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Abstract. Traditional household power dispatching methods are difficult to deal with the complexity of dis-
patching environment and the randomness of power consumption behavior, and the QLearning algorithm is 
prone to fall into local optimal solutions and slow convergence when solving problems, this paper proposes 
a new method based on SA-α-QLearning’s home electricity scheduling strategy solution method. Firstly, a 
multi-intelligent Markov decision process model is established based on household electrical equipment; then 
the learning rate of a single value in the QLearning algorithm is replaced by a linear iterative learning rate; 
finally, a simulated annealing (SA) is used to optimize the QLearning algorithm to solve the model, by tak-
ing the Q value change difference as the new solution acceptance probability of Metropoils criterion and the 
dynamic adjustment temperature reduction coefficient, it alleviates the problem that the QLearing algorithm 
is easy to fall into the local optimal solution and the convergence speed is slow. Through a large number of 
comparative experiments, it is proved that the proposed method has a significant improvement in the solution 
of household electricity dispatching strategy.
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1   Introduction

With the promotion and use of distributed energy technology and the growing demand for household electricity, 
more and more households reduce household electricity expenditure by installing household photovoltaic equip-
ment. However, due to the lack of a reasonable household electricity scheduling strategy, there are still problems 
such as high electricity bills, low utilization of photovoltaic power generation, and unstable power supply during 
peak hours.

Home Energy Management System (HEMS) connects household electrical equipment and smart grid through 
smart meters, and provides a platform for unified control and management of equipment. HEMS informs users of 
electricity price and other information in time during operation, and recommends reasonable electricity consump-
tion time and electricity supply method to users, guides users to adjust electricity consumption behavior, and 
saves electricity consumption costs for users. There are a variety of scheduling models and scheduling strategy 
solutions adopted by the home energy management system:

(1) Dispatching by establishing a fixed mathematical model of household electricity consumption: Literature 
[1] proposes multiple optimization objectives based on load peak and electricity cost minimization, and uses 
hybrid coding genetic algorithm to solve the problem to realize household electricity scheduling. Literature [2] 
aims at reducing the peak-to-average ratio (PAR), reducing energy costs and ensuring grid stability, and propos-
es a model solution method combining genetic algorithm and neural network to achieve a balance between user 
costs and grid stability. However, these fixed mathematical models of household electricity use are difficult to 
deal with the complexity of the scheduling environment and the randomness of electricity use behavior.

(2) The reinforcement learning method has the advantages of simple application process and short solution 
time, and has achieved better results in household energy optimal scheduling methods [3-4]: Literature [5] pro-
posed a home energy management (HEM) model based on reinforcement learning. The real-time electricity price 
predicted by the extreme learning machine algorithm was input into the HEM model, and uses the QLearning 
algorithm to solve the home electricity consumption strategy of one hour in advance; Literature [6] proposed a 
home energy management method based on QLearning algorithm, using a single agent to control home electric 
equipment, and constructed a reward function based on fuzzy logic inference evaluation, by responding to elec-
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tricity price signals and consumers preference, shifting load demand from peak hours when electricity prices are 
high to off-peak demand when electricity prices are low, thereby minimizing energy efficiency and electricity 
bills. The QLearning algorithm can quickly and effectively learn the optimal strategy for both finite state and 
action of Markov problems, but it is easy to fall into the problem of local optimal solution and slow convergence 
speed [7-8]. Aiming at the problems existing in the above-mentioned household electricity scheduling model, in 
order to improve the effectiveness of household electricity scheduling strategy and reduce household electricity 
expenditure, this paper proposes a solution method for household electricity scheduling strategy based on SA-α-
QLearning.

The main contributions are as follows: 
Firstly, a Markov decision-making process model based on multi-agent is proposed, which simulates house-

hold electrical equipment into several individual agents, and establishes a reward function combining power cost 
and comfort, better simulation of user behavior randomness and improved user experience [9-10]. On this basis, 
a scheduling strategy solution method for SA-α-QLearning is proposed to optimize the QLearning algorithm 
by adjusting the learning rate α and introducing simulated annealing strategy, it alleviates the problem that the 
QLearing algorithm is easy to fall into the local optimal solution and the convergence speed is slow.

