
Journal of Computers Vol. 34 No. 3, June 2023, pp. 207-219
doi: 10.53106/199115992023063403015

207* Corresponding Author

A Machine Learning Based Approach to QoS Metrics Prediction in the
Context of SDN

Hao Xu*, Xian-Bin Wan, Hui Liu

Shandong Computer Science Center (National Supercomputer Center in Jinan), Qilu University of Technology
(Shandong Academy of Sciences), Jinan 250014, China

10431200653@stu.qlu.edu.cn, 15069118031@163.com, 17863658766@163.com

Received 30 June 2022; Revised 11 October 2022; Accepted 11 December 2022

Abstract. With the advent of the industrial Internet era and rapid traffic growth, network optimization is in-
creasingly needed, and network optimization starts with knowing QoS-related metrics. In this paper, we use a
machine learning approach in a theoretical SDN architecture, using traffic as the input to a machine learning
model, to predict network QoS metrics, focusing on network jitter and packet loss rate. We built a LAN and
deployed a time server on the LAN in order to make the time of the devices on the LAN highly consistent.
Experiments were conducted under this LAN to obtain data sets about traffic and QoS metrics. Then, we used
the completed trained machine learning model to predict the network jitter and packet loss rate using traffic as
the input to the machine learning model. The highest R² values for the prediction of network jitter and packet
loss reached 0.9996 and 0.939, respectively. The experiments show that a suitable machine learning model is
able to predict network jitter and packet loss rate relatively accurately for a specific network topology.

Keywords: machine learning, prediction of QoS metrics, SDN, traffic, jitter, packet loss rate

1 Introduction

With the advent of the industrial Internet era, productivity has increased significantly, and the Internet of
Everything is becoming more and more of a trend [1]. There is no doubt that the Internet of Everything will
generate more and more traffic. QoS will be put forward more and more requirements. Among them, bandwidth,
delay, jitter and packet loss are important metrics of QoS [2]. In this paper, the QoS metrics that we predict are
network jitter and packet loss rate. Network jitter is the difference between the maximum and minimum delay,
and packet loss ratio is the ratio of lost packets to total sent packets during data transmission. These two items
are strictly required in some real-time applications, such as voice telephony. To meet the high quality real-time
communication for voice telephony, the one-way delay must be in the range of 100-150 ms, the packet loss rate
less than 3%, and the jitter should be within 50 ms [3]. Industrial Internet is often associated with economic
benefits, and applications with high real-time requirements are essential. Examples are remote equipment manip-
ulation and remote surgery [4]. Operators need not only to get high-definition video data of the operated mechan-
ical parts, but also to perform accurate and precise manipulation of the machinery. Therefore, in the context of
industrial Internet, advance prediction and optimization of network jitter and packet loss is essential to improve
the quality of network services [5]. Theoretically, we apply SDN to the general context of the Industrial Internet.
SDN is a new network architecture with separation of control plane and data plane, which enables better control
of the infrastructure. The control plane has strong computational power and provides a good platform for net-
work jitter and packet loss prediction. In this paper, we focus on SDN as the system architecture and use machine
learning methods for network jitter and packet loss prediction in QoS metrics. The prediction of network jitter
and packet loss rate can sense possible anomalies in the network in advance and can provide data support for the
optimization of the whole network, thus improving the network service quality.

There are two traditional methods for inferring QoS metrics. The first is to send measurement packets, where
QoS metrics are obtained as test packets are transmitted. The second is mathematical modeling analysis (e.g.,
queuing theory). The traditional method of QoS metrics prediction has the following drawbacks. The first is the
way of sending measurement packets, which is costly, less stable, and does not allow inferring QoS metrics in
real time. If high precision latency is measured in this way, the number of probe packets required is very large,
and a large number of probe packets consumes too much bandwidth. The second way is the mathematical model

208

A Machine Learning Based Approach to QoS Metrics Prediction in the Context of SDN

for derivation, which is not convenient for use in real networks. This is because mathematical models are either
too simplified to capture the real distribution of traffic or too complex to handle [6]. Machine learning has been
greatly developed by the increasing level of hardware. This provides the most advanced direction for QoS met-
rics inference. The QoS metrics predicted in this paper are network jitter and packet loss rate. Existing research
has only predicted network latency, and we propose for the first time the use of machine learning models for net-
work jitter and packet loss rate prediction. The advantages of using machine learning for network jitter and pack-
et loss rate prediction are as follows. Firstly, the machine learning model is fast. Secondly, the machine learning
model has a strong ability to synthesize information and can adequately approximate arbitrarily complex nonlin-
ear relationships [7].

