness in image similarity comparison. The effectiveness of the proposed fault detection meth-
od and its superiority over the other types of combined methods are verified by actual experiments on the train 
of Guangzhou Metro Line 2.
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1   Introduction

The train system has been dramatically developed as universal and economical transportation. At the same time, 
with the increase in train speed, it is crucial to ensure a train’s safe and stable operation. Due to the exposure of 
the train body to the external environment, it is easy to have problems such as aging, loosening, and loss of com-
ponents. Under the influence of the driving and braking force, the running part, the suspension, the buffer con-
nection device, the brake accessories, the bogie, and other critical visible parts may shake and loosen to various 
degrees. The failure of these components will increase the risk of train operation and even lead to grave danger. 
Therefore, timely detection of the failure of these critical components during the train operation plays a vital role 
in ensuring the safety of the train operation.

Train vehicle failure controls are often completed by train inspectors, with many drawbacks, such as low de-
tection accuracy and low efficiency [1]. However, the complex situation of the train body will lead to high costs 
and inefficiency of the manual anomaly inspection process. Since common faults in trains are mainly caused by 
the breakage and position changes of small components, the difference between standard and faulty images is 
not apparent, which increases the difficulty of visual fault detection. The variety and complexity of faults make 
it difficult for conventional methods to achieve fast and accurate fault detection on train images. With the rapid 
development of artificial intelligence theory and the continuous increase in the number of trains, automatic fault 
detection systems based on machine learning have gradually replaced traditional manual methods [2]. It is nec-
essary to apply computer vision technology to the fault detection of train components. By installing a series of 
cameras at the train maintenance place, distortion correction, registration, and detection are carried out on the 
images collected by the cameras to judge whether the critical components of the train have faults and the types 
and locations of faults to improve the efficiency and accuracy of train maintenance. 

The electrical box is an essential component of the train body. As a part of the train components, train body 
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signboards like the signs and lock catches (SLCs) on the electrical box cover (EBC) can prevent the door of the 
EBC from falling during the train running, endangering the safe operation of the train. Besides, the signs on the 
EBC remind the workers to take corresponding safety measures in repairing the train to prevent electric shock 
and other hazards. Hence, detecting whether the signs and lock catch on the EBC are faulty is essential to the 
train’s safe operation. In addition to the normal working flow of the fault diagnosis technology mentioned above, 
there is still potential for improvement in the fault detection of SLCs of the train body, such as the various kinds 
of stains and marks under the influence of natural factors affecting the model accuracy. Besides, some researchers 
develop models with imbalanced training, and testing datasets may hamper the robustness of models [3].

This paper proposes a novel method to detect the fault of SLCs of the train body by combing target detection 
and template matching algorithms. Owing to the novel structure of the fault diagnosis model and application of 
transfer learning setup, high accuracy in small target detection and strong robustness in image similarity compar-
ison can be achieved simultaneously in the fault diagnosis of SLCs. The superior combination of different types 
of model building blocks is demonstrated in the experimental test.

The rest of the paper is organized as follows. Section II outlines the primary methods used in the experimental 
model, including the object detection algorithm and related template-matching methods. Section III presents the 
experimental results and discussion. At last, Section IV concludes the work.

2   Related Work

Recently, computer-vision-based object detection technologies have been increasingly indispensable in industry. 
Much effort has been put into exploiting efficient fault diagnosis schemes for the components of a railway trans-
portation system based on machine vision, including template matching, machine learning, and deep learning. In 
particular, the template-matching-based fault diagnosis methods calculate the matching degree between the image 
to be tested and the template and judge whether the image to be tested has a fault or not according to prespecified 
criteria [1]. For the sample images with high similarity to the template image, those template-matching-based 
methods would yield a high recognition rate; Otherwise, they will demonstrate relatively poor robustness. In 
principle, traditional machine-learning-based pattern recognition consists of two stages: feature extraction and 
classification, and applies to the case of a small sample set [4]. For the first stage, it is desirable to choose an ap-
propriate feature extraction scheme, e.g., histogram of oriented gradients (HOG) and local binary patterns (LBP), 
according to the detection scene and artificial experience. The commonly used classifiers for machine-learn-
ing-based fault diagnosis include support vector machine (SVM) [5], k-nearest neighbor (KNN) [6], and decision 
tree (DT) [7]. Given statistical learning theory, SVM has been successfully used in various fault classification 
tasks. In [5], the fault diagnosis of the handle on the train gladiator was realized by applying the gradient-coded 
histogram and SVM to analyze the train angle cock image. Similarly, the brake shoe key of the train was located 
by combining the histogram of gradient coding and SVM in [8]. Further, a recognition algorithm was proposed 
in [9] using principal component analysis (PCA) and SVM classifiers, which were employed to identify the fault 
images of train key stations, pillow springs, and side pillars. Moreover, bolt faults were classified in [10] consid-
ering the combination of HOG features and SVM. All in all, it is challenging to design a general machine-learn-
ing-based method to detect and identify all kinds of faults at the same time.