This article is organized as follows. The second part introduces the related work of the algorithm of schedul-
ing strategy. The third part introduces Markov decision process model of multi-agent in detail. The fourth part 
introduces the improved QLearning algorithm in detail. The experimental results and discussion are presented in 
Part V. The sixth part summarizes the content of the paper and looks forward to future work.

2   Related Algorithms

2.1   Reinforcement Learning Composition Structure

Reinforcement learning is mainly composed of agents and environments, and its communication channels in-
clude rewards, states and actions [11-12]. The framework of reinforcement learning is shown in Fig. 1, tS  is the 

state of the environment at time t, tA  is the action performed by the agent at time t in the environment, tA  makes 

the state of the environment change to 1tS + , and in the new state the environment produces a new feedback 1tR + , 

the agent performs a new action 1tA +  according to 1tS +  and 1tR + , and so on until the end of the iteration.

Fig. 1.  Framework of reinforcement learning

2.2   MDP

Markov Decision Process (MDP) is a mathematically idealized form of reinforcement learning problems. The 
MDP process can be represented as a ( , , , )S A R Pπ π quadruple, where: S represents the state set composed of all 
states of the agent; ε  represents the action set taken by the agent; Rπ  is the reward function, π  represents the 
strategy adopted; ),( |P p s s aπ = ′  represents the state transition probability, that is, the probability of transition-

ing from state S and action a  to state 's  through policy iπ .



197

Journal of Computers Vol. 34 No. 3, June 2023

Define the reward-reward function tG , which represents the sum of rewards received after k  time steps in 
the future from time t . According to the reward-reward function, the agent continuously tries to select actions to 
maximize the sum of future rewards for actions under a certain discount rate. The reward function tG  is as fol-
lows:

                            
2

1 2 3 1
0

... k
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∞

+ + + + +
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= + + + = ∑  .                        (1)

In the formula: tr  is the reward at time t ; k is any time step; γ is the discount rate ranging from 0 to 1.

2.3  Simulated Annealing Algorithm

In 1983, S. Kirkpatrick et al proposed the simulated annealing algorithm. Compared with other intelligent opti-
mization algorithms, simulated annealing algorithm has better robustness and search ability, and can efficiently 
deal with complex problems and obtain high-quality solutions [13]. The key to the simulated annealing algorithm 
is the Metropolis criterion and the temperature decay function of the annealing process.

The mathematical formula of the Metropolis criterion is shown in (2).
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Among them: p  is the acceptance probability, iT  is the temperature at that time, and E∆  is the return differ-
ence between the current solution and the adjacent solution.

It can be seen from formula (3) that if ( 1)E n +  is less than ( )E n , the transition is accepted (probability is 1), 

and if ( 1)E n +  is greater than ( )E n , it means that the system deviates further from the global optimal value, so 
the simulated annealing algorithm is helpful to jump out of the local optimal solution.

3   Multi-Agent Markov Decision Process Model

This paper proposes a household electricity model based on Multi-Agent Markov Decision Process (MAMDP), 
which simulates all kinds of household electrical equipment as separate agents. Firstly, the power supply mode of 
each agent is abstracted as a state set, and the actions of the agent when it is in a certain power supply mode are 
abstracted as an action set; then a reward function considering the cost of electricity consumption and comfort is 
established. The state set, action set and reward function of the household electricity consumption model based 
on the multi-agent Markov decision process are shown in Table 1. 

