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Abstract. Most machine learning methods assume the training and test sets to be independent and have 
identical distributions. However, this assumption does not always hold true in practical applications. Direct 
training usually induces poor performance if the training and test data have distribution shifts. To address this 
issue, a three-part model based on using a feature extractor, a classifier, and several domain discriminators is 
adopted herein. This unsupervised domain adaptation model is based on multiple adversarial learning with 
samples of different importance. A deep neural network is used for supervised classification learning of the 
source domain. Numerous adversarial networks are used to constitute the domain discriminators to align each 
category in the source and target domains and effectively transfer knowledge from the source domain to the 
target domain. Triplet loss functions—classification loss, label credibility loss, and discrimination loss—are 
presented to further optimize the model parameters. First, the label similarity metric is designed between the 
target and source domains data. Second, a credibility loss function is proposed to obtain an accurate label for 
the unlabeled data of the target domain under training iterations. Finally, a discrimination loss is designed for 
multiple adversarial domain discriminators to fully utilize the unlabeled data in the target domain during train-
ing. The discrimination loss function uses predicted label probabilities as dynamic weights for the train data. 
The proposed method is compared with mainstream domain adaptation approaches on four public datasets: 
Office-31, MNIST, USPS, and SVHN. Experimental results show that the proposed method can perform well 
in the target domain and improve generalization performance of the model. 
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1   Introduction

When data distribution shifts between the training and test sets, many machine learning models cannot obtain 
good prediction results on the test set. Thus, it is challenging to recollect and label the training data with the same 
distribution as the test set. Domain adaptation, a special case of transfer learning technology, can solve the data 
distribution shift between the source (training set) and target (test set) domains. Further, deep learning technolo-
gy is advancing; hence, knowledge transfer based on deep neural networks is attracting increasing research atten-
tion [1-2]. Domain adaptation, which learns a model by minimizing the difference between domain distributions, 
can apply the source domain knowledge to an unlabeled target domain. Therefore, further study on deep domain 
adaptation methods is significant [3]. These methods primarily include discrepancy-based domain adaptation [4] 
and adversarial-based domain adaptation [5]. Discrepancy-based domain adaptation adopts multiple adaptation 
layers and metric criteria to complete the knowledge transfer of the source and target domain data. Examples of 
this approach include deep domain confusion (DDC) [6], joint adaptation networks (JANs) [7], deep transfer net-
works [8], deep transfer low-rank coding (DTLC) for cross-domain learning [9], and weighted maximum mean 
discrepancy (MMD) for unsupervised domain adaptation [10]. The DDC network adopts a single linear kernel 
to one layer to minimize MMD [6]. However, the DDC network has shallow layers with only one adaptive layer, 
inducing a weak domain-invariant feature representation. The JAN model learned a transfer network by aligning 
the joint distributions of multiple domain-specific layers across domains with the proposed joint maximum mean 
discrepancy (JMDD) criterion. However, the JMMD estimate is too complex. The above deep domain adaptation 
methods add MMD to the cost function as a distance metric between the source domain and target domain fea-
tures. The domain-invariant features between the source and target domains are learned by optimizing the source 
domain classification error and the MMD loss. The above methods require the artificial design across domains 
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to map the data of source and target domains to the same feature space. Furthermore, adversarial-based transfer 
learning realizes knowledge transfer using the Generative Adversarial Nets framework.