In this paper, we present the first prediction of network jitter and packet loss rate using a machine learning ap-
proach. The machine learning approach is able to capture the problem accurately with low resource consumption,
high immediacy, and high accuracy. There are four novel aspects of the research conducted. Firstly, for the first
time, a machine learning approach is used to evaluate the prediction of network jitter and packet loss rate, and
relatively good experimental results are obtained. Secondly, the datasets used in the experiments were generated
on a real LAN built by ourselves, and the LAN was time-synchronized. Thirdly, data transmission is performed
using UDP to simulate real-time data. Fourthly, network jitter and packet loss rate prediction with SDN as the
system architecture is proposed for the first time. To summarize, our contributions are mainly in the following
areas:

(1) We present the first approach to predict network jitter and packet loss rate using machine learning and
demonstrate the feasibility of this approach. We use multiple machine learning methods to model traffic and jit-
ter, and traffic and packet loss rates, respectively. The machine learning models for predicting network jitter and
predicting packet loss rate are trained and evaluated with R² values of 0.9996 and 0.939, respectively.

(2) We conducted experiments on our own built LAN and produced real datasets for the first time. In order to
improve the accuracy of the transmission rate, 10 Gigabit NICs supporting the PTP protocol were installed on
the hosts in the network. A network timing server was configured on the LAN to allow the hosts to achieve time
synchronization. With the configuration of the network timing server, the time synchronization accuracy of our
entire LAN devices has been reached within 300 nanoseconds.

(3) In order to approach the effect of real-time data transmission, our data set generation experiments use
UDP for data transmission. Network jitter and packet loss rate are important QoS metrics affecting real-time data
transmission, and applications with high real-time requirements mostly use UDP for data transmission.

(4) We propose for the first time to use SDN as the system architecture, and the prediction function of network
jitter and packet loss rate is deployed as an application on the SDN application layer to provide data support for
the optimizer.

This paper is structured as follows. Section 2 describes the related work of previous researchers. Section 3
presents the general system architecture. Section 4 presents the methods for dataset production and machine
learning modeling. In Section 5, the first part presents the experimental results of dataset production, and the
second part presents the experimental results of network jitter prediction and packet loss rate prediction. Finally,
Section 6 concludes the work we have done.

2 Relate Work

Network optimization is particularly important in the context of the industrial Internet, where traffic is exploding.
Network optimization requires knowing the state of QoS metrics in the network first, because the predicted val-
ues of the obtained QoS metrics can provide data support for network optimization. QoS metrics are throughput,
latency, jitter and packet loss, which are often used to quantify network service performance [8]. The QoS met-
rics that we focus on in this paper are network jitter and packet loss rate. In this section, we present the existing
methods in terms of QoS metric prediction. According to the methods of QoS metrics estimation, they can be
divided into two categories: traditional methods and machine learning methods. The traditional methods include
methods that use measurement packets and methods that use mathematical models. At the end of this section, the
differences between the work we have done and the previous work are pointed out.

209

Journal of Computers Vol. 34 No. 3, June 2023

2.1 Traditional Methods

The first of the traditional approaches is based on the measurement of packets, which allows a realistic measure-
ment of the QoS metrics of a certain link state. Meseguer et al. [5] used measurement packets to obtain latency
data in the process of minimizing critical traffic delays through SDN. The delay data in the paper is obtained by
measuring the round-trip time (RTT) of the packet on a certain path (RTT divided by 2). Although this method
is able to obtain the latency at a certain traffic state more accurately, it requires a large amount of bandwidth re-
sources, and the latency data is not immediately available in this method.

Another traditional approach is the one that uses mathematical models to calculate QoS metrics. Gouareb et al.
[9] focus on the accumulated delay assuming multipath routing of flows and the assignment of service chains in
virtual networks. In terms of delay function definition, queuing theory is used. Zhang et al. [10] proposed a math-
ematical model to describe some key QoS parameters of wireless virtual networks, using a network evolution
approach to model the quality of service of wireless networks. Roychoudhuri et al. [11] proposed a mathematical
framework which is based on an end-to-end delay variation trend for packet loss prediction. Cruz [12] developed
a network algorithm method for calculating delay bounds under fixed routing policies.

All of the methods mentioned above use mathematical models to calculate QoS metrics. This method solves
the problem that QoS metric values are not available instantly, but still has drawbacks. Such methods are either
too simple or too complex to effectively capture the real situation of the network. In recent years, machine learn-
ing-based methods for network delay prediction have been proposed, and these methods improve the shortcom-
ings of the two traditional methods.

