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Abstract. Building ranking models used in Information Retrieval (IR) is one of the main problems of learn-
ing-to-Rank. Tasmanian Devil Optimization algorithm is a recently proposed meta-heuristic optimization 
algorithm based on the Tasmanian Devils’ predation mechanism. In this paper, grey wolf operator and stud 
mechanism are introduced into the TDO optimization process to improve the ability of exploitation and 
achieve better performance. The proposed Stud Hybrid Tasmanian Devil - Grey Wolf Optimization (SHTDO) 
combines Grey Wolf Optimizer and TDO with a Stud Selection and Crossover Operator, thus helping to en-
hance the exploration and exploitation as well as the motion under both strategies. Also, to validate the algo-
rithm on the different fields, widely accepted benchmark and dataset was used for testing. The results show 
that our algorithm obtains higher ranking performance than TDO, which makes it more suitable for solving 
optimization problems, especially LTR tasks.

Keywords: optimization algorithm, grey wolf operator, tasmanian devil optimization, stud selection and 
crossover operator, learning-to-rank

1   Introduction

Information retrieval (IR) is the field concerned with the structure, organization, storage, analysis, search and 
retrieval of information. Information retrieval collects, organizes, and stores all types of information so that users 
can quickly find and access the information they are interested in. [1] With the development of the Internet, fast 
and efficient retrieval systems are particularly important. The development of information retrieval applications 
has led to a high degree of attention being paid to ranking techniques, while the development of ranking tech-
niques has also contributed to the widespread use of information retrieval technology.

The huge amount of data makes it possible to build various heuristic ranking models. Learning to rank (LTR) 
[2], which uses machine learning algorithms to train a ranking model on a large amount of existing data, is one of 
the current hot topics of research in the field of information retrieval and machine learning. This model prepares 
training data and test data consisting of queries and documents, then performs feature extraction and uses the 
extracted features to train the LTR model. This algorithm can learn the ranking function automatically from the 
data, saving the effort of manual adjustment.

At this stage, there are various technical routes to solving the LTR problem, one of which is to use an optimi-
zation algorithm for direct optimization of the ranking metrics, i.e. to transform the ranking problem into an opti-
mization problem. For optimization problems, the algorithm needs to find the optimal solution to a given problem 
under complex constraints in a reasonable duration. Evolutionary computational methods are often used to solve 
these types of optimization problems. In the last few decades, algorithms using meta-heuristic optimization have 
made great progress, especially in solving many complex optimization problems. Meta-heuristic optimization 
algorithms deal with real-world optimization problems by simulating biological or physical phenomena. Due to 
the stochastic nature of meta-heuristic algorithms, it has a strong ability to prevent itself from getting trapped in 
a local optimum. These algorithms are simple, efficient, robust, and flexible and can be used in a variety of fields. 
So far, some of the most famous meta-heuristics are particle swarm optimization (PSO) [3], Biogeography-Based 
Optimization (BBO) [4], artificial bee colony algorithm (ABC) [5], Firefly algorithm (FA) [6], Krill herd (KH) 
[7], Grey Wolf Optimizer (GWO) [8], Ant-Lion optimizer (ALO) [9], butterfly optimization algorithm (BOA) 
[10], Beetle Antennae Search Algorithm (BAS) [11], and the recent Tasmanian Devil Optimization (TDO) [12].
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The most challenging task encountered in developing meta-heuristics is finding suitable balance between ex-
ploration and exploitation. The Tasmanian devil is a carnivorous wild animal that lives on the island of Tasmania. 
Despite their ability to hunt for prey, they prefer to feed on carrion if it is available. They have two foraging strat-
egies. The Tasmanian devils feed on carrion if they find it. And the second strategy is to hunt and feed by attack-
ing their prey. Tasmanian Devil Optimization algorithm [12] simulates the Tasmanian devils’ feeding behavior, 
one relying on carrion and the other relying on hunting. In foraging, if carrion is present, the Tasmanian devil 
will feed on it, otherwise the Tasmanian devil will seek out prey and take up hunting to obtain food.