Adversarial learning has been successfully applied to deep neural networks to learn transferable features 
by reducing distribution discrepancy across domains [11]. One is that the discriminator acts on the total data 
space, such as in coupled generative adversarial networks (CoGANs) [12] and pixel-level domain transfer with 
cross-domain consistency (CrDoCo) [13]. The other is that the discriminator acts on the feature space, such as 
in the domain-adversarial neural network (DANN) [14], domain separation networks (DSNs) [15], adversar-
ial discriminative domain adaptation (ADDA) [16], and deep transfer metric learning [17]. Liu et al. [12] de-
signed CoGANs that learned joint distribution with the data drawn from marginal distributions by enforcing a 
weight-sharing constraint. Chen et al. [13] introduced a cross-domain consistency loss function that strengthened 
consistent predictions for domain adaption DANN [14] augmented adaptation behavior using a new gradient 
reversal layer and a few standard layers in adversarial learning. Bousmalis et al. [15] presented a DSN for do-
main-invariant feature learning. ADDA [16] learned the discriminative mapping of target images to the target 
encoder by fooling the domain discriminator that distinguishes the encoded target images from the source exam-
ples. Hu et al. [17] presented a deep transfer metric learning method to learn a set of hierarchical nonlinear trans-
formations by maximizing the interclass difference and minimizing the difference and the distribution divergence 
between the source and the target domains. The above adversarial-based methods can extract the domain-invari-
ance feature with interclass discrimination and avoid designing the complex distance measurement. However, 
these methods primarily align the population distributions in the source and target domains without considering 
the complicated structures underlying the data distributions [18]. Therefore, the source and target domains could 
be combined with comprehensive data. Moreover, the discriminative structures are confusing, causing false 
alignment of the corresponding biased structures of different distributions (Fig. 1). 

Fig. 1. The complexity of the domain adaptation

(The discriminative structures are confused or falsely aligned across domains. For example, the source category 
cat is falsely aligned with the target category dog, causing a wrong final classification (from [19])).

The classifier trained directly on the source domain cannot suitably distinguish the target domain data. 
Moreover, simply aligning the distribution of the overall data is insufficient and can induce negative migration. 
Based on Pei et al. [19], we present an unsupervised domain adaptation method with multiple adversarial learn-
ing using triplet loss functions for model parameter optimization. Compared with traditional domain adaptation 
algorithms, our method considers each category distribution between the source and target domains, compensat-
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ing for the limitation of the traditional domain adaptation approaches in only focusing on the general alignment 
of the source and target domains. 

This study and its features are summarized as follows: (1) a label-prediction method for the target domain 
data is proposed to align the distribution of data from the same categories across domains. We designed the label 
similarity metric between domains to obtain accurate labels of the target domain data. (2) Triplet loss functions 
with enhanced adversarial learning are designed to optimize model parameters. Notably, the label credibility loss 
function improves the reliability of trained data in the target domain. (3) Numerous adversarial networks are ad-
opted with weighted loss functions of the discriminators to align the same categories across domains.

2   Proposed Unsupervised Domain Adaptation Scheme

Here, we present a synopsis of our method and describe the designed loss functions to optimize the parameters 
of the model performing cross-domain consistency. Typically, there is a difference in the feature distribution 
between the source and target domains. However, the domain discriminator of a single adversarial network can 
only reduce the disparity in the overall feature distribution between the source and target domains and cannot 
ensure that the feature discrepancy between categories is sufficiently limited. Therefore, accurately aligning the 
features of each category between the source and target domains is challenging.       

2.1   Method Overview

Domain adaptation solutions are widely used in machine learning problems that lack labeled data. Majority of the 
current adversarial-based domain adaptation methods reduce the disparity in the feature distribution between the 
source and target domains. However, reducing the distribution discrepancy between the same categories across 
different domains has increased significance. Therefore, we adopted multiple adversarial networks as domain dis-
criminators to align the feature distribution of the same categories across domains. 

The target domain data lacks label information in the unsupervised domain adaptation; therefore, each dis-
criminator is accountable for matching the target and source domain. data related to the category k. Hence, align-
ing corresponding categories between the source and target domains is important. Our solution is to first learn 
the deep domain-invariant feature and then gradually generate the accurate label for target domain data following 
many training epochs. The data distribution of each category is aligned using adversarial learning. Fig. 2 shows 
the structure of our model, which includes the transfer feature extractor f = Gf (x) with the parameter θf , the 
adaptive classifier y^ = Gc (f) with the parameter θc , and multiple discriminators dj = Gdj

 (f) with the parameter θdj
, 

where j  {1, 2, ..., m}. y^ is the predicted label using the probability distribution over the label space. Our model 
makes the source and target domains indistinguishable using various domain discriminators, each responsible for 
matching the source and target data associated with the same category, reducing the shift between the data distri-
butions of the distinctive objects. 
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Let Ds = {(xs
i , y

s
i) | i = 1, ..., ns} be samples in the source domain, where, xs

i represents the ith sample, ys
i is one 

hot code of the category label in the source domain, and ns is the total number of samples in the source domain. 
We denote Dt = {xt

i | i = 1, ..., nt} as samples in the target domain, where xt
i represents the unlabeled samples in the 

target domain, and nt represents the total number of samples in the target domain. The source and target domains 
data are assumed to come from different joint distributions P(Xs,Ys) and Q(Xt,Yt), where P ≠ Q Xs and Xt are the 
source and target domain sample sets, respectively, and Ys and Yt are the label sets. Moreover, the loss function 
needs to be designed to optimize the model parameters. 