Table 1. Household electricity consumption model of multi-agent Markov decision process

Multi-agent State collection Action collection Reward 
function

Rigid equipment 1 ( ) ( ) ( ){ , , }G PV BT
t t tS P Pλ= { ( ) ( )}NS NS NS

t iA a t a t= 

NS
tr

Power-adjustable equipment 2 ( ) ( ) ( ){ , , }G PV BT
t t tS P Pλ= 1, ,{ ( ) ( )}PS PS PS

t t j tA a n a n= 

PS
tr

Time-adjustable device 3 ( ) ( ) ( ){ , , }G PV BT
t t tS P Pλ= 1{ ( ) ( )}TS TS TS

t mA u t u t= 

TS
tr

Electric vehicles 4 ( ) ( ) ( ){ , , }G PV BT
t t tS P Pλ= { ( ) ( )}EV EV EV

t t tA a l a l= 

EV
tr

Energy storage equipment 5 ( ) ( ) ( ) ( ) ( ) ( ){ , , , , , }G PV NS PS TS EV
t t t t t tS P X X X Xλ= , ,{ , }BT BT BT

t t out t inA v v= BT
tr
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In the state set: ( )
G
tλ  represents the electricity price at time t ; ( )

PV
tP represents the predicted photovolta-

ic power generation output at time t ; ( )
BT
tP  represents the output of the energy storage battery at time t ; 

( ) ( ) ( ) ( ), , ,NS PS TS EV
t t t tX X X X  respectively represent rigid equipment, power-adjustable equipment, time-adjustable devic-

es, electric vehicles agents at time t [14]. 
In the action set: ( )NS

ia t  is the running state of the rigid equipment at time t ; , ( )PS
j ta n  is the running level N 

of the power-adjustable device j at time t ; ( )TS
mu t is the running state of the time-adjustable device m at time t ; 

( )EV
ta l  is the operating level l of electric vehicle at time t , among which l = 0, 3, 6 ; ,

BT
t inv  and ,

BT
t outv respectively 

represent the charging state and discharging state action of the t battery, and their values are 0 and 1. When the 
value is 0, it means idle, and when the value is 1, it means the working state.

In this paper, the inverse of the sum of electricity expenditure and dissatisfaction cost is used as the reward 
function, so that when the reward return is maximized, the sum of electricity expenditure and discomfort cost is 
the smallest. The specific rewards of each agent are as follows [5]:

(1) Rigid equipment:

, , ,[ ]
NS

NS G NS PV BT
t t i t i t i t

i

r P P Pλ +

∈Ω

= − − −∑ .                           (3)

In the formula: ,
NS

i tP  represents the operating power of the rigid device i at time t ; ,
PV

i tP  represents the pho-

tovoltaic power allocated and used by the rigid device i at the time t ; ,
BT

i tP  represents the energy storage power 

allocated and used by the rigid device i at the time t ; NSΩ is the set of rigid devices. [ ]+⋅ represents the projection 

above the non-negative positive, i.e. [ ] max( ,0)x x+ = . Since rigid equipment is invariant, the reward of rigid 
equipment is only related to electricity costs.

(2) Power-adjustable equipment:

, , , ,( [ ( ) ] )
PS

PS G PS PV BT PS
t t j t j t j t j t

j

r P n P P Uλ +

∈Ω

= − − − +∑  .                      (4)

In the formula: , ( )PS
j tP n is the power of the power-adjustable equipment j at the operating level n at time t ; 

,
PV
j tP  is the photovoltaic power allocated and used by the power-adjustable equipment j at the time t ; ,

BT
j tP  rep-

resents the energy storage power allocated and used by the power-adjustable equipment j at the time t ; ,
PS
j tU  

is the dissatisfaction function of the power adjustable equipment j at time t ; PSΩ is the set of power adjustable 
equipment.

(3) Time-adjustable equipment:

, , , ,( [ ] )
TS

TS G TS PV B TS
t t m t m t m t m t

m

r P P P Uλ +

∈Ω

= − − − +∑  .                       (5)

In the formula: ,
TS

m tP  is the operating power of the time-adjustable equipment m at time t , ,
PV

m tP  is the photo-

voltaic power allocated and used by the time-adjustable equipment m at time t ; ,
B

m tP  is the energy storage pow-

er allocated and used by the time-adjustable equipment m at time t ; ,
TS
m tU  is the dissatisfaction function of the 

time-adjustable power device m  at time t ; TSΩ  is the set of time-adjustable devices.
(4) Electric vehicles:

( [ ] )EV G EV PV B EV
t t t t t tr P P P Uλ += − − − +  .                        (6)
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In the formula: EV
tP  is the charging power of the electric vehicle at time t , PV

tP  is the photovoltaic power 

allocated to the electric vehicle at time t , B
tP is the energy storage power allocated to the electric vehicle at time 

t ; EV
tU  represents the anxiety cost when the electric vehicle is not full, namely in the case of insufficient power, 

there may be anxiety about not being able to reach the destination, where [ , ]start end
E Et t t∈  is the period when the 

user needs to use the electric vehicle.
(5) Energy storage equipment:

,[ ]BT G BT BT
t t t in tr v Pλ += − .                                 (7)

In the formula: BT
tr is the reward function of the energy storage device, only considering the cost of the energy 

storage device purchasing electricity from the grid.
The overall reward function tR  of the household electrical equipment model in this paper is the cumulative 

reward function of each agent on the day:

{ }NS PS TS EV BT
t t t t t t

t T
R r r r r r

∈

= + + + +∑ .                          (8)

4   Improved QLearning Algorithm 

In the process of solving the household electricity model with QLearing algorithm, the algorithm is easy to fall 
into the local optimal solution or the convergence time is long. The main reason is that in the ε -greedy strategy 
used by the original algorithm, the exploration probability ε is generally set to a single constant value. Setting 
a smaller ε is likely to lead to premature maturity, while the larger one can ensure the full exploration of the al-
gorithm in the early stage, but it makes the algorithm vibrate in the later stage and difficult to converge quickly. 
In response to the above problems, this paper proposes a scheduling strategy solution method based on the im-
proved QLearning algorithm. First, the learning rate α of the linear iteration is used to replace the single value 
learning rate in the QLearning algorithm; then the simulated annealing strategy is used to replace the ε -greedy 
strategy in the original algorithm. The difference of Q value change is used as the acceptance probability of the 
new solution of the Metropoils criterion, so that the agent chooses a non-optimal strategy with a certain probabil-
ity in the current state exploration, so as to jump out of the local optimal solution; finally, the temperature decay 
function is used to control the cooling rate of simulated annealing strategy, in the temperature decay function, by 
comparing the difference between the change of the Q value and the fixed temperature reduction coefficient, the 
largest value is selected as the actual temperature reduction coefficient to update the temperature, which ensures 
the full exploration of the algorithm and improves the algorithm convergence speed. The specific improvement 
formula is as follows:

(1) Learning rate reduced by linear iteration
The QLearning algorithm finds action ta  according to the greedy strategy (ε -greedy), and uses the state action 

value function ( , )t tQ s a  to iteratively update the strategy. The action value function in the QLearning algorithm 
is shown in formula (9) [15]:

1 1 ' 1 1( , ) ( , ) [ ( , ) max ( , ) ( , )]t t t t t t t t t tQ s a Q s a R s a Q s a Q s aαα γ+ + + +← + + − .                          (9)

Learning rate α , as an important parameter in the algorithm, determines the active degree of the agent’s re-
sponse to the received reward. The higher the α value, the greater the fluctuation of the Q value in each learning 
stage. In the optimization process, this paper uses the linear iterative reduction method to update the α value, and 
the action value function is as follows [16]:

1 1 ' 1 1( , ) ( , ) ( )[ ( , ) max ( , ) ( , )].t t t t t t t t t tQ s a Q s a t R s a Q s a Q s aαα γ+ + + +← + + −                        (10)
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Where the learning rate  α(t)  is:

                                                   ( ) 1 0.9( )
max

evalt
eval

α = −  .                                                           (11)

In the formula:  eval  and  max eval  are the number of iterations at time t and the maximum number of func-
tion iterations, respectively. After using the linearly decreasing learning rate, the value of α in the early stage is 
high, the agent responds positively to the reward received, and the Q value fluctuates greatly; the value of α in 
the later stage is low, and the agent does not respond positively to the reward received, the Q value fluctuates 
less, and the algorithm converges quickly.

