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Abstract. In response to the current situation of low assembly accuracy and unreasonable workpiece grasping 
posture in the automatic assembly process of equipment manufacturing based on industrial robots, an objec-
tive function was designed with the goal of minimizing robot grasping torque, and a deep learning strategy 
was used to autonomously identify the optimal grasping posture. In terms of assembly strategy selection, 
the assembly behavior is abstracted as the coordination between holes and shafts. A method of changing the 
center distance of shaft hole parts to change the jamming state of holes and shafts is proposed to increase the 
assembly qualification rate. Finally, the industrial robot in the training base is used as the experimental object 
to validate the method proposed in this paper. After comparative analysis, the proposed method increases the 
assembly efficiency by 10.4%, and the assembly success rate reaches 96%.
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1   Introduction

For a device, the final stage of design and manufacturing is assembly. How to maximize the design performance 
of the device is crucial in the assembly process. The development of industrial robots is gradually changing pro-
duction and labor methods. With the deeper and wider development of industrial robots and the improvement of 
robot intelligence level, the application scope of robots is constantly expanding, and has been promoted from the 
automotive manufacturing industry to other manufacturing industries, and to various non manufacturing indus-
tries such as mining robots, construction robots, and water and electricity system maintenance and repair robots.
The use of industrial robots to grab workpieces and assemble them is the current development direction in the 
field of assembly, but robots have the following problems in the assembly process:

(1) The accuracy of workpiece grasping is insufficient, and incorrect workpiece grasping directly leads to as-
sembly errors;

(2) The position and posture of workpiece grasping are unreasonable, increasing assembly errors and difficul-
ty, as well as adding useless paths for assembly;

(3) Insufficient assembly accuracy leads to a decrease in equipment accuracy and the loss of significance for 
robot assembly.

Automatic assembly can be divided into two main issues: first, achieving precise target and target pose grasp-
ing, and second, completing precise assembly. Therefore, the main work completed in this article is as follows:

(1) Studied the robot grasping strategy and established an optimization objective function based on the grasp-
ing torque;

(2) Abstract the assembly object as a hole axis assembly, and establish an artificial intelligence assembly strat-
egy based on the stuck state of the hole axis and deep learning algorithm.

In order to comprehensively discuss the work done, the chapter structure of this article is arranged as follows:
Chapter 2 searched for the research results of relevant scholars on the issues raised in this article, and con-

ducted corresponding analysis and comparison. Chapter 3 discussed the robot grasping strategy based on vision. 
Chapter 4 determined the assembly strategy based on the blockage of the hole axis. Chapter 5 mainly focused on 
experimental analysis and analyzed the advantages of this method. Chapter 6 was the conclusion section.



316

Research on Intelligent Assembly Strategy and Workpiece Grasping Method for Industrial Robots Based on Deep Learning 

2   Related Work	

Relevant scholars have conducted research on assembly strategies and determined the research direction of this 
article through comparative analysis. Alles studied the assembly strategy of dual arm robots and proposed a 
modular method to implement the shaft hole assembly strategy. At the same time, the accuracy and stability of 
the model were demonstrated under different assembly gaps. The research on assembly gaps is of reference sig-
nificance for this article [1]. Nottensteiner proposed a robot assembly method that combines visual and internal 
tactile perception, and achieved the robot’s ability to continuously track parts within a single Bayesian frame-
work, And the feasibility of the method was confirmed through hole axis matching, and the application of vision 
provides a reference for this article [2]. Kamal proposed to carry out motion planning for the end effector of the 
robot, so as to conduct Peg-In-Hole search with the minimum prior information of the working environment, 
which can enable the robot to work with the minimum prior information of the working environment to elimi-
nate any interference in the assembly process [3]. Peng Liu designed an automation system and mainly planned 
the implementation path for the automatic locking screw assembly task in response to the problems of low work 
efficiency and low level of automation in screw assembly [4]. Zhe Li proposed a robotic arm workpiece grasping 
scheme that utilizes a new fast expanding random tree algorithm and visual positioning to address the potential 
collisions that may occur in the environment, improving the accuracy and stability of part grasping [5]. Yuexin 
Tian proposed a 3D visual recognition and grabbing system based on deep learning method, which achieves 
grabbing errors within 1-4 mm. The algorithm is highly feasible, but the grabbing accuracy is low [6].