2.2   Loss Function Design

The loss function plays a crucial role when optimizing the model parameters. Triple loss functions are designed 
for our model on the source and target domain data. 

Classification Loss. The feature extractor Gf(∙) and the classifier Gc(∙) are trained on the source domain 
through supervised learning. The designed loss function of the classifier is as follows:

( )( )( )
s,s

s, EC c f
1  

i batch,batch

y i iL L G G ,
n ∈

= ∑
x DD

x y  , (1)

where LEC is the cross-entropy loss function, Ds,batch is the sample set of the source domain per epoch during train-
ing, and nDs,batch

 is the number of samples. Following each epoch, the classifier Gc(∙) is used to classify the sam-
ples in the source and target domains and subsequently obtain the probability distribution of the samples of all 
categories. 

Label Credibility Loss. Unlabeled samples exist in the target domain, and the predicted label y^ s 
i in the source 

domain is not exactly consistent with the actual label y  s  i in the original training epochs. Here, we propose a simi-
larity metric between the labels to obtain the similarity between target domain samples and the samples of each 
category in the source domain. This metric expression is as follows:
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Here, y^ s 
i and y^ t 

j are the labels of the source domain sample and the target domain sample predicted by the clas-
sifier, respectively. Rk(x

 t 
j) is the probability value that the sample x t 

j belongs to category c in the source domain, 
cov represents the covariance, and D is the variance. The constraint condition ys

i,k = 1 indicates that the predicted 
label of the source domain sample is close to its real label to ensure good classification. Furthermore, the closer       
Rk(x

 t 
j) is to 1, the higher the probability that x t 

j is in category k; the closer Rk(x
 t 
j) is to 0, the lower the likelihood 

that x t 
j belongs to category k. The similarity between x t 

j and samples of each category is calculated, and the accu-
rately predicted label of x t 

j in the target domain is obtained as follows: 
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where m represents the number of categories.
If an element of the predicted label in the target domain is close to 1, and other elements are close to 0 af-

ter many training epochs, this means that this sample is similar to a particular sample in the source domain. 
Therefore, the target domain sample can be accurately classified, which is considered creditable during training. 
The credibility loss function in the target domain is as follows: 
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where LE is the entropy function, Dt,batch is the sample set of the target domain per epoch, and nDt,batch
 is the number 

of training samples.
Discrimination Loss. The domain discriminator of each category corresponds to a loss function. The labeling 

of the sample affects the optimization performance of the model. For example, the kth category samples positively 
affect the kth domain discriminator and negatively impact other domain discriminators during learning. The loss 
function weighted by the predicted label of the sample is as follows:

( )( )( )d EC d c
1

1= 
j

i batchbatch

m

i , j i i
j

L y L G G ,
n ∈ =

∑ ∑
x DD

x d . (5)

Here, LEC is the cross-entropy loss function. If the training data xi is the source domain sample, the real label vec-
tor yi is used as its weight vector. If the training data xi is the target domain sample, the predicted label vector is 
used as its weight vector, which is calculated from Equation (3). If the training samples are in the source domain, 
their label y^ is taken as its actual label y, which acts as the weight of the loss function. Dbatch is the set of samples 
from the source and target domains, and nDbatch

 is the number of samples in this set. di is the domain label, di = 
[0 1]T is the label of the source domain, and is the label of the target domain. The above strategy shares a similar 
idea with the attention mechanism [19]. In summary, the overall objective function is constructed as follows:

( )f y d s 1 d 2 t= ,y ,yL , , L L Lλ λ+ +


θ θ θ , (6)

where, λ1 and λ2 are the trade-off parameters (see Section 4.2 for how to determine their values). θf , θc, and θd are 
the parameters of the feature extractor Gf(∙), classifier Gc(∙), and domain discriminator Gd(∙), respectively. An al-
ternating optimization strategy is adopted here. We fix the parameter θd, and then update the parameters θf  and θc: 

( )
f c

* *
f c f c darg min

,
, L , ,=

θ θ
θ θ θ θ θ . (7)

Similarly, we fix the parameters θf  and θc, and then sequentially update the parameter θd for m discriminators:

( )
d

*
d f c darg  max L , ,=

θ
θ θ θ θ . (8)

The minibatch gradient descent method optimizes the model parameters through multiple iterations. The training 
process is summarized as follows.