2.2 Machine Learning Methods

In recent years, machine learning has been gradually developed with the support of hardware. Some researchers
have tried to apply machine learning and deep learning to computer networks, especially for the prediction of
QoS metrics. Xiao et al. [13] proposed a database-driven system called Deep-Q. This system can infer network
latency based on the corresponding network state parameters after inputting data for training. This system takes
traffic as input and makes predictions about network delays. This scheme eliminates the cost of manual analysis
and improves the accuracy by a factor of 3 over traditional queueing theory inference. Krasniqi et al. [6] used
random forests and neural networks for end-to-end latency prediction. In the literature, the NS-3 simulation plat-
form, mixed TCP and UDP traffic, was used as a background for generating datasets, and three different datasets
were generated based on incoming traffic strength, link capacity, and propagation delay. The datasets are put into
a machine learning model for training, and the completed model can then predict end-to-end delays based on the
traffic matrix. Experiments have shown that random forests outperform neural networks for prediction. Mestres
et al. [14] used neural networks to model traffic and delays. The literature treats the neural network as a black
box with traffic as input and delay as output. The authors used the Omnet++ simulator to generate datasets with
different traffic distribution, traffic intensity, topology size, and routing policies. The paper also compares neural
network models with different hyperparameters. Finally, it is concluded that neural networks can make more ac-
curate predictions of the delay in the network and that the utility of neural networks is very high after the adjust-
ment of hyperparameters. The use of machine learning for QoS metric prediction improves the shortcomings of
the traditional approach.

In the above studies, there are studies that predict QoS metrics by probing packets, but they need to consume
a lot of bandwidth. There are studies that predict QoS-related metrics by mathematical models, but the prediction
is not good enough. There are studies that predict network latency by various machine learning models, but they
do not focus on network jitter and packet loss, and they all use data sets made by simulation software rather than
real data sets. Existing studies have only predicted network latency, and we propose to use machine learning
models for the first time to predict network jitter and packet loss rate. Existing studies do not use real datasets.
We build LANs and produce real datasets for the first time. In terms of QoS metrics prediction, traditional meth-
ods are gradually being eliminated and machine learning methods are becoming more and more mainstream. In
general, in this paper, we achieved good prediction results after training the machine learning model using real
datasets. The model is able to accurately predict network jitter and packet loss rate.

210

A Machine Learning Based Approach to QoS Metrics Prediction in the Context of SDN

3 System Architecture

The prediction of QoS metrics needs to be dependent on a system architecture. In this section, we will introduce
the SDN system architecture on which QoS metrics prediction is based and the working logic of the whole sys-
tem architecture.

The utility of SDN has been proven over the years. It is a very promising network model that can control the
network very well. Google has deployed an SDN connecting its global data centers. It has been proven that SDN
has helped Google to improve operational efficiency and significantly reduce costs [15]. The SDN control plane
and data plane are decoupled, and the underlying network facilities are separated from the applications, which
facilitates efficient use of resources and resource provisioning [16]. The control plane has strong computational
power, which provides computational conditions for machine learning models and is more conducive to real-time
QoS metric prediction [17]. Moreover, a key responsibility of the SDN controller is to optimize the network
quality of service, which is in line with our ultimate goal. Therefore, the system architecture of our research con-
tent is in the context of SDN, and the QoS metric prediction proposed in this paper is deployed as an application
in the application layer of the SDN-based system architecture.

The system architecture we use is based on SDN, as shown in Fig. 1, which is our system architecture dia-
gram. The application layer of the system architecture diagram mainly consists of three parts: optimizer, machine
learning model, and database, which are the focus of our research. The optimizer is used to optimize the network
performance. The machine learning model predicts the QoS metrics under a certain state feature, and the data-
base is used to store different network features and the QoS metrics corresponding to these features. The working
logic of the whole system is as follows. The system first collects information such as device parameters, traffic,
delay, network jitter, and packet loss rate at the data layer and stores them in the database. Then, the machine
learning model is trained based on the data in the database, and once the training is completed, the preparation
for network optimization is done. When the optimizer gets the optimization command, it passes the traffic, to-
pology, and device parameters to the machine learning model, which calculates the latency, network jitter, and
packet loss rate in this state based on these data and sends them to the optimizer. The optimizer uses this data to
execute an optimization algorithm that explores the performance of the target solution and finds the best configu-
ration for the overall network in an iterative manner.