In contrast to machine learning, deep learning can simultaneously complete feature extraction and classifica-
tion and achieve high fault detection accuracy [11]. Deep learning learns features through a data-driven approach 
instead of establishing feature engineering, reduces the difficulty of deep learning technology in engineering 
applications, and makes it the first choice for fault diagnosis. In recent years, a series of CNN-based object de-
tection algorithms have been proposed for fault diagnosis, among which Faster R-CNN [12], single-shot detec-
tor (SSD) [13], and You Only Look Once (YOLO) [14] are the mainstream. Compared with traditional image 
processing technologies that depend on many observable image features, deep-learning-based methods are still 
applicable when the features are difficult to extract manually. Deep-learning-based methods automatically extract 
image features through convolutional layers and pooling layers. In [15], CNN was utilized to recognize train 
side frame key loss, where the model accuracy was much higher than SVM. Meanwhile, the framework of Faster 
R-CNN was reconstructed in [16], yielding a higher detection accuracy and better real-time performance. In [17], 
a YOLO-based three-cascade neural network was built to detect the fasteners of high-speed railway catenary 
support devices, where the strong robustness of the model was verified in complex background environments. 
In [18], to evaluate the health status of turbine blades, a large number of fault samples were collected by UAV 
and classified by CNN, which achieved good results. Besides, in [19], a novel attention perception network APP-
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UNet16 is proposed, which can detect the oil defects of the rolling shaft by segmenting the bearing oil. However, 
it is worth noting that the common point of the above cases is that there are many negative samples for network 
training to do multi-classification. However, in the actual situation faced by this paper, the number of negative 
samples is not enough for training to achieve data-driven end-to-end fault diagnosis.

After the target detection or localization, the similarity between the ROI and the corresponding template needs 
to be calculated to judge the faults in ROI by comparing it with a given threshold. What has attracted people’s at-
tention is some anomaly detection algorithms in recent years, including a series of anomaly detection algorithms 
based on generative adversarial networks (GAN) [20]. However, if an anomaly detection algorithm is used, each 
type of part (such as a lock) needs to build a model, which is more complicated in engineering applications. 
In addition, the anomaly detection algorithm re-quires some negative samples to fine-tune the neural network, 
while the number of negative samples in this experiment is limited, which is not enough to fine-tune the network. 
Therefore, it is considered to realize anomaly detection through image similarity comparison. The well-adopted 
methods for image similarity calculation include the histogram method, peak signal-to-noise ratio (PSNR) [21], 
structural similarity (SSIM) [22], and cosine similarity (CS) [23]. More detailedly, the histogram reflects the 
probability distribution of gray values of an image, and its performance in image similarity calculation is often 
degraded due to the lack of spatial position information. PSNR is calculated based on the error value of the cor-
responding pixels between the image to be tested and the template image. It does not take into account spatial 
frequency characteristics information [24]. Thus, the evaluation results obtained by PSNR are frequently incon-
sistent with the visual perception results. 

3   Fault Diagnosis Method

The framework of the proposed method mainly includes two parts, as shown in Fig. 1. First, since CNN can 
extract images’ features automatically, Faster R-CNN is used as the model for the recognition and localization 
of SLCs on EBC. Second, to realize the status judgment of SLCs, the similarity value of the template and the 
sample to be tested is calculated by the CS method. The details of Faster R-CNN and similarity calculation are 
described in the following.