Input: Ds = {(xs
i, y

s
i)}

ns
i =1, Dt = {(xt

i)}
nt
i =1, and balance the parameters λ1 and λ2, the number of repeating nepoch, batch size nepoch, k 

= 0, and initial learning rate μ(0).

Step 1. Initialize θf
(0), θc

(0), and θd
(0).

Step 2. for i = 1, 2, ..., nepoch, do

Step 3. for 1, 2,..., s t

batch

n n
j

n
 +

=  
 

, do

Step 4. Update θf  by calculating 
( )k

f

L
θ  and μ(k) with the random batch sampling using Equations (6) and (11): 
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Step 5. Update θc by calculating 
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 and μ(k) with the random batch sampling using Equations (6) and (11): 
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Step 6. Update θd by calculating 
( )k

d

L
θ

∂
∂

 and μ(k) with the random batch sampling using Equations (6) and (11): 
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Step 7. k = k + 1
Step 8. end for 
Step 9. end for 
Output: The optimized parameters θ^c, θ

^
f, and θ^d.

3   Experimental Results and Analysis

Here, we evaluated the proposed method using state-of-the-art deep domain adaptation baselines on four data-
sets. The following elaborates on the detailed experiments and results. 

3.1   Dataset

We adopted four widely used datasets to construct a standard benchmark for domain adaptation: Office-31 [20], 
Modified National Institute of Standards and Technology (MNIST) dataset [21], the US Postal (USPS) handwrit-
ten digit dataset [22], and the Street View House Numbers (SVHN) dataset [23]. 

Office-31 dataset: This dataset contains 31 categories and 4,652 images from three distinct domains: Amazon 
(A), Webcam (W), and DSLR (D). A contains 2,817 images downloaded from Amazon.com with 31 categories. 
W includes 795 images taken by the web in office settings. D contains 498 images taken by digital SLR cameras 
in office settings. We used all domain combinations and established six transfer tasks: W → A, A → W, D → W, 
W → D, A → D, and D → A. Some samples in Office-31 are shown in Fig. 3.

       

(a) Samples in the Amazon domain

       

(b) Samples in the Webcam domain 
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(c) Samples in the DSLR domain

Fig. 3. Samples in the Office-31 dataset

MNIST dataset: This dataset contains training and test sets. Each set includes 10 numeric categories with a to-
tal of 70,000 images. The samples are grayscale images with 28×28 pixels. Examples are shown in Fig. 4.

      

         

Fig. 4. Samples in the MNIST dataset 

USPS dataset: This dataset contains training and test sets. Each set includes 10 categories with a total of 9,298 
samples. The samples are grayscale images with pixels. Examples are shown in Fig. 5.

            

         

Fig. 5. Samples in the USPS dataset 
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SVHN dataset: This dataset contains training and test sets. Each set includes 10 numeric categories with a total 
of 90,000 samples. The samples are grayscale images with 32×32 pixels, and some examples are depicted in Fig. 
6. 

      

       

Fig. 6. Samples in the SVHN dataset 

3.2   Model Parameter Setting

In our experiment, the balance parameters of the loss function are determined by the following: 

( )1
2 1

1 10exp pro
λ = −

+ − × , (9)

and

( )2
0 2 1

1 10
.

exp pro
λ = −

+ − × , (10)

where pro represents the training process linearly changing from 0 to 1 [15]. Other parameter settings are pre-
sented in Table 1, where μ(0) represents the initial learning rate. The equation of learning rate update is as follows:

( )
( )0

1
k

( pro )
µµ
α β

=
+ ⋅

, (11)

where α = 10, and β = 0.75, as shown in [14]. The various initial learning rates are on the MNIST → USPS task, 
whose results are shown in Fig. 7. Fig. 7 shows that our method achieves the best results with an initial learning 
rate of 0.01. Therefore, the initial learning rate was set to 0.01.