3   Visual Based Workpiece Grasping Model for Industrial Robots

Any assembly process can be abstracted as the coordination of holes and shafts, and the completion of shaft hole 
assembly tasks by industrial robots generally includes the following two stages: workpiece grasping and work-
piece assembly. This chapter mainly studies the grasping process of industrial robots. In addition to discussing 
the accuracy of workpiece grasping, it also discusses the method of correctly grasping the position of the work-
piece. This chapter mainly analyzes the factors that affect assembly accuracy, and then uses deep learning meth-
ods to find the optimal assembly plan.

3.1   The Influence of Workpiece Grasping Angle 

During the assembly process, there is a certain insertion angle between the hole axes. If the insertion angle is 
within a reasonable range, the insertion action can be completed. However, excessive inclination angle can lead 
to the failure of the shaft hole assembly [7]. Therefore, the inclination angle during the hole axis assembly pro-
cess is a key parameter in the assembly process. Set the maximum inclination angle between the hole axes as α, 
as shown in Fig. 1.

Fig. 1. Schematic diagram of hole axis inclination angle
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The inclination angle A can be expressed as:

arctan .s
L

α =                                                                           (1)

According to Fig. 1 and Formula 1, the larger the tilt angle α is, the larger the assembly clearance s is, while 
the insertion distance L  is inversely proportional to the tilt angle. When the actual assembly angle is greater than 
the tilt angle α , the assembly task cannot be completed. Therefore, the main adjustment goal of industrial robots 
in the assembly process is to make the assembly angle less than the maximum allowable tilt angle.

3.2   The Torque Generated During the Grasping Process

The generation of grasping torque depends on the position of the robot gripper grasping the parts, and different 
grasping torques will cause different disturbances and motion trajectories, ultimately leading to different assem-
bly differences. At the same time, the interference generated by the torque during the adjustment of the axis hole 
alignment of the robot is also constantly changing, so the grasping torque is also the main influencing parameter. 
The interference torque includes the gravity torque  MG  and inertia torque  MI  of the workpiece, and their re-
spective expressions are as follows:

sin .GM mg s θ=                                                                      (2)

2
2

2
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dM J mr
dt
λδ= =                                                                  (3)

Among them,  m  is the mass of the assembly axis,  g  is the acceleration of gravity,  s  is the distance from the 
point of force application to the axis of rotation, and  θ  is the angle between the moment of gravity and the force.  
δ  is the angular acceleration,  ω  is the angular velocity,  J  is the moment of inertia,  r  is the vertical distance 
between the center of mass and the center of rotation,  λ  is the angular displacement, where the moment of iner-
tia  J  and angular acceleration  δ  are expressed as:

21 .
2

J mr=                                                                              (4)

2

2 .d
t dt
ω λδ = =                                                                           (5)

From the above formula, it can be seen that the generation of interference torque is mainly influenced by the 
quality of the assembly shaft and the distance and angular displacement generated by the gripping position of 
the assembly shaft. When the grasping position coincides with the center of mass and the center of rotation, the 
action distance is the smallest, so the gravitational interference torque generated during the adjustment process is 
also the smallest. When the grasping position is not only at the position where the center of mass coincides with 
the center of rotation, but also at the position where the inertial axis coincides with the rotation axis, the robot 
generates the minimum gravity interference torque and inertial interference torque during the assembly process. 
Therefore, when selecting the gripping position with smaller interference torque, the interference received during 
the assembly process is smaller, which is more conducive to the completion of the assembly task.

3.3   A Grasping Strategy for Industrial Robots Based on Deep Learning

This section mainly studies the establishment of a mapping relationship between grasping position and assembly 
efficiency constraints through self-supervised deep learning training, enabling robots to autonomously search for 
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the optimal grasping position to reduce the impact of interference torque on completing subsequent assembly 
tasks.