Fig. 1. The framework of the proposed method
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3.1   The Architecture of Faster R-CNN

The object detection networks mainly consist of SSD and its derivative networks, the YOLO series, and the 
R-CNN series. YOLO and SSD are typical one-stage algorithms with the characteristics of fast detection speed, 
which combine the selection and classification of an anchor. However, in terms of accuracy, Faster R-CNN, as a 
two-stage algorithm, is higher than the one-stage algorithms. Meanwhile, the current research in object detection 
algorithms mainly focuses on lightweight object detection to facilitate the deployment of embedded devices. 
However, its research focuses on the embedded deployment, which can improve the inference speed based on 
reducing the inference accuracy [24]. If a light target detection network is selected, the positioning accuracy of 
components may not reach the expected level. The twice regression and classification make Faster R-CNN more 
suitable for small target detection. As a result of the small proportion of SLCs areas in EBC and the low require-
ment for real-time detection tasks, Faster R-CNN is selected to realize the location and identification of SLCs in 
this work.

As depicted in Fig. 2, the framework of Faster R-CNN contains three parts:
(1) Backbone, considered a network for extracting image feature information, usually consists of fully convo-

lutional layers. The commonly used backbones are optical geometry group network 16 (VGG 16).
(2) Region Proposal Network (RPN) generates some proposal areas, judges whether these areas have attrac-

tive targets, and makes a bounding box regression for the regions with targets.
(3) ROI Pooling extracts the proposal feature maps that form the backbone network and RPN output and sends 

them to the subsequent complete connection layer for classification and regression.

Fig. 2. Structure schematic diagram of Faster R-CNN

Region Proposal Network.  RPN is a typical complete convolution network structure that cancels the entire 
connection operation widely used in the traditional convolution network, significantly saving the calculation 
cost. The anchor window mechanism plays an essential role in RPN. The different shapes and sizes of detection 
objects result in the need to use different boxes for frame selection when determining the location. The anchor 
window mechanism ensures that the detection objects of different sizes are in the receptive field.

First, RPN sets the anchor point on the convolution feature layer, which is responsible for prediction. It takes 
each pixel on the convolution feature layer as the center of all the anchors corresponding to the pixel. The anchor 
boxes are placed in three proportions, eight times, 16 times, and 32 times of the basic anchor box, respectively, 
and three aspect ratios, namely 1:1, 1:2, and 2:1, a total of nine sizes of anchor, as shown in Fig. 3. Second, the 
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3×3 convolution kernel convolutes the feature map containing anchor information, so that all the information in 
the feature map are fused. Then the processed feature maps are convoluted by 1×1 convolution kernels to com-
plete the tasks of distinguishing foreground and background and regression of the bounding box. In the end, a 
series of object proposals are output through RPN. The target’s position is determined in the training set, and the 
RPN network is optimized using the gradient descent method by comparing it with the target box position after 
regression.

Fig. 3. Anchor generation schematic

In the loss function of RPN, classification and regression losses are considered simultaneously, or mathemati-
cally
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R is a smooth L1 loss function. As shown in Eq. (4), smooth L1 loss function R(x) is similar to the L2 loss 
function 2 ( )L x  when x belongs to (-1,1), which avoids the problem that 1( )L x  is not differentiable at x=0. When 

x is outside the range of (-1,1), R(x) is similar to the L1 loss function 1( )L x , which avoids the gradient explosion 
of the L2 loss function. Thus, compared with L1 and L2 loss functions, the smooth L1 loss function has the fol-
lowing advantages: 1) faster convergence; 2) insensitive to outliers, and more stable during training.

ROI Pooling.  Owing to the different sizes between the front-end network’s feature maps output and the RPN’s 
bounding boxes output, it is necessary to achieve the exact size of the proposal feature maps through the ROI 
pooling layer. First, the proposals generated by RPN are mapped to the corresponding positions of the feature 
map of the original image. Second, the feature map corresponding to each proposal is divided into 7×7 small 
areas. Finally, each small area after max pooling is transformed into a one-dimensional tensor sent to the subse-
quent complete connection layer.