SDN Controller

SDN Application

southbound interface

northbound interface

Optimizer Machine
Learning
Model

Traffic, topology,
device parameters

Qos

de
pl

oy
in

g

de
pl

oy
in

g

Database

Date

Data Plane

Fig. 1. System architecture diagram

211

Journal of Computers Vol. 34 No. 3, June 2023

In this paper, we focus on the module of machine learning models for predicting QoS metrics, with particular
attention to network jitter and packet loss rate among QoS metrics. To explore the correlation, we built a real net-
work and analyzed the data captured by Wireshark to obtain a dataset containing network jitter and packet loss
rate. Then, the relationships between network jitter and network traffic, packet loss rate, and network traffic were
explored by modeling using machine learning models.

4 Methods of Making Datasets and Modeling

Our experiment is roughly divided into two parts: the first part is to generate and analyze data, and the second
part is to use machine learning models to complete the prediction of relevant data and the evaluation of model
effects. In this part, we introduce some methods used for data generation, data analysis, and machine learning
modeling, mainly including methods for network topology construction, methods for producing data sets, data
analysis algorithms, and methods for modeling and model evaluation.

4.1 Network Topology

The first step of the experiment is to build a local area network (LAN) under which data transmission and data
capture are performed. To explore the relationship between traffic and delay, and to explore the relationship
between traffic and network jitter, we built a simple LAN with the experimental topology shown in Fig. 2. We
built a LAN using two host servers, two switches, and a time server. In order to support the PTP timing service
and improve the packet sending performance of the two host servers, we configured 10 Gigabit NICs for the
two host servers. In order to be closer to the real application situation, we use fiber optic connections between
the host servers and the switch. We use super 6 Gigabit cables between the two switches and between the switch
and the timing server. In order to ensure the accuracy of the calculated delay, we used a network timing server to
synchronize the network time for the whole LAN, and the time synchronization accuracy of the devices on the
whole LAN was within 300 nanoseconds.

TimeServer

Switch-2

Switch-1

host server
 node-2

host server
 node-1

Cat-6 Flat Lan Cable

10 Gigabit Fiber

Fig. 2. Network topology

4.2 Dataset Production

After the LAN is set up, we start the data transmission experiment, where host server node 1 sends packets to

212

A Machine Learning Based Approach to QoS Metrics Prediction in the Context of SDN

host server node 2 at diff erent rates to represent the diff erent traffi c intensities in the LAN. In order to be able
to send data at diff erent sending rates, we use multi-threaded socket-based programming to complete the packet
sending function. Packet capturing is performed on two host server nodes using Wireshark, capturing approx-
imately 3000 UDP packets for each traffic state. Finally, data analysis was performed to derive the average
latency, jitter, packet loss rate, latency maximum, latency minimum, and latency variance for each traffi c state.
As shown in Fig. 3, this is the graph of the sending rate variation during the experiment. The experiments were
conducted 1090 times in total, starting with 10 KB/s for the fi rst 1000 times and increasing the rate by 10 KB/s
for each experiment, and starting with 11000 KB/s for the next 90 times and increasing the rate by 1000 KB/s for
each experiment. To ensure the accuracy of the transmission rate, the sending rate and receiving rate were mon-
itored at the host server node using traffi c monitoring software (bmon). The sending rate and receiving rate are
monitored from time to time on the switch side using the web interface.

Fig. 3. Sending rate

4.3 Data Analysis Algorithm

After capturing the data by Wireshark on the transmitter and receiver sides, data analysis is performed to obtain
data such as network jitter, packet loss rate, and average delay. A data analysis algorithm is designed in this sec-
tion to ensure the accuracy of the data such as average delay, network jitter, and packet loss rate.

Algorithm 1. Data analysis
Input: T1[1...1090], T2[1...1090] /*The data captured by Wireshark is stored in the form of a table*/
Output: Loss_rate[1...1090], Average_delay[1...1090], Network_jitter[1...1090]

1: For i ← 1; i ≤ 1090 do
2: T1, T2 = SelectProtocolUDP(T1[i], T2[i]);
3: Loss_rate[i] = ; /* len(T), which indicates how many rows of data in T*/
4: If Unique(T1.Identifi cation)==False || Unique(T2.Identifi cation)==False then
5: T1, T2 = DropDuplicateIdentifi cation(T1, T2);
6: End If
7: Tab = Merge(T1,T2, “Identifi cation”);
8: Tab = Balance(Tab);
9: Average_delay[i] = ; /* and represent the time of the same packet at the sender and receiver respectively

*/
10: Network_jitter[i] = max() - min();
11: End For
12: Return Loss_rate, Average_delay, Network_jitter