The control system regards the grasping decision process as a Markov decision process [8], and the state ac-
tion reward chain during the grasping process can be expressed as:

{ }0 0 0 1 1 1 2 1 1 1, , , , , , , , , , .t t t ts a R s a R s s a R s− − −                                                     (6)

Among them, ts  represents the environmental state perceived by  t  at all times. Using strategy ( )tsπ , feasible 

action ta  is selected from the available action set ( )A s . After the robot executes the action, the environmental 

state changes from ts  to 1ts + , and a reward 1( , )t tR s s +  is obtained. This reward is composed of grasping reward 

1
G

tr +  and assembly reward 1
AM

tr + . The robot receives a reward 0.3G
tr =  after each successful grasping. When the 

grasping position is selected, if the assembly time is less than the set time threshold, it receives assembly reward 
0.7AM

tr = . Therefore, The formula for rewarding R(st, st+1) is described as follows:

1( , ) .G AM
t t t tR s s r r+ = +                                                                     (7)

When selecting to perform assembly actions, the robot evaluates the value ( )Q a  of each action in action set 
( )A s , selects the most valuable execution action ta , and adds assembly reward  rAM . The robot establishes a 

mapping relationship between the grasping position and assembly work efficiency to achieve maximum reward. 
When the robot obtains the maximum reward reward, if the assembly time of the robot meets the assembly task 
constraints, it proves that this strategy can improve the assembly efficiency of the robot and achieve the goal of 
learning intelligent visual grasping skills. Therefore, the action value function is expressed as:

1
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The optimal value function is expressed as:

*
1 1( )

( , ) max ( , ) ( , ) max ( , ).t t t t t t t ta A s
Q s a Q s a R s a Q s aπ ππ

γ + +∈
= = +                                        (9)

The robot obtains the optimal strategy *π  through training, and the trained optimal strategy *π  can select the 

highest predicted Q  value and optimal action *
ta  from the feasible action set under the current state ts  of time t. 

The formula for obtaining the optimal strategy *π  is as follows:

* * *
, 1 1

( ) ( )

( ) arg max ( , ) arg max ( ) ( , ) .t t t t t t t
a A s a A s

s Q s a E R s a Q s aππ γ + +
∈ ∈

 = = +                                 (10)

3.4   Decision Neural Network for Workpiece Grasping

The robot observes environmental information through a fixed installation of realistic depth cameras, and then 
the visual perception system projects the perceived RGB image information and depth information data onto a 
3D point cloud, and constructs a height map with RGB D channel information through orthogonal backprojec-
tion in the gravity direction. The system inputs the color channel (RGB) and cloned depth channel of the height 
map into Resnet pre trained on Imagnet for image feature processing. Then, the network sends image features to 
two convolution units for data processing. The convolution unit consists of activation function layer (ReLU) and 
convolution layer [9]. The robot will select the executable action *

ta  with the highest Q  value in the predicted 
heat map as the current execution action. The neural network structure for grasping decisions is shown in Fig. 2.
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Fig. 2. Grasping decision neural network structure

The crawling decision neural network is a fully convolutional neural network constructed based on DQN [10]. 
DQN is a learning method that combines neural networks and Q-learning. The traditional reinforcement learning 
Q-learning method stores the Q-values of each state and each executable action in that state in the Q-lattice. The 
fully convolutional neural network uses bilinear upsampling to increase the resolution of the feature map in order 
to output a pixel level predicted heat map of the same size as the input image, thereby achieving the restoration 
of the input image size and resolution. Bilinear upsampling uses a bilinear interpolation algorithm to insert new 
elements between the pixels in the current feature map, which estimates the pixel color lost in the original image 
based on the existing pixels in the feature map. To facilitate the description, the input feature map is defined as 
the initial feature map, and the upsampled feature map is defined as the expected feature map. The coordinate 
transformation formula for two feature maps is:
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Among them,  xe  is the x -axis coordinate value of the expected feature map,  w0  is the initial feature map 
width,  we  is the expected feature map width,  x0  is the x -axis coordinate of the initial feature map correspond-
ing to the coordinate transformation,  ye  is the y -axis coordinate value of the expected feature map,  h0  is the 
initial feature map height,  he  is the expected feature map height, and  y0  is the L-axis coordinate of the initial 
feature map corresponding to the coordinate transformation. In order to ensure the image accuracy after feature 
map transformation, the neural network uses bilinear interpolation algorithm to calculate the pixel values of the 
corresponding pixel points of the expected feature map based on the pixel values of four real pixel points near 
the virtual points in the initial feature map. After calculation by the bilinear interpolation algorithm, the image 
resolution is expanded to the expected size based on the initial feature map, as shown in Fig. 3. The calculation 
expression for bilinear interpolation is as follows:

( , ) (1 )(1 ) ( , ) (1 ) ( , 1)
(1 ) ( 1, ) ( 1, 1).

f i u j v u v f i j u vf i j
u v f i j uvf i j

+ + = − − + − + +
− + + + +

                                       (13)

i, j  is the integer part of the transformation coordinate, f (i, j) is the pixel value of the initial feature map (i, j) 
coordinate, and  u, v  is the decimal part of the transformation coordinate, with a value range of [0, 1) . The sam-
pling schematic diagram on the system is shown in Fig. 3.
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Fig. 3. Schematic diagram of upsampling

ReLU activation function uses unilateral inhibition to add sparse activation to neurons in the network, thus 
solving the problem of gradient explosion and gradient disappearance, and has a fast network training conver-
gence speed. In addition, ReLU activation function does not involve power operation, which greatly reduces the 
operation cost. The ReLU activation function formula is:

0 ( 0)
( ) max(0, ) .

( 0)
x

f x x
x x

≤
= =  >

                                                          (14)

4   Axis Hole Assembly Strategy

To complete the assembly of small clearance shaft holes, the deviation of the included angle α of the part axis 
must be less than 0.5. Within the allowable range of grasping angle, the assembly strategy proposed in this paper 
is proposed to reduce interference caused by tilt angle, torque disturbance, etc. After the parts come into contact, 
only changing the distance between the center of the shaft hole parts will transition the parts from a radial jam-
ming state to a bidirectional jamming state, and then cause the parts to move along the bidirectional jamming 
state function curve, keeping the parts in a bidirectional jamming state until the shaft hole assembly is completed 
[11]. The stuck state is shown in Fig. 4.

Fig. 4. Contact status of shaft hole assembly

The advantage of this assembly strategy is that even if there is excessive rotation during the assembly process 
of the shaft parts, they can be translated in reverse and re moved to a new bi-directional jamming state. Among 
them, the relationship between the horizontal and vertical displacement  ∆l  and  ∆h  of the robot per unit time 
and the rotation angle  ∆α  per unit time can be expressed by the following formula:
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The various parameters used in the assembly of industrial robot shaft holes are shown in Table 1, and the as-
sembly strategy process is as follows:

Step 1: Prepare points for robot motion value assembly;
Step 2: Zero the force sensor and initialize the assembly operation parameters.
Step 3: The robot slowly descends  ∆h  along the assembly direction until preliminary contact is made with the 

shaft hole, entering an axial jamming state. Condition 1 is met, and the reading  NZ  of the force sensor  Z  axis is 
greater than a certain threshold  FZ .

Step 4: Take the readings of the  X  and  Y  axes of the force sensor, obtain the direction and magnitude of 
the resultant force  F  at the end contact point, and make the robot translate  ∆l  along this direction. During the 
translation process, keep the reading  NZ  of the sensor  Z  axis greater than the threshold  FZ  at all times, until the 
axis parts enter a bidirectional jamming state, that is, meet condition 2: the difference  MX,Y  between the front and 
back times is greater than the threshold  ∆MX,Y .

Step 5: Record the insertion depth  h'  at this time, and use formula 15 to calculate the angle α between the 
axes as the initial value of the angle. The robot starts to move and uses an admittance controller for displacement 
compensation until condition 3 is met: the depth  h  of the axis insertion hole is greater than  hz .

