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Abstract. Video anomaly detection (VAD) is crucial in public safety and intelligent video surveillance sys-
tems and has been widely researched and applied in academia. This paper proposes a video anomaly detection
method based on the Cascaded Memory-augmented Autoencoder (CMAAE). CMAAE stores feature proto-
types of standard samples in a memory pool and embed multiple memory-enhancing modules in the encod-
er-decoder structure. SE attention is introduced into memory modules to improve their performance, and skip
connections are used to share attention weights among memory modules, enabling the model to learn more
comprehensive feature information and enhance the quality of reconstructed video frames. Multiple loss con-
straint models are used during training to improve anomaly detection accuracy. CMAAE achieves outstanding
performance of 99.2% on the UCSD Ped2 dataset and 89.4% on the CUHK Avenue dataset, demonstrating
the effectiveness of our approach.
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1 Introduction

In recent years, to improve the safety of the public environment, public surveillance systems have been deployed
on a large scale, generating a large amount of surveillance video data in real-time and increasing the cost of
surveillance. In order to save labor costs and improve surveillance capability, we urgently need intelligent sur-
veillance systems to realize the automatic detection of anomalies. This problem has attracted extensive attention
from the academic community; many scholars have invested in the research and have many research results [1-
3]. However, video anomaly detection poses significant challenges due to the environment-dependent nature of
anomalous events and their infrequent occurrence. Collecting enough anomaly samples to model all possible
anomalous events comprehensively is often challenging. As a result, a typical approach in video anomaly detec-
tion is to train an unsupervised learning model on a dataset of normal events to learn their representative patterns.
Subsequently, during testing, samples that deviate significantly from the learned normal patterns are classified as
anomalous [4-5].

With the rapid development of deep learning, deep learning has been widely applied in various tasks and
achieved remarkable success. Among the deep learning-based video anomaly detection methods, a common ap-
proach is constructing a reconstruction model based on an autoencoder (AE), which aims to reconstruct the input
and recognize anomalies with significant reconstruction errors [6]. These methods are implemented because
normal frames have minor reconstruction errors, and abnormal frames have significant reconstruction errors to
detect anomalies. Existing deep learning methods usually use complex networks to represent video data features.
However, these networks are always accompanied by generalization to unknown samples and can reconstruct
anomalous data well. As a result, network models trained to distinguish anomalous data by the size of recon-
struction error are not guaranteed to detect anomalous data in the testing phase [7]. To mitigate this shortcoming,
recent studies [5-6] suggest adding memory module at the AE network to constrain the model’s generalization
ability. This memory module serves the purpose of recording normal data features during the training and testing
phases. During reconstruction, the model matches the input features with the stored normal data features within
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the memory module. This matching procedure amplifies the reconstruction error for abnormal samples, effective-
ly mitigating the shortcomings and improving the model’s ability to detect anomalies.

Inspired by previous approaches, we propose a deep learning model for video anomaly detection based on a
cascaded memory-augmented autoencoder (CMAAE) video anomaly detection task. The model embeds three
memory-enhanced modules in the bottleneck and up-sampling process, while skip-connections are made between
these three memory modules to transfer the attention weights generated by the modules to learn deeper video
frame data features. The SE attention mechanism and the soft shrinkage sparse function are added to the memory
modules to enhance their performance of the memory modules, allowing them to learn to memorize more criti-
cal features during the training process. The model also uses skip-connections to utilize the encoder’s low-level
and high-level features during the up-sampling process; this helps to improve the quality of the reconstruction.
Multiple loss functions train the model to compare the differences between the reconstructed and original video
frames, allowing the model to detect anomalies better.

In summary, this paper makes the following key contributions:

(1) It embeds multiple memory modules in the bottleneck and up-sampling processes of an encoder-decoder
structure with skip connections while achieving the sharing of attention weights within the memory mod-
ules. This ensures better capturing of expected features, thereby sensitively identifying anomalous events.
Multiple loss functions also train the model, enhancing anomaly detection accuracy.

(2) Improvement of the memory modules. Introducing SE attention mechanisms and soft-shrinkage sparse
functions in the memory modules enhances the module’s ability to learn normal memory features.

(3) Extensive experiments on the UCSD Ped2 and CUHK Avenue, demonstrate the effectiveness of our ap-
proach.

The remaining sections of this paper are organized as follows: Section 2 provides an overview of recent re-

search on video anomaly detection. In Section 3, we introduce our Cascade Memory-augmented Autoencoder
method. Section 4 presents our experimental results, and Section 5 concludes the paper.

2 Related Work

2.1 Anormal Detection

Video anomaly detection is usually treated as an unsupervised learning problem due to the paucity of data and
difficulty in obtaining annotations, using only normal data for model training. Over the past few years, CNN-
based approaches have witnessed notable advancements in anomaly detection. Numerous methods for anomaly
detection leverage AE-based reconstructions as a means to represent features, such as Conv- AE [4], Conv-
LSTM [8], etc. These methods also need some help. They also tend to reconstruct anomalous features, which de-
creases the detection accuracy. Other methods have been investigated to address this problem. For example, Liu
et al. [7] proposed to predict future images and use the prediction error as training loss. Yu et al. [9] used GANs
to learn the normality of the data and proposed Adversarial Event Prediction (AEP) networks to suppress learn-
ing of representations of past events and force learning to predict future events to explore their correlations. Zhao
et al. [10] used spatiotemporal LSTM (ST-LSTM) networks to extract and store appearance and motion changes.
Inspired by GANSs, they introduced a discriminator into adversarial training with the ST-LSTM to improve learn-
ing spatiotemporal correlations between continuous video images.