213

Journal of Computers Vol. 34 No. 3, June 2023

In the following we explain the key points in the algorithm.
Input and Output. The data captured by Wireshark on the sender and receiver sides is used as input. The out-

put data includes packet loss rate, average delay, and network jitter. For convenience, we use T1[1...1090], T2[1...
1090] such arrays to represent the data captured at the sender and receiver side of the experiment. For example,
T1[i] denotes the data captured on the sender side of the ith experiment, and T2[i] denotes the data captured on
the receiver side of the ith experiment. Similarly, since the experiment is conducted 1090 times in total, the num-
ber of packet loss rates, average delay, and network jitter are also 1090, respectively. So we store the packet loss
rate, average delay, and network jitter of each experiment into arrays as well, and finally output these arrays.

Related functions. The experiment captures packets in 1090 different traffic states, and a total of 1090 exper-
iments are performed, so the data analysis needs to be performed 1090 times as well. The captured packets were
not only of the UDP type, so the SelectProtocolUDP function was used to pick out the packet using the UDP pro-
tocol. In the table exported by Wireshark, Identification is used as a unique identifier for the packets, and there
may be duplicate values in the case of too many packets sent. To ensure the uniqueness of the packets and the ac-
curacy of the delay calculation, we use the Unique function to verify whether the values in the Identification col-
umn are duplicates. If there are duplicate values in the Identification column, use the DropDuplicateIdentification
function to delete all packets with duplicate Identification values. The Merge function inner joins two tables, T1
and T2, based on the Identification value to generate a new table. The Balance function is used to balance the
data with the purpose of avoiding extreme data effects. The procedures are as follows. The function first sorts the
latency of approximately 3000 packets per experiment from largest to smallest. For the first 1000 experiments,
the first 1/100 and the last 1/100 latency values of each experiment are removed. The last 90 experiments, with
fewer low values, removed the latency data for the first 1/1000 and last 1/1000 of each experiment in order to
balance.

Calculation formula. The algorithm has three formulas in total, which are the formulas for packet loss rate,
average delay, and network jitter. The logic of the packet loss rate formula in the third line is as follows. The
number of UDP packets captured by the sender is subtracted from the number of UDP packets captured by the
receiver, and the difference is divided by the number of UDP packets captured by the sender. The logic for cal-
culating the average latency formula in the ninth row is as follows. The table after the inner connection contains
all the time information of each packet, represents the time of each packet arriving at the destination host, rep-
resents the sending time of each packet, and is the transmission delay of each packet. The delays of all packets
are summed up and then divided by the number of packets to get the average delay. The logic for calculating the
network jitter formula in the tenth row is as follows. The maximum delay minus the minimum delay for each ex-
periment.

4.4 Machine Learning and Evaluation Metrics

In order to verify the feasibility of machine learning models for QoS metric prediction and compare the accuracy
of different models, we use various machine learning models in our experiments, including GDBT, traditional
neural networks, and convolutional neural networks. Machine learning modeling is to consider a machine learn-
ing model as a black box, with traffic as input and network jitter and packet loss rate as output. Our experiments
use machine learning modeling, and the modeling task can be represented as formula (1).

, ().J L f T= (1)

J denotes the delay jitter, L denotes the packet loss rate, the function f() denotes the machine learning model
used, and denotes the traffic in the network. We are predicting under specific network characteristics, and the in-
dependent variables of the function do not consider information such as device parameters, routing policies, etc.,
because these parameters are fixed under specific network characteristics.

We use R² as the evaluation indicator of the model. The evaluation indicator is R², which reflects the propor-
tion of the dependent variable that can be explained by the independent variable through the regression relation-
ship. Here is the formula of R², ˆiy is the predicted value, iy is the true value, and y is the average of the true
values. The closer the R² value is to 1, the better the model fit is. We evaluate the model by calculating R² for the
test set, and R2 is shown in formula (2).

214

A Machine Learning Based Approach to QoS Metrics Prediction in the Context of SDN

2
2 1

2
1

ˆ()
1 ,

()
ˆ(,)1 .

()

n
i ii

n
ii

y y
R

y y

MSE y y
Var y

=

=

−
= −

−

= −

∑
∑ (2)

MSE is used as an auxiliary evaluation metric and as a loss function. The smaller the MSE, the better, proving
that the difference between the true value and the predicted value is smaller. MSE is shown in formula (3).