(2) A new temperature decay function in the simulated annealing strategy [7]:

  1 1 1max( ( ( , ) ( , ), )t t t t t tT f Q s a Q s a d T− − −= − ⋅ .                       (12)

In the formula:  Tt  is the current state temperature,  Tt −1  is the previous state temperature; d is the temperature 
reduction coefficient, which is generally a fixed value between 0.8 and 0.99; f () is the  Sigmoid  normalization 

function, 
1 11 1 ( ( , ) ( , ))

1( ( , ) ( , )
1 t t t tt t t t Q s a Q s af Q s a Q s a

e − −− − − −− =
+

; “ ⋅ ” represents the multiplication operation.

For the temperature of each iteration of the temperature decay function, by selecting the larger value of the 
change of the Q function and the temperature reduction coefficient as the actual temperature reduction coeffi-
cient, the algorithm can slow down the temperature reduction ratio when the Q value function changes greatly in 
the early stage. In this way, the exploration of non-optimal solution actions is increased; when the late algorithm 
is close to convergence, the change of the Q value function gradually decreases, and the decrease of the tempera-
ture is accelerated at this time, so that the algorithm can converge stably.

(3) Metropolis new solution acceptance criterion in simulated annealing strategy [17]
When constructing the new solution determination formula, the changes of the Q function in each step are in-

tegrated in each iteration process. The new solution determination formula is as follows:

arg max ( , ),
( , )

else  
t p

t t

Q s a p
s a

p
τ

π
τ

<= 
>         ,

.                          (13)

In the formula: arg max ( , )t pQ s a is the state-action pair that obtains the expected cumulative reward in the 

current state; τ is the random number of (0, 1) generated; 
( , ) ( , )

( )t r t p

t

Q s a Q s a
Tp e
−

=  is the probability of accepting the 

new solution, and ra  is the randomly selected action in state ts .
In the Metropolis new solution acceptance criterion, the accepted action is selected by comparing the new 

solution acceptance probability p and the random number τ . If  p < τ , the state action that obtains the maximum 
return is selected as the action pa  of the ( , )t ps a  as the accepting action; if  p > τ , select another action in the 
action space.

Specific steps are as follows:
(1) Initialization related parameters: initial temperature 0T , temperature reduction coefficient d , initial state 

0s , learning rate α, discount rate γ ;

(2) Record the status of time t as ts  , and start looping to find action ta ;

(3) When in the current state ts , select action pa  according to strategy π , and randomly select action ra  from 
the action space;

(4) Calculate ( , ), ( , )t p t rQ s a Q s a  according to formula (10), if ( , ) ( , )t r t pQ s a Q s a> , select the action ra  as the 
current action; otherwise, according to the Metropolis new solution acceptance criterion, namely formula (13), 
calculate the acceptance probability p of the new solution, and generate the acceptance action. And record the ac-
cept action as the current action ta ;
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(5) Execute the selected action ta , reach the new state 1ts + , and get the immediate reward r of environmental 
feedback;

(6) Calculate the updated value of  Q(s, a)  according to formula (10);
(7) Judging whether the termination condition is met, usually the termination condition is set as the tempera-

ture reaching the minimum value or whether the current state is the final state. If the termination condition is not 
satisfied, select the temperature reduction coefficient according to the temperature decay function formula (12), 
update the temperature and reset the number of iterations; then go to step (2) to enter the next training; if it is sat-
isfied, output the optimal strategy *π .

5   Case Analysis

The household power data used in this experiment is from the Pecan Street website, which contains the photo-
voltaic household power data on the streets of an area in Austin. The electricity price data is from the time of use 
electricity price provided by Austin Energy, a local power grid operator, for users in Austin. The PV historical 
power generation data is predicted. The hardware configuration of the experimental platform in this paper is as 
follows: Processor-Intel i7-6700HQ, GPU graphics card-Tesla P100, memory 8GB; software configuration is as 
follows: development software-Pycharm, development language-Python.

Since the electrical equipment contained in each household in the data set is not exactly the same, in the ex-
periment of this paper, families with photovoltaic, rigid equipment (refrigerator, alarm, electric light), power ad-
justable equipment (air conditioner, water heater), time adjustable equipment (washing machines, dishwashers), 
electric vehicles are selected for research. The addition of energy storage equipment can store surplus photovol-
taic power, and can also be used for high power prices by storing the power at low power prices. Therefore, this 
article adds a battery with a capacity of 17kwh to the family, and sets the charging efficiency B

inη  and discharging 

efficiency B
outη  of the battery to 0.9. The relevant parameters of household electrical equipment are shown in 

Table 2. 