2.2 Memory Module

The distinction between continuous video images and still images lies in the presence of temporal changes, as
objects within a video exhibit ongoing and evolving patterns. Modern networks often incorporate memory func-
tions such as internal memory units or attention mechanisms to capture the interactions between consecutive
frames. These memory functions enable the network to retain and utilize information from previous frames when
processing subsequent frames. Graves et al. [11] combined a feature extraction neural network with a dynamic
external memory module to improve its computational and storage capabilities. Yu et al. [12] introduced a novel
long-term segmentation tracker (LTST) incorporating a memory attention network. This approach enables online
learning and addresses the challenge of limited long-term adaptation in video object segmentation. However, for
video anomaly detection, the memory capacity of this method may need to be enhanced to accommodate all the
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necessary information.

Similarly, Fernando et al. [13] proposed a plastic neural memory access mechanism for video anomaly detec-
tion. This mechanism utilizes memory reading and writing operations and generates static and dynamic connec-
tion weights to enhance learning. Additionally, Gong et al. [5] extended a deep autoencoder by incorporating an
external memory module. They compared it to a pure deep autoencoder, which significantly improved the video
anomaly detection performance compared to the pure deep autoencoder. Subsequently, Park et al. [6] improved
the update strategy of the memory module. In these methods, the memory module is placed at the middle layer of
the AE. Liu et al. [14] used optical flow to train optical flow reconstruction networks with multiple memory mod-
ules. Hou et al. [15] proposed a multi-scale memory mechanism that divides the feature map into multiple blocks
and assembles the blocks as needed, which affects the quality of image reconstruction and helps distinguish be-
tween normal and abnormal samples.

3 Proposed Abnormal Detection

In this paper, the Cascaded Memory-augmented Autoencoder (CMAAE) model uses an autoencoder widely
used in recent years based on the U-net architecture. As shown in Fig. 1, the cascaded memory-augmented au-
toencoder (CMAAE) consists of an encoder, a decoder, and a memory module. The encoder extracts the deep
features contained in the video by stepwise down-sampling based on the input video sequence. The memory
module serves as a repository for storing the normal patterns acquired by the model during the training phase.
Subsequently, when the model processes query features extracted by the encoder, it accesses the relevant memo-
ry slots within the memory module to assess the similarity between the encoded features and the stored patterns.
The output of the memory module, along with the query features, is aggregated and passed as input to each layer
of the decoder. Ultimately, the decoder utilizes the aggregated features to reconstruct the video frames of the in-
put video sequence.

SE attention

‘- |

Enconder —> MI —> M2

[ — f

Fig. 1. Structure of the Cascade Memory-Augmentation Autoencoder (CMAAE)

(It consists of three memory augmented modules with SE attention mechanisms and skip-connected autoencoders and uses
weight connections between memory modules.)

3.1 Memory Networks

To enable the model to capture feature-rich representations of normal data as well as more critical data features,
we use an implementation similar to [5], where the memory module consists mainly of memory matrices, SE at-
tention blocks [16], and soft shrinkage sparse blocks [17]. The memory module is implemented as a matrix M €
RY | consisting of N memory entries of fixed dimension C. Each row of the matrix M is called memory entry
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m;, where i =1, 2, 3, ..., N. The primary objective of the memory module is to represent the input features using a
weighted sum of similar memory entries, enabling it to recall normal patterns effectively. The realization of the
query feature z; is input to the memory module to find the similar feature in the memory entry m, with the rela-
tionship shown below:

N
Z=oM =) om, (1)

Where the maximum capacity of the memory module is defined by the hyperparameter N, w, denotes the
memory element m,, and the query feature z, to calculate the similarity weight, which is calculated as follows:

eDCUS(Zl oMy )

@ = ZN eDcos Gomy) (2)

j=1
D ysdenotes the cosine similarity between each query z; and each memory item m;:

T
Zimi

Do (z;,m;) = m 3)

When utilizing a limited number of normal patterns within the memory matrix for reconstruction, which fa-
vors significant reconstruction errors in the reconstruction of abnormal data, a soft shrinkage operation is used to
promote sparsity of similar attention weights w:

(Z)i :Rsv/i(a)i’ﬂ“): 0 |a)|Sl ? (4)

Where @, represents the i-th weight of the memory-addressed attentional weight vector influenced by mem-

ory and has undergone soft contraction, while A denotes the threshold for the contraction process. Since w are
non-negative values, soft shrinkage is transformed using the continuous ReL U activation function.