2

1

1 ˆ() .n
i ii

MSE y y
n =

= −∑ (3)

5 Experiment Result and Discussion

In this section, we present the experimental results. The experimental results are presented in two parts, the ex-
perimental results of the dataset production part and the experimental results of the machine learning part. In the
machine learning experimental results section, they are also presented in two parts, which are the prediction of
network jitter and the prediction of packet loss rate.

5.1 Experimental Results of Dataset Production Part

We present the experimental results of the dataset production with two images. First, the distribution of latency in
four different traffic states is analyzed, and then the trends of average latency, network jitter, and packet loss rate
obtained from the experiments are analyzed. About 3000 packets were collected for each traffic state, and each
packet had a corresponding delay. As shown in Fig. 4, we selected four different traffic states from a total of 1090
traffic states to observe the packet latency under different traffic states. Fig. 4(a) to Fig. 4(d) show the latency
images in the context of sending rates of 60 KB/s, 600 KB/s, 6000 KB/s, and 60000 KB/s, respectively. The hori-
zontal coordinate represents each packet in a certain traffic state, and the vertical coordinate represents the packet
delay. It can be clearly seen that as the network traffic keeps getting larger, more and more packets will have high
latency values. This indicates that packet latency is related to the network traffic size. Moreover, the graph shows
that there is a critical point for the maximum latency, which in our experiments is around 12,000,000 nanosec-
onds.

(a)60KB/s (b)600KB/s

(c)6000KB/s (d)60000KB/s

Fig. 4. Delay for different traffic backgrounds

215

Journal of Computers Vol. 34 No. 3, June 2023

We analyze the experimental data obtained from Wireshark captures to obtain the average latency, network
jitter, and packet loss rate for each experiment. Based on the traffi c growth rate shown in Fig. 3, we represent the
data in two segments with diff erent colors. As shown in Fig. 5, the average latency, network jitter, and packet
loss rate for the fi rst 1000 experiments are shown in blue, and the average latency, network jitter, and packet loss
rate for the last 90 experiments are shown in red. The average delay image of each experiment is shown in Fig.
5(a). We can see that the average delay keeps getting larger as the traffi c keeps increasing. The network jitter
image for each experiment is shown in Fig. 5(b). We can see that the network jitter keeps increasing as the traffi c
increases, and after the network jitter increases to a certain level, it will keep a certain range of values constant.
As shown in Fig. 5(c), this is the packet loss rate image. As we can see, the packet loss rate is 0 in the low traffi c
state, and it is increasing as the traffi c increases. From the three plots in Fig. 5, we can get the preliminary analy-
sis that there is a correlation between the latency, network jitter, and packet loss rate and the size of network traf-
fi c. Therefore, we try to explore this correlation using a machine learning approach. It is worth noting that in our
experiments, the UDP packet size is set to 10240B and the packets are signifi cantly larger than the MTU, so the
packets are fragmented when performing data transmission. The relatively large packets, packet fragmentation,
and continuous sending of MTU-sized packets all add to the packet loss rate, so our measured packet loss rate
may be greater than the general usage case. However, the general trend of the data we obtained is correct, so it
does not aff ect the exploration of the packet loss rate.

Fig. 5. QoS metrics analysis image

5.2 Experiment Results of Machine Learning Part

In this section, we present experimental results on the prediction of network jitter and packet loss rate using
network traffi c under specifi c network characteristics. In practical use, we need to choose the model that is best
suited to the current environment to complete the prediction work, so our experiments compare diff erent models.
In the following, we present the experimental results in two parts: the experimental results of network jitter pre-
diction and the experimental results of packet loss rate prediction.

Experimental Results of Network Jitter Prediction. The experiments were performed to predict the network
jitter using CNN, the BP neural network, and GDBT. We divided the total data set into training and validation
sets in the ratio of 8:2. In terms of implementation, CNN and BP neural networks were done using the Tensorfl ow
library for the modeling task, and GDBT was implemented using the scikit-learn library for modeling. A convo-
lutional neural network, which is a neural network with four convolutional layers added on top of it. As Table 1
shows the parameters and training results of the machine learning models, the BP neural network and the CNN
diff er only in the number of layers, but the other parameters of both models remain the same. The activation

216

A Machine Learning Based Approach to QoS Metrics Prediction in the Context of SDN

function is relu, the optimizer is Adam (learning rate = 0.001, beta_1 = 0.9, beta_2 = 0.999.), the loss function
is mse, and the model monitoring metric is R². The data was processed in batches, each sized at 32. Similarly,
we have listed the parameters and results of the GDBT model in the table. After the three models were trained,
the R² values were 0.9993, 0.9992 and 0.9996, and the losses were reduced to 2.9098 × 10−5, 2.5168 × 10−5 and
2.0215 × 10−5, respectively.