Table 1. Model parameter setting 

Source → Target. nepoch nbatch μ(0)

Office-31 160 128 0.001
SVHN → MNIST 160 64 0.01
MNIST → USPS 160 64 0.01
USPS → MNIST 160 64 0.01
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We adopt AlexNet [24] as base architectures for learning deep representations. The dropout operation is used 
in the fully connected layers fc6 and fc7; the neurons are ignored with a probability of 50%; and the fully con-
nected layer fc8 is adopted as the input of the classifier and domain discriminators. According to the difficulty of 
the transfer learning task, we designed the differentiated architectures of the classifier and domain discriminators. 
For the transfer learning tasks USPS → MNIST and MNIST → USPS, the classifier architecture is fc8 → 100 
→ 100 → 10, and the architecture of each domain discriminator is fc8 → 100 → 1. For the transfer learning task 
SVHN → MNIST, the architecture of the classifier is fc8 → 3072 → 2048 → 10, and the architecture of each 
domain discriminator is fc8 → 1024 → 1024 → 1. Subsequently, the same architecture fc8 → 1024 → 1024 → 
1 as RevGrad [15] is used in the Office-31 dataset. Finally, the normalization operation is applied to the convolu-
tional layer to ensure a fair comparison.
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Fig. 7. Comparison of the learning rate curve

Table 2. Classification accuracy on the Office-31 dataset (%)

Methods D → W W → D A → D D → A A → W W → A Avg
DDC [6] 95.0 98.5 64.4 52.1 61.8 52.2 70.6
JAN [7] 96.6 99.5 71.8 58.3 74.9 55.0 76.0

DTLC [9] 97.1 99.2 68.6 55.5 70.78 54.1 74.2
RevGrad [15] 96.4 99.2 72.3 53.4 73.0 51.2 74.3
AlexNet [24] 95.4 99.0 63.8 51.1 61.6 49.8 70.1
DRCN [25] 96.4 99.0 66.8 56.0 68.7 54.9 73.6

B-JMMD [30] 96.2 99.4 72.3 57.2 76.7 58.4 76.7
D-CORAL [31] 95.7 99.2 66.8 52.8 66.4 51.5 72.1

DAN [32] 96.0 99.0 67.0 54.0 68.5 53.1 72.9
Ours 97.5 99.5 72.9 59.5 76.7 57.1 77.2

We evaluated the performance of the proposed method against state-of-the-art domain adaptation methods 
based on AlexNet, including DDC [6], JAN [7], DTLC [9], CoGAN [13], DANN [14], RevGrad [15], ADDA 
[16], DRCN [25], ATDA [26], UNIT [27], GTA [28], MSTN [29], B-JMMD [30], D-CORAL [31], and the deep 
adaptation network (DAN) [32]. The comparison results on the Office-31 dataset are presented in Table 2, and 
the unsupervised domain adaptation results are taken directly from published studies to ensure a fair compar-
ison with identical evaluation settings. DDC [6] introduces an adaptation layer and the domain confusion loss 
function to AlexNet and fine-tunes it in the source and target domains. Based on JMDD [7], B-JMMD [30] uses 
a novel backpropagation algorithm to further reduce domain discrepancy. Deep CORAL [31] learns a nonlinear 
transformation to align correlations of layer activations in deep neural networks and measures the differences 
between the source and target domains using CORAL loss. DAN [32] adopts an optimal multikernel MMD in 
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multilayers to match the mean embeddings of marginal distributions. We can draw the following observations 
from Table 2. Our method outperforms almost all compared approaches on most of the transfer tasks (five out of 
six tasks). Specifically, Our method significantly exceeds the performance of both DDC [6] and AlexNet [24], 
and successfully avoids the negative transfer trap. The average classification accuracy (Avg.) of our approach is 
77.1%, which is an average improvement over the B-JMMD of 0.5%.