Although TDO is a more advanced optimization algorithm, there are limitations in applying it to the LTR 
problem. It appears to be weak in coping with optimization problems in high-dimensional search spaces, and it is 
easy to fall into local optimal solutions. Therefore, the main innovation of this paper is to introduce the gray wolf 
operator into TDO to improve the accuracy and speed of fitting the LTR problem with the help of its fast conver-
gence property. Meanwhile, the Stud selection crossover operator is used to improve the overall stability of the 
population through the interaction of other individuals with the optimal ones.

The following parts of this paper is organized as follows: Related works of this paper are discussed in Section 
2;An overview of Tasmanian Devil Optimization is presented in Section 3. In addition, the details of the pro-
posed SHTDO algorithm and its application on Learning-to-rank task is provided in Section 4; Subsequently, A 
series of experiments are performed to demonstrate the performance of SHTDO algorithm in Section 5. Finally, 
Section 6 sums up present work and makes an outlook for the future work.

2   Related Works

Learning to Rank (LTR) refers to a series of machine learning based ranking algorithms that were originally ap-
plied in the field of Information Retrieval (IR), most typically to solve the problem of ranking search results by 
search engines. [13] It uses machine learning to train a ranking model on a large amount of existing data and then 
obtain correlations with query terms based on document characteristics. It can automatically learn the ranking 
function from the data, saving the effort of manual adjustment. The advantage of ranking learning over tradition-
al models is that it can combine and optimize a large number of ranking features and automatically learn the cor-
responding parameters, resulting in an efficient and more accurate ranking model.

After feature extraction by the feature extractor, the training data is organized in query units to obtain a series 
of labelled training data sets. For example, for a web or document retrieval problem with N queries and a set of 
documents for each query, the features xi Rd in the training sample are the query document pairs (qi, di) and the 
labels yi are the relevance scores of the document doci to the query qi, e.g. very relevant, relatively relevant, gen-
erally relevant or not relevant. The goal of the ranking learning algorithm is to learn a model that can predict the 
relevance yi

j from the feature vector xi
j.

The ranking model used in this paper, f, is a real-valued function, more precisely a document-level function, 
that describes a linear combination of features in a vector:

( , ) ( , ),T
i i i if q d W q d= Φ                                                                (1)

where W denotes the weight vector, Φ(qi, di) is feature vector of di in query qi.
LTR algorithms can be classified into three categories according to the way they model the ranking problem: 

pointwise, pairwase, and listwise methods. The different categories have different input and output spaces and 
employ different objective loss functions. Among them, the listwise approach considers that each document in 
the same query is related to each other, and trains the list of documents, labeled with the ranking of the query 
documents. The listwise approach has a more natural model design for the ranking problem and solves the prob-
lem that the ranking should be based on query and position.

One implementation of the listwise approach is to optimize the sorting metrics directly for, say, NDCG. The 
difficulty with direct optimization of ranking metrics is that metrics such as NDCG are mathematically “Non-
Continuous” and “Non-Differentiable” in form. Most of the optimization algorithms are based on continuous and 
differentiable functions. Therefore, direct optimization is more difficult.

An effective solution to this challenge is to use optimization techniques that can optimize non-smooth ob-
jectives, such as Adaboost-based AdaRank [14] and the genetic programming ranking algorithm RankGP [15]. 
Approaches that directly optimize ranking metrics based on genetic and metaheuristic algorithms are highly rele-
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vant work for this study. RankGP is an approach that uses genetic programming to generate ranking functions by 
analyzing documents for different ranking metrics. RankPSO optimizes NDCG metrics directly using the particle 
swarm algorithm. The work in this paper is an improvement of a recent optimization algorithm, resulting in a 
new algorithm. Moreover, it is not only applicable to the LTR problem, but also has a strong solution for other 
optimization problems, which is the difference of this work.

As one of state-of-the-art meta-heuristic algorithms, TDO has excellent exploration and exploitation capabili-
ties, but has some shortcomings when dealing with LTR tasks. In the first step of the exploration phase, “searching 
for prey”, the location of prey is achieved by randomly selecting other individuals in the population, which is an 
inefficient and unstable practice and has the possibility of falling into local optimum. Therefore, how to optimize 
the operator of this process is one of the keys to improve the algorithm to cope with the search ranking problem.