Table 1. Comparison of different models

Model Params R² Loss
Gradient Boosting Decision Tree

(GDBT)
n_estimators: 500

max_depth: 4
min_samples_split: 5
learning_rate: 0.01

loss: mse

0.9993 2.9098 × 10−5

Neural Networks
(NN)

num of layers: 5
activation function: relu

optimizer: Adam
loss: mse

batch size: 32

0.9992 2.5168 × 10−5

Convolutional
Neural Networks

(CNN)

num of layers: 10
activation function: relu

optimizer: Adam
loss: mse

batch size: 32

0.9996 2.0215 × 10−5

We recorded the loss variation for different models, and Fig. 6 shows the loss variation for the three models. It
is obvious from the figure that the losses of the three models are reduced to very low levels after training. In Fig.
6(a) is the loss variation of GDBT, Fig. 6(b) is the loss variation of the BP neural network, and Fig. 6(c) is the
loss variation of CNN. In the three plots, the orange curve represents the validation set loss and the blue curve
represents the training set loss. It is clear from the three plots that the loss values of all three models are reduced
to very low levels, and all three models achieve a good fit.

(b) (c)(a)

 (a) GDBT Loss (b) BP Loss (c) CNN Loss

Fig. 6. Loss (MSE)

We inverse normalized the network jitter obtained from the model predictions and compared them with the
true values. As shown in Fig. 7, the real values are compared with the three model predicted values (after inverse
normalization) respectively. In the figure, the orange curve is the predicted value and the blue curve is the true
value. The units of the data in all three plots are nanoseconds. As shown in the figure, all three machine learning
models can predict the network jitter very well, and the predicted values differ very little from the true values.

217

Journal of Computers Vol. 34 No. 3, June 2023

(a) (b) (c)

 (a) GBDT (True vs Pred) (b) BP (True vs Pred) (c) CNN (True vs Pred)

Fig. 7. Comparison of true values and predicted values (nanosecond)

Experimental Results of Packet Loss Rate Prediction. We used a BP neural network to predict the packet loss
rate, and the model was still able to achieve a relatively good fit. In this experiment, we used the Adam optimizer
in the machine learning model. As shown in Table 2, the R² value is 0.939 and the loss is 0.0070.

Table 2. Experimental results

Model R² Loss
BP neural network 0.939 0.0070

Fig. 8(a) shows the decreasing process of the model loss. It can be seen from the figure that the loss decreases
quickly and the loss value is small enough when it is stable. We also compared the real and predicted values of
packet loss rate, and the comparison results are shown in Fig. 8(b). The blue line in the image is the true value
and the orange line is the predicted value. It can be clearly seen that although there is some error between the true
and predicted values, they can be fitted better overall. Finally, as shown in Fig. 8(c), we have calculated the error
value of the packet loss rate. The error of packet loss rate is the difference between the real value of the packet
loss rate and the predicted value of the packet loss rate. As can be seen from the figure, the vast majority of the
error values are between +0.05 and -0.05. We sum the absolute values of all packet loss rate errors and then av-
erage them, and the final average error value is 0.029. From these three pictures, we can see that the prediction is
good enough.

(c)(a) (b)

 (a) Loss (b) True vs Pred (c) Value of error

Fig. 8. Experimental results

218

A Machine Learning Based Approach to QoS Metrics Prediction in the Context of SDN

6 Conclusion

In this paper, we present for the first time a method to predict network jitter and packet loss rate using a machine
learning model. We train the machine learning model using a dataset of our own making, and the trained mod-
el takes traffic as input and network jitter or packet loss rate as output. We used three machine learning models
(CNN, BP neural network, and GDBT) to perform regression prediction of jitter, and all three machine learning
models have good prediction results for network jitter with R² values above 0.999. Then, we used a BP neural
network to predict the packet loss rate, and the model was still able to predict the packet loss rate very well. The
experimental data proves that a suitable machine learning model can accurately predict the network jitter and
packet loss rate. Our experiments can be used to sense possible anomalies in the network and can provide data to
support the optimization of the entire network, thus improving the quality of network services. The advantages of
our experimental approach are its high accuracy and practicality. There are two limitations. The first is that SDN
networks are not yet deployed on a large scale, and it may take a longer time to apply them in a real environment.
The second is that the model needs to be trained using a large amount of data before prediction.

In the future, we expect to be able to deploy our proposed method as an application to SDN networks and
apply it to SDN network optimization. The research directions that we will conduct in subsequent work are as
follows.