3.2   Structural Similarity Index Method (SSIM)

When the detected object has specific faults, its overall structure will change. Therefore, whether the detected 
object is faulty or not could be judged by calculating the similarity between the template image and the image 
to be detected. The commonly used image similarity measurement methods are based on explicit numerical 
comparisons, such as the comparison of statistical parameters in a specific characteristic. SSIM considers image 
distortion by comparing the changes in image structure information to get an objective quality evaluation [22]. 
Inspired by such an idea, the fault state of the sample can be obtained by comparing the structure information be-
tween the standard sample and the sample to be tested. SSIM differs from other image similarity algorithms, e.g., 
PSNR and CS, since it evaluates image similarity by combining structural information, contrast information, and 
luminance information, as shown in Fig. 4.

Assume that and are image blocks with the size of H × W, located at the exact position of the template image 
and the image to be tested, respectively. The structural similarity information s(x, y), the contrast similarity infor-
mation c(x, y), and the luminance similarity information l(x, y) can be calculated as follows.

Fig. 4. The structure schematic diagram of SSIM
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xσ , yσ  represent the standard deviation of image blocks x and y respectively, and xyσ  is the correlation of 

image blocks x and y. In addition, xµ  and yµ  are the average value of image blocks x and y, respectively. The 

rationality of (7)-(9) is maintained by the proper design of constants 0, 1, ,3iC i≥ =  , which are generally small.
The SSIM is defined as follows.

            1
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ix  and iy  are the i-th image block of the reference image and the image to be tested, respectively, N is the num-
ber of image blocks, and the weights , ,α β γ  are all positive.

3.3   Cosine Similarity (CS)

For CS, the similarity between two vectors is measured by the cosine of their inner product. The larger the co-
sine value of eigenvectors of two images is, the greater the matching similarity is. Meanwhile, noticing that CS 
is suitable for vector comparison of any dimension, it has become increasingly popular in comparison to image 
similarity. 

Analysis of image similarity is performed at the level of each image region. Let the image be divided into M 
regions, each with N pixels. After that, the regional characteristics of three channel image are calculated as fol-
lows:
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f  represents the regional feature code, and r, g and b represent the red, green and blue component values of pixel 
i, respectively. Furthermore, the regional feature codes of the two images are transformed into one-dimensional 
feature vectors. Then, the degree of the m-th corresponding regions’ similarity between images 1I  and 2I  is cal-

culated using the CS between the feature vectors 1
mf  and 2

mf  [23]:
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mI  represent the m-th region of the template image 1I  and the image to be tested 2I , respectively. 

In particular, the CS between the regions 1
mI  and 2
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4   Experimental Setup and Results

4.1   Dataset

The signs of the train EBC could remind the workers to pay attention to the operation specifications and safety. 
In addition, the lock catch ensures that the EBC cannot fall off to avoid the threat to the operation of the train’s 
electrical system. Therefore, when the SLCs of the electrical box cover fail, it is necessary to detect such an ab-
normality in time and complete the maintenance. 

The images provided by Guangzhou Yunda Intelligent Technology Co., Ltd. are selected as the experimental 
objects. Specifically, the appearance images of the train in all directions are obtained through seven charge-cou-
pled device (CCD) cameras installed in the train inspection station, as shown in Fig. 5. Then, the EBC images 
are cut out from the side image of the train using relative coordinate positioning, as shown in Fig. 6. Due to the 
changes of external environment and camera exposure parameters, the collected images might be significantly 
different. Thus, traditional image processing methods might not be applicable for fault diagnosis of the SLCs on 
the EBC of a train.

Fig. 5. Image acquisition system (The seven solid boxes refer to the CCD cameras, and the dotted box indicates the control 
box of the whole image acquisition system.)

Fig. 6. The electrical box cover



129

Journal of Computers Vol. 34 No. 3, June 2023

The datasets used in this experiment are collected from the train of Guangzhou Metro Line 2. Considering that 
there are four types of EBC on the train, they are named type A, B, C, and D, respectively. Meanwhile, the exper-
imental data are randomly reordered to avoid accidental experiments. The dataset, which contains 1468 images, 
is divided into a train set and a test set in a ratio of 9:1, and the statistics of four types of EBC used for training 
and testing are shown in Table 1. The objects to be detected include rectangular, triangular, circle signs, and 
lock catches, among which the detected objects in each image are different and contain multiple proportions of 
width and height. The statistics result of the number of each part in the four types of images is shown in Table 2. 
Significantly, the circle signs are marked as triangle signs during the model training because the number of circle 
signs is relatively tiny. Considering the small number of training samples, the idea of transfer learning is added to 
the Faster R-CNN model training to improve the feature extraction performance. The VGG16 pre-trained on the 
ImageNet dataset is used as the backbone network of Faster R-CNN. 