From the comparison results in Table 3, the accuracy of our method is shown to be improved on multi-
ple transfer tasks, especially for some problematic transfer tasks, such as the SVHN → MNIST transfer task. 
Compared with MSTN, the Avg. of our approach is improved by 1.6% in the target domain. Compared with 
GTA, the Avg. of the proposed model is improved by 1.8% in the target domain. Compared with the ATDA al-
gorithm, the average accuracy of the proposed model is improved by 1.5% in the target domain. Second, the 
t-distributed stochastic neighbor embedding (t-SNE) visualization approach is adopted to compare the feature 
distribution of our method using multiple adversarial networks with that of DANN [14] using a single adversarial 
network on the SVHN → MNIST task.    

Table 3. Classification accuracy on the USPS–MNIST–SVHN datasets (%)

Method USPS → MNIST MNIST → USPS SVHN → MNIST Avg
CoGAN [13] 89.1 91.2 -- --
DANN [14] 73.0 85.1 73.9 77.3

RevGrad [15] 73.0 77.1 73.9 74.6
ADDA [16] 90.1 89.4 76.0 85.1
DRCN [25] 73.7 91.8 82.0 82.5
ATDA [26] 84.1 93.1 85.8 92.3
UNIT [27] 93.5 95.9 90.5 93.3
GTA [28] 90.8 92.8 92.4 92.0

MSTN [29] -- 92.9 91.7 --
Ours 94.6 93.7 93.3 93.8

Fig. 8(a) and Fig. 8(b) show the data distribution of the categories in the source and target domains for the 
DANN model. It can be observed that the classification performance is poor due to outliers. Fig. 8(c) and Fig. 
8(d) show the data distributions of the categories for our model. It can be observed that the outliers have disap-
peared, and the alignment of each category is realized with increased accuracy.     

                   

(a) Source = SVHN, DANN model                    (b) Target = MNIST, DANN model

                  

 (c) Source = SVHN, our model                                  (d) Target = MNIST, our model

Fig. 8. Visualized results with t-SNE
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The proxy A-distance [14] is used as the evaluation criterion to measure the similarity between the source and 
target domains in our experiment. The proxy A-distance is expressed as follows:  

( )2 1 2d εΑ = −  , (12)

where dA is called the H-divergence. ε represents the generalization error, which can be calculated from the aver-
age value of the test error or the expectation. The comparison results are demonstrated in Fig. 9. 
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Fig. 10. Convergence comparison on the transfer task A → W from the Office-31 dataset
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From Fig. 9, the proxy A-distance value obtained by the CNN model without domain adaptation is observed 
to be significant because the categories in the source and target domains are not effectively aligned. The differ-
ence between domains is significantly reduced in the adversarial-based RevGrad [15]. Furthermore, compared 
with RevGrad [15], the A-distance value in our method is reduced by 0.05 for the A → W transfer task and 0.04 
for the W → D task. In our method, the sample distribution of the same category is observed to be increasingly 
consistent after domain adaptation when various adversarial networks are used. The convergence of DDC [6], 
RevGrad [15], and our method is compared (Fig. 10. Furthermore, among the models, the test loss is observed to 
be the largest in the DDC model after the 200th epoch. RevGrad and our method with domain adaptation have 
good convergence performance. Our method performs better than RevGrad because multiple adversarial net-
works are adopted and accurate alignments of each category between the source and target domains are realized.    

4   Conclusions

In this study, we present a dynamically weighted multi-adversarial domain adaptation method under unsuper-
vised learning to align each category data distribution in the source and target domains. Our method uses the 
label similarity measurement function to accurately predict the label of the target domain data. Triplet loss func-
tions are jointly constructed to further optimize model parameters. By minimizing the loss functions, the model 
gradually converges and reduces the prediction error. The credibility of the predicted label is further improved 
by minimizing the entropy value of the predicted label in the target domain during training such that the weight 
coefficients of the loss functions of the domain discriminators are reasonable. Furthermore, our method does not 
use the directly predicted label in the target domain, reducing the risk of using the wrong data in the target do-
main during training. The experimental results show that our method can perform better than other approaches in 
the target domain.

Our next research goals are to further reduce the computational complexity of predicting the label in the target 
domain to improve training efficiency and design a more effective loss function with a large interclass difference 
to promote model performance. Additionally, we aim to extend our model to advance multiple source and target 
domains. 
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