Table 2. Parameters of household electrical equipment

Electrical equipment Power/KW Dissatisfaction coefficient Schedule time
Siren 0.1 - 24h
Electric light 0.3 - 18:00—22:00
Refrigerator 0.5 - 24h
Air conditioner 0.5-1.4 0.04 24h
Water heater 0.3-1.5 0.05 24h
Washing machine 0.7 0.05 7:00—22:00
Dishwasher 0.5 0.05 8:00—22:00
Electric vehicles 0-6 0.04 22:00-7:00
Energy storage equipment -1.2-1.2 - 24h

5.1   Analysis of Optimal Scheduling Results of Household Electricity Consumption Model

In this paper, after the predicted photovoltaic power generation is obtained, the established MAMDP household 
power consumption model is solved using the QLearing algorithm, and the electricity consumption strategy is 
obtained. And use α-QLearning and SA-α-QLearning algorithm in this paper to compare the electricity consump-
tion curve and electricity expenditure of household electrical equipment before and after optimization, as shown 
in Fig. 2. and Table 3. Set the related parameters in the QLearning algorithm to: γ = 0.9 , α = 0.1 , ε = 0.1 ; the re-
lated parameters in α-QLearning: γ = 0.9 , ε = 0.1 ; the related parameters in SA-α-QLearning: γ = 0.9 , T0 = 300 ,  
d = 0.7.
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(a) The operation of household electrical equipment before optimization

(b) The operation of household electrical equipment after the optimization of the method in this paper

 

(c) The working conditions of the energy storage equipment after the optimization of the method in this paper
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(d) Comparison of QLearning and original total power curve

 

(e) Comparison of α-QLearning and original total power curve

(f) SA-α-QLearning and original total power curve comparison

Fig. 2.  Comparison before and after optimization of household electrical equipment
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Table 3. Household electricity expenditure before and after optimal scheduling

Equipment type Electrical equipment
Electricity expenses ($)

Original QLearning α-QLearning SA-α-QLearning
Rigid equipment Rigid equipment 1.3 1.3 1.3 1.3
Power adjustable device Air conditioner 1.768 1.216 1.201 1.195

Water heater 1.476 1.101 1.097 1.078
Time adjustable device Washing machine 0.956 0.812 0.809 0.803

Dishwasher 0.468 0.395 0.392 0.389
Electric vehicles Electric vehicles 3.612 1.964 1.963 1.836
Energy storage equipment Energy storage equipment 0 0.272 0.220 0.321
Total electricity bill 9.574 7.06 6.982 6.922

From Fig. 2(a), it can be seen that the unoptimized equipment operates according to the user’s own electricity 
consumption habits. The operation of such equipment is mainly concentrated at 6:00-9:00 in the morning and 
18:00-21:00 in the afternoon. At this time, the electricity price is the peak period and the photovoltaic power is 
almost zero. During this period, various electrical equipment and electric vehicle charging are intensively used, 
resulting in high electricity cost for users. In Fig. 2(b), after optimized operation of the method in this paper, the 
power of the power-adjustable equipment decreases and time disperses, and is transferred to the stage of normal 
electricity price. The operating time of the time-adjustable equipment is mostly transferred to the period of high 
photovoltaic power generation or the period of normal electricity price. It can be seen in Fig. 2(c) that when the  
power consumption is high, the energy storage battery will discharge at this time. During the period of 9:00-
11:00, the photovoltaic power generation power gradually increases, but the user consumes less electricity at this 
time, so the surplus electricity is input into the storage battery. The electric vehicle is charged during the valley 
electricity price period in the evening. 