Table 1. Statistics of four kinds of electrical box covers in the test set and train set

Type Number of train set Number of test set Total nums
A 321 46 367
B 329 38 367
C 344 23 367
D 335 32 367

Table 2. Description of different types of electrical box covers

Type Rectangle signs Triangle signs 
(include circular signs)

Lock catch

A 0 1 1
B 3 1 2
C 1 2 2
D 1 1 2

4.2   Experimental Setup

To realize the fault diagnosis of SLCs on the EBC, Faster R-CNN and SSD512 are used to locate and cut out the 
detection target from the image. After the SLCs are located and intercepted by the object detection algorithms, 
the similarity values between the intercepted images and the corresponding template images are calculated with 
SSIM and CS, respectively. It should be pointed out that since the circle signs are marked as triangle signs in 
the positioning stage, the triangle and circle signs are put into the template library simultaneously to avoid the 
comparison error. Considering the complexity of the train inspection environment and the accuracy of fault di-
agnosis, the typical images of each type of object under sunny, rainy, firm, or weak light conditions are selected 
as reference templates. Moreover, selecting multiple templates for comparison also reduces accidental errors. 
Calculating the similarities between the images to be tested and the templates, the highest similarity value is out-
put as the final value. If the final similarity value is less than 0.7, the object is considered to be faulty; otherwise, 
it is considered that there is no fault with the object. It is worth noting that the threshold used to distinguish be-
tween positive and negative samples in this work was obtained through engineering statistics.

Different methods are compared based on the same data set and experimental environment. The whole ex-
perimental process is completed on the TensorFlow platform, and the iterations of Faster R-CNN and additional 
SSD512 used for performance comparison are set as 20,000. The model’s weight is updated based on the Adam 
optimizer, and its learning rate and weight decay rate are set to 0.001 and 0.0005, respectively. To objectively 
evaluate the performance of the proposed method, the test dataset is randomly divided three times. By calculat-
ing the evaluation indexes of each sub-dataset, the most representative average values of evaluation indexes are 
obtained.

Comparing the obtained similarity values with the preset threshold value, the fault state of the target to be test-
ed is then judged, which can be divided into four scenarios: true positive (TP), false positive (FP), true negative 
(TN) and false negative (FN). As defined below, the metrics adopted for performance evaluation include the ac-
curacy rate, false positive rate (FPR), and false negative rate (FNR).
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More specifically, Accuracy is the proportion of the image samples whose fault state is predicted correctly by 
the proposed model in all the testing samples; FPR is the proportion of all false positive samples predicted by the 
model in the total negative samples, and FNR refers to the proportion of all false negative samples predicted by 
the model in the positive samples.  

4.3   Experimental Results

The four methods proposed for performance comparisons are Accuracy, FPR, FNR, average accuracy, average 
FPR, and average FNR. The statistical results in Table 3 show that the Faster R-CNN and CS combination is far 
superior to the other three combinations in terms of Accuracy and FNR. Specifically, the average accuracies of 
the other three methods are less than 90% on the three test subsets, and the average FNRs are pretty high, induc-
ing low reliability in engineering applications. Consequently, combining Faster R-CNN and CS can fully meet 
the requirements of high accuracy and low FNR for detecting abnormal objects on the EBC. In addition, the loss 
function curves of the two algorithms are shown in Fig. 7, where the loss function of Faster R-CNN achieves a 
faster convergence and a smaller steady-state value. As a result, Faster R-CNN would have better detection per-
formance than SSD512.