On the other hand, In both exploitation and exploration phases, the process of updating the location is updated 
independently using random operators and there is no connection between individuals. Therefore, after the exe-
cution of the two strategies, the interaction between individuals is executed, and the use of the best individuals in 
the population to modify the less adapted individuals is beneficial to improve the fitness of the population. These 
are the key questions to be addressed in this study.

3   Overview of Tasmanian Devil Optimization

3.1   Initialization

TDO randomly generates the initial population based on the constraints of the problem. [12] The members of 
the TDO population are searchers of the solution space and propose candidates for the problem based on their 
position in the search space. Thus, mathematically, each member of this kind of group is a vector, whose number 
of elements is equal to the dimensionality of the problem. Thus, the set of TDO members can be modeled by a 
matrix in Eq. 1.

1,1 1, 1,1

,1 , ,

,1 , ,

,

j M

i i j i Mi

N N j N MN N M N M

x x xX

x x xX X

x x xX
× ×

  
  
  
  = =
  
  
     

 

    


 

    


 

                                          (2)

where X is the population of search agents, Xi is the i-th candidate solution, xi,j is its potential value for the j-th 
variable, N is the number of individuals searched for, and M is dimension, i.e. the amount of variables for a given 
problem.

3.2   Exploration Strategy (Feeding on Carrion)

This stage simulates the Tasmanian devil’s preference to feed on carrion rather than hunt, and its location has 
been updated as follows
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where Xi
new,S1 is new position of i-th individual performing exploration strategy; Xi,j

new,S1 ; Fci
; r is a random number 

in range [0,1]; i is a random number in {1,2}.
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3.3   Exploitation Strategy (Feeding on Hunting)

This stage is divided into finding prey and attacking prey. First, the individual scans the area and selects the prey. 
In the second stage, it will chase the prey after approaching it, capture it and start feeding. In this strategy, when 
the i-th individual moving, the positions of the other members are assumed to be those of the prey. The t-th mem-
ber of the population is randomly selected as prey, where t is a random number in [1, N] and i is its opposite.

Pi = Xt , i = 1, 2, ..., N, t  {1, 2, ..., N| t ≠ i},                                               (4)

where Pi is the chosen prey of the i-th Tasmanian devil.
The location of individuals in the Prey searching phase is updated as follows
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where Xi
new,S2 is the i-th Tasmanian devil’s new status based on exploitation strategy, Xi,j

new,S2 is its value for j-th 
variable; Fi

new,S2 is its objective function value, while FPi
 is the objective function’s value of the prey it has select-

ed.
The location of individuals in the Prey chasing phase has been updated as follows.
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Here, R is neighborhood radius of the attacked location point, t is the iteration counter, T is the maximum it-
eration number; Xi

new is the new status of i-th individual in neighborhood Xi, xi,j
new is its value for j-th variable, and  

Fi
new is its objective function value. The overall flowchart of TDO is shown in Fig. 1.

Algorithm 1. Tasmanian devil optimization
Input: Number of the population (N), number of iterations (T), strategy probability (P), optimization problem infor-
mation and fitness function.
Output: The best solution obtained by TDO for given optimization problem.
Initialization of the position of all search agents and evaluation of the objective function. 
for t = 1: T do
   for i = 1: N do
        if Probability < P then
            Exploration strategy (Feeding on carrion)
                Calculate new status and update i-th individual using Eq. 2.
        else
            Exploitation strategy (Feeding on hunting) 
            Stage 1: Prey searching
            Select prey for the i-th individual using Eq. 3
            Compute new status and update the i-th individual using Eq. 4
            Stage 2: Prey chasing
            Update neighborhood radius, compute new status and update the i-th individual using Eq. 5.
        end if
   end for
   Evaluate fitness of Tasmanian devils. 
   Save the best solution proposed so far.
end for
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Fig. 1. Flowchart of TDO algorithm

4   Methodology

4.1   The Proposed Stud Hybrid Tasmanian Devil - Grey Wolf Optimization

Overview.  The algorithm proposed in this study introduces the stud mechanism with the gray wolf operator into 
TDO, which will be called Stud Hybrid Tasmanian Devil - Grey Wolf Optimization (SHTDO) for the conve-
nience of description in the following. The algorithm flow is shown in Fig. 2.
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Fig. 2. Flowchart of stud hybrid tasmanian devil – grey wolf optimization algorithm