From Fig. 2(d), the comparison chart of the total electricity demand curve solved by the QLearning algorithm 
is carried out. For the convenience of comparison, the total electricity demand curve is the sum of the power re-
quired by each electrical device and the power of the energy storage device, as shown in Table 3. It can be seen 
that the electricity cost of the QLearning algorithm is lower than that before optimization; in Fig. 2(e), the total 
electricity demand curve obtained after the solution of the α-QLearning algorithm is obtained. It is lower than the 
QLearning algorithm; in Fig. 2(f), the total electricity demand curve after the solution of the SA-α-QLearning 
algorithm proposed in this paper is compared. From Table 3, it can be seen that this method is lower than other 
algorithms in terms of electricity expenditure, and it is better than other algorithms in photovoltaic utilization, 
indicating that the improved method proposed in this paper can effectively help the QLearning algorithm to jump 
out of the local optimal solution and obtain a better strategy.

5.2  Algorithm Effect Comparison

Fig. 3.  Comparison of QLearning iterations before and after the improvement
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In order to further verify the performance of the algorithm proposed in this paper, the rewards of the QLearning 
algorithm, the α-QLearning and the SA-α-QLearning in this paper are compared.

It can be seen from the reward of each algorithm iteration in Fig. 3. that the unimproved QLearning algorithm 
tends to converge around 1500 iterations, and the reward after convergence is -7.07; the α-QLearning is in con-
vergence around 1450 iterations, the reward after convergence is -6.98, and the change in reward value during 
the exploration process is smaller than that of the traditional QLearning algorithm. The QLearning algorithm 
after linear iteration of the learning rate improves the convergence speed of the algorithm; the SA-α-QLearning 
converges around 1300 iterations, and the reward after convergence is -6.92, and the improved algorithm is more 
cautious when selecting state actions, and the fluctuations are small during convergence, which can converge sta-
bly. 

5.3  Training Time Contrast

In order to compare the performance of the algorithm before and after the improvement, this paper compares the 
number of iterations in the first search for the optimal solution and the time spent in iterating 2000 times.

Table 4.  Comparison of  QLearning convergence time before and after the improvement

Serial
number

QLearning α-QLearning SA-α-QLearning
Number of itera-

tions
Discovery time 

(s)
Number of 
iterations

Discovery time 
(s)

Number of 
iterations

Discovery time 
(s)

1 155 4.25 150 4.03 125 3.34
2 153 4.60 147 4.52 126 3.76
3 162 4.67 149 4.55 138 4.09
4 155 4.57 142 4.31 122 3.35
5 168 5.29 157 4.69 141 4.15

It can be concluded from Table 4 that the number of iterations required by the QLearing algorithm to find the 
optimal solution is the largest, mainly because the initial search space of the QLearing algorithm is too large at 
the initial stage, and the algorithm converges slowly to the optimal solution during the exploration process, re-
sulting in a long algorithm time; at the same time, it can also be obtained that the time of α-QLearing algorithm 
to find the optimal solution for the first time in the exploration process is shortened, which shows that the conver-
gence speed of the algorithm is improved after the algorithm learning is improved; improved SA-α-QLearing can 
find the optimal solution earlier, and the iteration time is shorter, because the adaptive change exploration strate-
gy ensures the diversity of the early solution and the convergence stability of the later algorithm.

6   Conclusion

In view of the fact that traditional household electricity scheduling methods are usually based on a fixed math-
ematical model, it is difficult to deal with the complexity of the scheduling environment and the randomness of 
electricity consumption behavior. Therefore, this paper proposes a multi-agent-based Markov decision process 
model. The electrical equipment is simulated as multiple separate agents, the proposed SA-α-QLearning algo-
rithm is used to solve the household electricity consumption model, and the scheduling strategy is obtained, 
which alleviates the problem that the QLearning algorithm is easy to fall into the local optimal solution and the 
convergence speed is slow. The performance of scheduling policy solution has been significantly improved. 

With the increase of household electrical equipment, the exploration scope of the QLearing algorithm gradu-
ally increases. Later, the algorithm solving ability can be further improved by optimizing the exploration matrix 
or using deep reinforcement learning and other methods. In addition, with the popularity of household PV, it is 
possible to connect PV to the grid. In the future, we can study and recommend dispatching strategies combined 
with new energy to bring some benefits to household users and improve the safe and stable operation of the grid.
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