Table 3. The results of comparison experiments

Type SSD512+SSIM SSD512+CS Faster-RCNN+SSIM Faster-RCNN+CS

Sub dataset1
Accuracy
FPR
FNR

66.07%
0
35.68%

89.29%
0
15.02%

71.76%
0
29.76%

94.91%
0
5.37%

Sub dataset2
Accuracy
FPR
FNR

64.73%
0
37.09%

88.84%
0
11.74%

74.54%
0
26.83%

97.22%
0
2.93%

Sub dataset3
Accuracy
FPR
FNR

66.52%
0
35.21%

87.05%
0
13.62%

70.37%
0
31.22%

96.30%
0
3.91%

Average accuracy 65.77% 88.39% 72.22% 96.14%
Average FPR 0 0 0 0
Average FNR 35.99% 13.46% 29.27% 4.07%

Fig. 7. The loss of Faster R-CNN and SSD512 for 20000 iterations on test sets
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(a), (c), (e) and (g) on the left side are the position results of type 1, type 2, type3, and type 4 obtained from Faster R-CNN 
(b), (d), (f) and (h) on the right side are the position results of type 1, type 2, type3, and type 4 obtained from SSD512

Fig. 8. The position results of different types of electrical box covers based on Faster R-CNN and SSD512
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Fig. 8 shows the partial detection results on the same images after training 20,000 iterations using Faster 
R-CNN and SSD512, respectively. The position detection results of different electrical box covers are based on 
Faster R-CNN and SSD512. (a), (c), (e), and (g) on the left side are the position results of type 1, type 2, type 3, 
and type 4 obtained from Faster R-CNN, respectively; (b), (d), (f) and (h) on the right side are the position results 
of type 1, type 2, type3, and type 4 obtained from SSD512. The recognition results of both models are stable for 
large objects, such as triangles and quadrangles in the center of the image. In contrast to small objects, such as 
lock shapes on both sides of the image and figures (e) and (f) on the third row, the target detection results by the 
two models are quite different. The detection results of Faster R-CNN (figures on the left side) are more robust 
than those of SSD12 (the picture on the right) for small targets. When the confidence values of detection results 
of Faster R-CNN are greater than 0.99, many of the results of SSD512 have confidence values below 0.95. 

Fig. 9. The detection results of triangles signs in testing dataset obtained from Faster R-CNN

Fig. 9 shows the detection results of triangles signs in the testing dataset obtained from Faster R-CNN. The 
predicted results show accuracy and robustness to different perturbations like darkness, light exposure, and blur-
ring. We apply cosine similarity and SSIM to the triangle sign sample pairs from the testing dataset in Fig. 9 and 
obtain similarity matrices between all samples. To identify groups of correlated triangle sign samples and analyze 
hierarchical clusters in the similarity matrices, we use cluster heatmaps to reveal the block structures along the 
diagonal of the triangle sign samples. Cluster heatmaps are commonly used to identify outliers and tissue sub-
types. The results of the clustered heatmaps are shown in Fig. 10 and Fig. 11. Normalization results with Z-score 
and Min-Max scaling are calculated based on columns on the clustered heatmaps to enable a comparison between 
cosine similarities and SSIM of all triangle sign samples based on similar scaling. Z-score normalization rescales 
the columns values of similarity matrices to obtain the properties of a Gaussian distribution with a mean equal 
to 0 and standard deviation equal to 1, while Min-Max scaling shrinks the range of the data so that the range is 
fixed between 0 and 1. Fig. 10 shows the clustered heatmap results of cosine similarities. The picture on the left 
side shows the clustered heatmap result based on Z-score standardization, and the picture on the right shows the 
result based on Min-Max normalization. Similar to Fig. 10, Fig. 11 shows the clustered heatmap results of SSIM 
with the Z-score and Min-Max normalization.



133

Journal of Computers Vol. 34 No. 3, June 2023

Fig. 10. Clustered heatmap of cosine similarities with Z-score and Min-Max normalization

Fig. 11. Clustered heatmap of cosine similarities with Z-score and Min-Max normalization

Cosine similarity measures the cosine of the angle between two vectors in a multi-dimensional space. It de-
termines the similarity between two image samples based on the orientation of the image samples, irrespective 
of their magnitude. Fig. 12 shows the clustered heatmaps results of cosine similarities with Min-Max (left) and 
Z-score (right) normalization for the testing images. Similar images show brighter colors on the heatmap. The 
triangle sign images clustered in the upper left corner show high similarities, mainly triangle sign images pre-
senting dark backgrounds. From the perspective of image composition, SSIM defines structural information as an 
attribute independent of brightness and contrast, reflects the structure of objects in the scene, and models an im-
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age as a combination of luminance, contrast, and structure. Fig. 13 shows the clustered heatmaps results of SSIM 
with Min-Max (left) and Z-score (right) normalization for the testing images. Several cluster blocks with brighter 
colors represent triangle sign images with similar textures as in the middle of Fig. 13. Based on the composite 
information from luminance, contrast, and structure, SSIM can better distinguish images sample with different 
types of perturbations like darkness, light exposure, and blurring. Comparison between the images on the left and 
right shows that Z-score provides more homogeneous similarity results than Min-Max normalization. 