(1) Most of the existing delay predictions focus on path delays. We will conduct research on more fine-grained
delays. We will study the relationship between network traffic and link delays.

(2) We will look at how to train better machine learning models with fewer pieces of data.

Acknowledgement

This work was supported by the National Natural Science Foundation of China under Grant No. 92067108, the
Shandong Provincial Natural Science Foundation of China under Grant No. ZR2020MF057.

References

[1] S. Wang, L. Nie, G. Li, Y. Wu, Z. Ning, A MultiTask Learning-based Network Traffic Prediction Approach for SDN-
enabled Industrial Internet of Things, IEEE Transactions on Industrial Informatics 18(11)(2022) 7475-7483.

[2] H.E. Egilmez, A.M. Tekalp, Distributed QoS Architectures for Multimedia Streaming Over Software Defined Networks,
IEEE Transactions on Multimedia 16(6)(2014) 1597-1609.

[3] M.J. Karam, F.A. Tobagi, Analysis of the delay and jitter of voice traffic over the Internet, in: Proc. 2001 20th Annual
Joint Conference of the IEEE Computer and Communications Society, 2001.

[4] F. Boabang, A. Ebrahimzadeh, R.H. Glitho, H. Elbiaze, M. Maier, F. Belqasmi, A Machine Learning Framework for
Handling Delayed/Lost Packets in Tactile Internet Remote Robotic Surgery, IEEE Transactions on Network and Service
Management 18(4)(2021) 4829-4845.

[5] J.M. Llopis, J. Pieczerak, T. Janaszka, Minimizing Latency of Critical Traffic through SDN, in: Proc. 2016 IEEE
International Conference on Networking, Architecture and Storage, 2016.

[6] F. Krasniqi, J. Elias, J. Leguay, A.E.C. Redondi, End-to-end Delay Prediction Based on Traffic Matrix Sampling, in:
Proc. 2020 IEEE Conference on Computer Communications Workshops, 2020.

[7] H. Huang, X. Zhu, J. Bi, W. Cao, X. Zhang, Machine Learning for Broad-Sensed Internet Congestion Control and
Avoidance: A Comprehensive Survey, IEEE Access 9(2021) 31525-31545.

[8] P. Charonyktakis, M. Plakia, I. Tsamardinos, M. Papadopouli, On User-Centric Modular QoE Prediction for VoIP Based
on Machine-Learning Algorithms, IEEE Transactions on Mobile Computing 15(6)(2016) 1443-1456.

[9] R. Gouareb, V. Friderikos, A.H. Aghvami, Delay Sensitive Virtual Network Function Placement and Routing, in: Proc.
2018 International Conference on Telecommunications, 2018.

[10] L. Zhang, J. Liu, K. Yang, Quality of Service Modelling of Virtualized Wireless Networks: A Network Calculus
Approach, Mobile Networks and Applications 19(4)(2014) 572-582.

[11] L. Roychoudhuri, E.S. Al-Shaer, Real-time packet loss prediction based on end-to-end delay variation, IEEE
Transactions on Network and Service Management 2(1)(2005) 29-38.

[12] R.L. Cruz, A calculus for network delay. I. Network elements in isolation, IEEE Transactions on Information Theory
37(1)(1991) 114-131.

[13] S. Xiao, D. He, Z. Gong, Deep-Q: Traffic-driven QoS Inference using Deep Generative Network, in: Proc. 2018
Workshop on Network Meets AI & ML, 2018.

219

Journal of Computers Vol. 34 No. 3, June 2023

[14] A. Mestres, E. Alarcón, Y. Ji, A. Cabellos-Aparicio, Understanding the Modeling of Computer Network Delays using
Neural Networks, in: Proc. 2018 Workshop on Big Data Analytics and Machine Learning for Data Communication
Networks, 2018.

[15] D. Kreutz, F.M.V. Ramos, P. E. Veríssimo, C.E. Rothenberg, S. Azodolmolky, S. Uhlig, Software-Defined Networking:
A Comprehensive Survey, Proceedings of the IEEE 103(1)(2015) 14-76.

[16] M. Karakus, A. Durresi, Quality of Service (QoS) in Software Defined Networking (SDN): A survey, Journal of
Network and Computer Applications 80(2017) 200-218.

[17] J.W. Guck, A.V. Bemten, W. Kellerer, DetServ: Network Models for Real-Time QoS Provisioning in SDN-Based
Industrial Environments, IEEE Transactions on Network and Service Management 14(4)(2017) 1003-1017.