Grey Wolf Operator.  Inspired by the predatory behavior of gray wolves, Mirjalili et al [8] proposed a new 
optimization algorithm, Grey Wolf Optimizer (GWO), in 2014. GWO achieves the optimization purpose by sim-
ulating the predatory behavior of gray wolves and based on the mechanism of wolf group collaboration. GWO 
algorithm has the features of simple structure, few parameters to be adjusted and easy to implement. GWO al-
gorithm is characterized by simple structure, few parameters to be adjusted, easy implementation, etc. There are 
convergence factors and information feedback mechanisms that can be adjusted adaptively, and it can achieve a 
balance between local search and global search, so it has good performance in terms of problem solving accuracy 
and convergence speed. There are three main steps in individual gray wolf hunting; finding prey, surrounding 
prey and attacking prey.

This work uses the gray wolf operator to replace the mining strategy part of TDO. The entire population is di-
vided into four classes α, β, γ, ω according to the best adapted individuals, the second best individuals, the third 
best individuals, and other individuals, and the former class has dominance over the later class. Because the gray 
wolf ω has the largest proportion of the pack and must be completely subordinate to the gray wolf α, β, γ, the 
hunting behavior of the pack is mainly guided and directed by the gray wolf α, β, γ.
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Let the position of gray wolf α be Xα , the position of gray wolf β be Xβ, the position of gray wolf γ be Xγ , 
and the position of any gray wolf within the whole population be Xi. Here, Xi can be the same as the three head 
wolves. Then the new position of gray wolf i, guided by the three head wolves, is
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where a decreases linearly from 2 to 0 as the number of iterations increases. r1 and r2 are both random numbers 
between [0,1].

In summary, the formula for the next position of this gray wolf under the simultaneous guidance of the gray 
wolf α, β, γ is as follows:

.
3

i i i
i

X X X
X α β δ+ +

=                                                              (10)

In particular, since the higher class has dominance over the lower class, it will not accept the guidance of the 
head wolf of the lower class when the gray wolf α, β, γ renews its position.

Stud Selection and Crossover Operator.  Genetic algorithms have been widely used since their development, 
and they have proven successful in solving many benchmark and practical engineering problems. The variation 
and crossover operators in genetic algorithms can be sufficient to solve the problems, but random crossover and 
random variation are not required. In contrast, Stud Genetic Algorithm (SGA) [16] is a genetic type that uses the 
optimal genome for crossbreeding in each generation. The idea of SGA is to use the optimal genome to cross 
with all other genomes to produce new offspring [16]. Inspired by this, Stud selection and crossover operator 
(SSC) was used in this study to further optimize the overall fitness of the population. The process is shown in 
Algorithm 2.

Algorithm 2. Stud selection and crossover operator
Input: An individual in the populations Xi and its fitness value Fi.
Output: New individual after manipulation X iʹ.
Select of the best individuals Xs (stud) from the population for breeding.
Perform single-point crossover to generate new individual X*

i.
Evaluate the fitness value of new individual F*

i.
 if F*

i > Fi then
    Accept new individuals and replace parental individual.
 else
    Abandon the new individual, still use the parent.
 end if
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4.2   Fitness Function and Predictor for Learning-to-Rank Mission

In this study, we use a linear regression function as a predictor to cope with the LTR task:

,( ) i i
i

f w xX ⋅= ∑                                                                   (11)

where wi is the parameters to be optimized.
A generic function E(*)[0,1] is used to represent an evaluation metric. E measures the distance between pre-

diction and true label. Most evaluation metrics return the actual value in [0,1]. Ideally, a ranking model is created 
that maximizes the accuracy, or equivalently minimizes the loss function, based on the IR metric of the training 
data, defined as follows:

1
( ) ( ( ) ( )),

N
ideal
q q

q
f X E X E X

=

= −∑                                                         (12)

where Xq is the prediction for query q by generated ranking model f.

5   Experiments

5.1   Experimental Settings

All the experiments were performed at MATLAB R2022a in PC with Windows 11 operating system, which has 
a 3.6 GHz 6-core CPU and 32 GB RAM. To verify the performance of our algorithm in different scenarios, we 
tested our algorithm with the reference algorithm on the benchmark function, the industrial design optimization 
problem, and the LTR problem, and compared the results. Specifically, STDO removes the morphology of the 
gray wolf operator for our algorithm, i.e., the TDO algorithm that introduces only the breeding stock mechanism, 
which is used here as an ablation reference.