Table 1. Process parameter table

Parameter symbols Parameter meaning

h Descending distance

ZN Sensor Z-axis reading

ZF Sensor Z-axis threshold

,X YM Bidirectional clamping torque

,X YM Change value of bidirectional clamping torque

,X YT Threshold of bidirectional card resistance moment

'h Record value of shaft insertion hole depth

α Axis hole inclination angle

h Current insertion depth value

Zh Axis insertion hole depth threshold

In actual operation, during the assembly process of the shaft hole, the parts are in rigid contact and the as-
sembly clearance is minimal. After the force sensor data  Fs  and  Ts  are calibrated and gravity compensated, the 
assembly contact forces  Fc  and  Tc  are obtained. The expected forces  Fd  and  Td  are calculated from the robot’s 
actual positions and postures  Xs  and  θs , and then they are input into the admittance controller to obtain the com-
pensation positions and postures  Xc  and  θc , and the theoretical assembly positions and postures  Xd  and  θd  are 
compensated. The motion of each axis of the robot is controlled by inverse kinematics and PID controllers. The 
control system schematic diagram is shown in Fig. 5.
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Fig. 5. Control system diagram

5   Experimental Results and Analysis

In order to verify the feasibility and effectiveness of the shaft hole assembly strategy based on deep reinforce-
ment learning and proposed in this article, a robot physics experimental platform was established for workpiece 
grasping and assembly strategy testing. As shown in Fig. 6, the KUKA robot is equipped with force/torque sen-
sors, pneumatic grippers, and visual sensors.

Fig. 6. Robot experimental platform

Table 2 shows the assembly objects for this time.

Table 2. Assembly object parameters

Nominal diameter of 
shaft hole

Assembly depth Minimum clearance of 
shaft hole

Center distance 
deviation

Shaft angle

25mm 21mm 0.21mm 0-15mm ≤8°

To verify the effectiveness of this assembly strategy, a robot was used to repeatedly grasp the workpiece for 
500 assembly experiments with shaft hole matching. The main criterion for determining the success of the ro-
bot’s grasping strategy is the change in assembly time. If the grasping position is more reasonable, the assembly 
time will be less. The total time required for the deep learning based grasping strategy and shaft hole assembly 
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method proposed in this article is 3.38 hours. Compared to the previous assembly strategy of 4.02 hours, it saved 
0.64 hours and increased work efficiency by 15.9%. In order to more intuitively reflect the differences in assem-
bly time after the improvement strategy, 50 sets of data from the test samples were selected for comparison, and 
the comparison results are shown in Fig. 7.

Fig. 7. Robot experimental platform

In this 50 assembly process, the initial pose deviation of the parts was random in each experiment, and the 
reading of the force sensor during the experiment was recorded. When the reading of the force sensor was greater 
than 50N, it was considered an experiment failure. Fig. 8 shows the success and failure of the proposed strategy 
in this article under different center distance deviations and axis angles of the parts. In a total of 50 experiments, 
there were 2 assembly failures, with an assembly success rate of 96%.

Fig. 8. Assembly results of hole shaft
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The experimental results show that gravity interference torque and inertia torque have the most significant 
impact on the fluctuation of interference torque among numerous interference torques. This article introduces as-
sembly rewards for grasping decision-making and establishes a mapping relationship between grasping position 
and assembly efficiency to limit the selection of grasping position and reduce the fluctuation of assembly time. In 
order to verify the feasibility and generalization of the strategy, this chapter conducted robot simulation analysis 
and experimental research on shaft hole assembly. The experimental data showed that using intelligent visual 
grasping strategy can improve the assembly efficiency of the robot by 10.4%. At the same time, in the single as-
sembly process, this strategy ensures accurate and stable contact motion during the actual assembly process, re-
ducing the repeated pose adjustment process, resulting in a success rate of 96% in the case of small samples and 
large positioning deviation, an average completion time of 15.1 seconds, and an average maximum contact force 
of 14.8N.

6   Conclusion

This article establishes a robot vision based workpiece grasping model and uses deep learning to automatically 
learn the optimal assembly strategy. After experimental verification, the assembly efficiency has been improved 
by 10.4%, and the assembly success rate has reached 96%. The effectiveness of the algorithm has been verified. 
For this reason, further research focuses on more complex assembly scenarios, as most assembly scenarios are 
abstracted as hole axes, while in reality, there are scenarios that cannot be abstracted as hole axes, such as flange 
facing assembly.
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