Fig. 12. Clustered heatmaps results of cosine similarities with Min-Max (left) and Z-score (right) normalization

Fig. 13. Clustered heatmaps results of SSIM with Min-Max (left) and Z-score (right) normalization

5   Discussion

It is worth noting that under the same target detection algorithm (Faster R-CNN or SSD512), the performances of 
SSIM-based fault diagnosis methods are much worse on the three sub-datasets than those of CS-based methods. 
This is mainly because the images to be tested are greatly affected by ambient light, and SSIM is less robust than 
CS concerning the lighting factors. Reducing the influence of light in fault diagnosis would be an effective way 
to upgrade the diagnosis performance.

Fig. 8 shows that Faster R-CNN has higher average precision than SSD512 for detecting the ROI of different 
types of train body signs. This demonstrates that the two-stage algorithm has advantages in terms of detection 
accuracy compared to the one-stage algorithms. The Faster R-CNN first uses selective search or Region Proposal 
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Net (RPN) to generate the region of the target area, followed by classification and regression. This two-stage 
method can achieve higher accuracy compared to SSD512 but is limited to detection speed at the same time. 
Since SSD512 is an end-to-end object detection algorithm that uses a light network to predict the target boundary 
box and classification probability score with different ratios and scales in each feature map, the detection speed 
is improved. Faster R-CNN is a more suitable scenario when the highest priority is accuracy instead of real-time 
performance. Under acceptable model accuracy requirements, one way to increase the inference speed of Faster 
R-CNN is to use a smaller backbone network [25].

Cosine similarity can detect similar image samples based on a smaller cosine angle between them, even if 
the samples are far apart by the Euclidean distance because of their pixel magnitude. SSIM considers image 
transformation as a change in structural information in combination with luminance and contrast masking terms. 
Structural information is based on the idea that pixels in the image are strongly interdependent when spatially 
close. Luminance describes that image transformation and distortion are less visible for human eyes in bright 
regions in the image, and contrast masking describes the phenomenon that image distortions become less visible 
in regions with a significant texture pattern. In contrast to cosine similarity, SSIM detects more differences in tex-
ture in the image, which leads to a different appearance in the clustered heatmaps, as shown in Fig. 12 and  Fig. 
13. 

In the future research phase, it is worth applying more deep-learning-based methods, e.g., DenseBox, to the 
abnormal detection of the EBC of the train body. For better model performance, the time required for single de-
tection should be reduced as much as possible. Besides, in the subsequent optimization process of this method, 
the threshold value to distinguish between positive and negative samples can be selected more reasonably with 
hyperparameter tuning optimization methods to achieve more accurate and robust inferences.

6   Conclusion

This paper proposes a novel method of combining Faster R-CNN and CS for the fault detection of the train body 
signboard. First, the image’s region of interest to be detected is extracted and clipped by multiple convolution 
kernels in Faster R-CNN. In consequence, the similarity between the ROI and the standard template image is 
calculated by CS and compared with the threshold value to determine the fault state of the detection target. The 
experimental results show that combining Faster R-CNN with cosine similarity (CS) is more effective than the 
other three types of combination methods for anomaly detection, namely, SSD512 and SSIM, SSD512 and CS, 
and Faster R-CNN and SSIM. Specifically, in the target detection process, the accuracy of Faster R-CNN is much 
higher than that of SSD512, where the average accuracy of Faster R-CNN is 0.96 while that of SSD512 is only 
0.88. Compared with SSIM, the CS avoids the influence of light, thus yielding higher reliability in fault detec-
tion. Overall, the combination of Faster R-CNN and CS renders considerable reliability and applicability.
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