Benchmark Functions.  The IEEE Congress on Evolutionary Computation (CEC) is the highest level confer-
ence in evolutionary computation worldwide. Most of the papers submitted to this conference test the proposed 
algorithms using 30 test functions provided by the conference organisers. The CEC’17 benchmark [17], an-
nounced at the 2017 conference, is also used in this study as a benchmark test function to evaluate the perfor-
mance of the algorithms.

CEC’17 benchmark defines 20 basis functions, based on which the above basis functions are transformed 
through shifting, rotation and combination to generate 30 benchmark test functions, including 4 single-peaked 
functions, 6 multi-peaked functions, 10 hybrid functions and 10 composite functions. All test functions are min-
imization problems, their optimal values are 0, the search space are [−100,100]D, where D is the number of di-
mensions of the search space. In general, the dimension is taken to be one of 10, 30, 50 or 100.

Industrial Design Optimization Problems.  Many problems in industrial design can be abstracted into optimi-
zation problems. This study evaluates the performance of the algorithm in practical applications by optimizing 
three engineering design optimization problems: welded beam design, pressure vessel design, and telescopic 
spring design.

1) Optimization of welded beam design
The welded beam design is a minimization problem whose main objective is to reduce the manufacturing cost 

of the welded beam [18]. A schematic representation of this problem is shown in Fig. 3.
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Fig. 3. Schematic diagram of the welded beam design optimization problem

The formal description of this problem is:
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2) Optimization of pressure vessel design 
Pressure vessel design is a minimization problem whose main objective is to reduce the total cost of material, 

welding and forming of cylindrical vessels [19]. A schematic representation of this problem is shown in Fig. 4.

Fig. 4. Schematic diagram of pressure vessel design Optimization problem

The formal description of this problem is:
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3) Optimization of the telescopic spring design
The telescopic spring design is also a minimization problem whose main objective is to reduce the weight of 

the telescopic spring [18]. A schematic representation of this problem is shown in Fig. 5.

Fig. 5. Schematic diagram of telescopic spring design Optimization problem

The formal description of this problem is as follows.
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LTR Datasets.  The datasets used in the experiments were Microsoft MSLR-WEB10K and MSLR-WEB30K 
provided by Qin and Liu [20], containing a total of 10,000 and 30,000 query terms. This dataset consists of 
queries and a series of document feature vectors, each sample representing a query-document pair with a label 
for relevance evaluation, with labels ranging from 0 (not relevant) to 4 (fully relevant) representing the degree 
of relevance of documents and queries from low to high, derived from statistical parsing of log data from the 
Microsoft Bing search engine. Each query sample is a 136-dimensional feature vector containing query informa-
tion, document features and interaction features, in the form of both discrete categorical features and continuous 
dense features such as BM25, which represent the basic features commonly used in the research field of IR. The 
dataset is divided into five subsets S1, S2, S3, S4, S5, which are divided into five folds according to different 
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training, validation and test sets, with a division ratio of 3:1:1. In the experiments conducted in this paper, the 
training, validation and test sets are divided into {(S1, S2, S3), (S4), (S5)} without loss of generality.

Evaluation Metrics of LTR Problem.  

(1) Mean Average Precision (MAP)
In multi-categorization, MAP is used to evaluate the performance of a model for all categories, while ensur-

ing that each category is given equal weight without bias relative to metrics such as Precision, Recall, and AUC. 
This metric can give more weight to errors that are at the top of the results list. Conversely, it gives less weight 
to errors that appear further down the list. This is consistent with the need to display as many relevant entries as 
possible at the top of the search results list.

Precision@k (P@k) is the proportion of relevant items in the top K search results.

# relevant items in top k results@P k
k

= .                                                    (16)

Average precision@k (AP@k) is the sum of P@K for different k values divided by the total number of rele-
vant items in the previous k results.

1

1@ @ ,
k

i
k

AP k P i rel
r

= ⋅∑                                                            (17)

where rk means number of relevant items in first k results, reli means the relevance score of i-th item.
Based on the above arithmetic, the Mean Average Precision@k (MAP@k) measures the mean value of aver-

age Precision@K over all queries for the entire dataset.

(2) Normalized Discounted Cumulative Gain (NDCG)
This metric is usually used to measure and evaluate search result algorithms. It is based on two ideas: results 

with high relevance influence the final metric score more than results with average relevance, and the higher the 
metric will be when there are results with high relevance appearing further up the list.

NDCG calculates cumulative gain (CG) first

1
,

p

p i
i

CG rel
=

= ∑                                                                      (18)

where reli means the relevance score of i-th document. This is followed by the calculation of the discounted value 
of the cumulative gain (Discounted CG, DCG), which is designed so that the higher ranked results have a greater 
impact on the final score, i.e. the further down the ranking the document is, the lower the value.

1 2

2 1@ .
log (1 )

irelk

i
DCG k

i=

−
=

+∑                                                             (19)

The number of search results returned varies for different search terms, and the DCG is a cumulative value 
that is not comparable for the results of two different search sorts. Therefore further normalization is required, 
i.e.

@@ ,
@

DCG kNDCG k
IDCG k

=                                                             (20)

where IDCG is the maximum DCG value with ideal conditions.
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1 2

2 1@ ,
log ( 1)

irelREL

i
IDCG k

i∑
‖‖

                                                          (21)

where ||REL|| denotes the set of the top k results in descending order of relevance, which is equivalent to ranking 
the results in the best way.

5.2   Experimental Results and Analysis

Performance Comparison of Benchmark Functions.  The test results of SHTDO and the comparison models 
on CEC’17 are shown in the Table 1. It can be seen that SHTDO leads the other comparison models on 22 differ-
ent benchmark functions within a limited number of iterations. For the benchmark functions that are not leading, 
the difference between SHTDO and the best performing algorithm is mostly within 1 order of magnitude, which 
shows that our algorithm has a strong ability to handle multiple complex optimization problems.

Table 1. Performance comparison of different algorithms on the CEC’17 benchmark function

F PSO GWO TDO STDO SHTDO
F1 4.87×103 8.07×108 6.92×103 3.44×103 1.53×103

F2 1.45×1017 9.94×1026 3.08×109 1.33×104 3.34×104

F3 8.81×103 2.70×104 1.90×104 1.99×104 1.18×103

F4 1.24×102 1.46×102 9.48×101 9.93×101 7.12×101

F5 7.08×101 7.68×101 1.08×102 1.08×102 3.94×101

F6 7.99×10-3 3.59×100 3.40×10-1 7.34×10-1 1.41×10-1

F7 1.03×102 1.24×102 1.64×102 1.50×102 7.21×101

F8 7.38×101 7.20×101 9.48×101 1.07×102 4.14×101

F9 1.11×102 4.79×102 3.68×102 1.31×102 1.21×101

F10 2.71×103 3.38×103 3.76×103 3.84×103 2.62×103

F11 1.01×102 2.91×102 8.27×101 6.62×101 6.21×101

F12 9.77×105 3.10×107 5.32×104 4.72×104 3.84×104

F13 7.11×103 9.69×105 1.17×104 1.34×104 7.68×103

F14 2.38×104 4.45×104 1.06×103 1.50×103 2.47×103

F15 1.47×104 3.96×105 1.24×103 5.46×102 4.52×102

F16 7.24×102 7.49×102 7.02×102 6.69×102 1.58×102

F17 2.63×102 2.30×102 1.72×102 1.42×102 6.78×101

F18 1.42×105 4.88×105 5.08×104 6.61×104 7.81×104

F19 2.04×104 1.21×105 3.53×103 4.92×103 2.08×103

F20 2.73×102 3.26×102 2.58×102 2.58×102 1.31×102

F21 2.68×102 2.69×102 2.80×102 2.75×102 2.28×102

F22 3.38×103 3.04×103 1.02×102 1.01×102 1.00×102

F23 4.10×102 4.23×102 4.35×102 4.20×102 3.90×102

F24 5.11×102 5.24×102 4.73×102 4.74×102 4.51×102

F25 4.08×102 4.57×102 3.95×102 3.94×102 3.87×102

F26 1.77×103 1.89×103 4.51×102 2.80×102 1.34×103

F27 5.32×102 5.35×102 5.19×102 5.16×102 5.09×102

F28 4.65×102 5.68×102 4.26×102 3.99×102 4.00×102

F29 6.61×102 7.62×102 7.34×102 7.31×102 5.37×102

F30 9.42×103 4.96×106 3.66×103 4.97×103 4.23×103
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Fig. 6. Convergence trends of different algorithms on the CEC’17 benchmark function

As shown in the Fig. 6, our algorithm is able to converge quickly at an early stage, further illustrating its opti-
mization-seeking capability when coping with optimization problems.



131

Journal of Computers Vol. 34 No. 5, October 2023

Performance Comparison of Industrial Design Problems.  In this section, the performance of our algorithm 
is compared with other optimization algorithms for solving industrial model problems, and all the parameters of 
the algorithm are kept the same as the settings of the previous experiment. The experimental results are shown in 
Table 2.

Table 2. Performance comparison of different algorithms for industrial design optimization problems

PSO GWO TDO STDO SHTDO
Welded beam design 1.5070 1.5070 1.5070 1.5070 1.5070
Pressure vessel design 5866.01 5866.01 5866.01 5866.01 5866.01
Telescopic spring design 0.01267 0.01267 0.01267 0.01267 0.01267

The results show that all these models can reach the same optimal value within a finite number of iterations. 
Therefore, for further comparison, the focus here will be on the convergence speed of each algorithm when opti-
mizing each task as a basis for judging the performance of the different models.

Fig. 7. Comparison of the number of epochs required for different algorithms to reach convergence on industrial design opti-
mization problems

It is specified that the global optimal change of less than 10-6 for five consecutive iterations is considered as 
convergence of the algorithm, and the number of iterations at convergence is recorded, and the results are shown 
in Fig. 7. It can be seen that our proposed algorithm takes significantly less iterations to reach the optimal value 
than the comparison algorithm. Therefore, it is concluded that its convergence ability is better.

Performance Comparison of LTR Problem.  This section compares the ranking performance of our algorithm 
with other optimization algorithms for solving the LTR problem, as shown in the Table 3. It can be seen that our 
algorithm achieves high ranking scores under several metrics. Also, the standard deviations of SHTDO for each 
ranking evaluation metric are mostly smaller than those of other algorithms under multiple repeated trials, which 
confirms its better stability. In summary, our optimization algorithm is competitive in handling the LTR problem.

Table 3. Performance comparison of different algorithms on the LTR dataset

Algorithms NDCG@1 NDCG@3 NDCG@5 NDCG@10 MAP

PSO Average 0.2073 0.2320 0.2493 0.2785 0.4736
Std. Dev. 0.0056 0.0025 0.0027 0.0015 0.0264
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GWO Average 0.5120 0.4920 0.4875 0.4897 0.5903
Std. Dev. 0.0035 0.0041 0.0045 0.0049 0.0054

TDO Average 0.5030 0.4867 0.4815 0.4856 0.5670
Std. Dev. 0.0038 0.0027 0.0034 0.0036 0.0041

STDO Average 0.5269 0.4961 0.4910 0.4939 0.5873
Std. Dev. 0.0016 0.0009 0.0015 0.0026 0.0163

SHTDO Average 0.5342 0.4972 0.4999 0.5030 0.5899
Std. Dev. 0.0011 0.0001 0.0010 0.0020 0.0055

6   Conclusion and Outlooks

In this paper, a new SHTDO algorithm is designed by combining the gray wolf operator and the stu mechanism 
with the TDO algorithm. To validate the performance, training was performed using on several evaluation bench-
mark functions and data sets. Overall, the experimental results show that the improved algorithm can significant-
ly improve the performance in dealing with different scenarios, especially the LTR problem.

There are still limitations in the current work. For the predictor, only linear regression predictor has been test-
ed in this paper, and no other predictor has been optimized; therefore, it is not known whether there is a better 
optimization solution. On the other hand, whether the algorithm proposed in this paper can still maintain high 
performance in other fields, whether there are better directions for improvement, and whether there are better op-
timization algorithms to face the LTR problem still need to be explored. Therefore, these are the directions of our 
next work.
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