The model is encouraged to represent each example with a smaller but more relevant memory content by em-
ploying sparse addressing. This approach enables the model to learn more informative representations in mem-
ory, enhancing its ability to capture important features and patterns in the data. Similar to sparse representations
[18], promoting sparsity in addressing weights facilitates the testing process by training memory M to account
for w sparsity. Promoting sparsity in @ also mitigates the problem of anomalous samples that are well recon-
structed with dense addressing weights.

Applying the SE attention module after matching to the most similar features after a memory matrix can adap-
tively recalibrate the channel dependencies in the feature map, emphasize the useful features in it and suppress
the useless ones to obtain new features that are more effective. Fig. 2 shows the structure of the SE attention
model.

Z=f, %)%z (5)

Three memory modules, M1, M2, and M3, are embedded in the bottleneck and uptake process of the cascade
memory-augmented autoencoder (CMAAE) model. In previous work [14], three memory modules are simply
embedded without circulation of attentional weights, and the memory modules learn a large amount of similar
knowledge repetitively, which reduces the joint expressive power of the model. Therefore, we added the connec-
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tion of attentional weights between the memory modules.

[ FmemZ (21 ) + wmeml . (6)

mem2

Where w,,.,, denotes the attentional weight output by M2, w,,,, denotes the attentional weight output by
M1, and F,,,»( 21 ) denotes the attentional weight obtained by inputting the features output by M1 into M2 after
up-sampling.

2 = Fmem3 (22) + a)memZ . (7)

mem3

Where w,,,,; denotes the attentional weight of the M3 output, which is computed similarly to o

mem2*

L I

Inception Inception HXWX C
7
Global pooling 1X1X C
FC 1X1X ClIr
ReLU 1X1X CIr
FC 1X1X C
Sigmoid 1X1X C
v,
Scde HXWX C

Fig. 2. The SE attention module structure

3.2 Train Loss

During the training of CMAAE, normal data is fed into the model to reconstruct the input data. Denoting the
input data as y and the reconstruction result as y’, the model utilizes the L2 paradigm as the reconstruction loss
function. This loss function penalizes the distance between the input image y and the reconstructed image y’, en-
suring accurate reconstruction.:
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Lo =y=1:- )

For each memory module, we introduce the entropy loss to the matching probabilities as follows:

N

=>> -0, log, )

i=l j=1

Where S represent the number of memory modules and ,; denotes the matching probabilities.

Since the memory network is updated at each iteration and retaining too much previously learned information
is challenging, transient loss [19] prevents frequent memory changes and balances memory stability and learning
capacity. It facilitates the learning of contextual spatial-temporal relationships in video sequences.

L= |IM =M. (10)

Where M denotes the memory matrix in each memory module, and M’ denotes the transient value of the
memory matrix in the previous training step, the difference between the two matrices is computed using the L2
paradigm, and then the sum of the transient losses of all memory modules is obtained.

Due to the problem of shooting angle and distance, the farther the distance, the more blurred things are in
detail, and the abnormal video sequences, there are some abnormalities with little difference from the normal
events. Therefore, the introduction of Structural Similarity Loss (SSIM) [20] to train the model helps the model
learn the detailed information of reconstructed video frames, consider pixel-level differences, and enhance the
quality of reconstructed images. Distinguishing the subtle differences between abnormal and normal events and
increasing the reconstruction error of abnormal frames benefit the model’s performance.

2u 1, +C)(25,,+C) a
(423 + C)(S70% +C)

Lssim = f;‘sim (y7 y ') =

. . 2 2 .
Where x, and p,, represent the mean of the input and output, respectively; J, and &, denote the variance of

the input and output, respectively; and J,,. denotes the covariance of the input and output, with C, and C, as

constants.

In order to train the CMAAE model, we set the corresponding hyperparameters 4., » Auem » Aoan @0 A tO
achieve a balance among the above loss functions. As a result, we obtain the following set of loss functions for
training the model:

Leviiar = PreconLrecon + Aoem Lmem T ran Liran T Prssim Lo (12)

recon”recon ‘mem”~"mem tran”~tran ssim”~ssim *

4 Experiments and Analysis

4.1 Datasets

To evaluate the performance of the proposed CMAAE and compare it with state-of-the-art algorithms, we per-
form experimental validation on two public dataset benchmarks, the UCSD Ped2 dataset [21] and the CUHK
Avenue dataset [22]. Fig. 3 depicts the abnormal and normal events on the two datasets, respectively. The train-
ing dataset comprises standard samples, while the test dataset comprises normal and abnormal samples.

The UCSD Ped2 dataset [21] consists of 16 training videos and 12 test videos with a resolution of 360%240,
acquired with a fixed camera. Crowd density on the sidewalk fluctuates frequently, from sparse to very crowded.
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The training set contains only normal data, i.e. pedestrians walking, and the test set contains normal and abnor-
mal situations. The abnormal situations contain intrusion of non-human entities such as car intrusion and abnor-
mal movement patterns of pedestrians such as skateboards and bicycles.

Lu et al. [22] introduced their anomaly detection method and generated the CUHK Avenue dataset. The data-
set consists of 16 training and 21 test videos, capturing 47 anomalous events. The dataset comprises 30,652
frames, with 15,328 frames allocated for training and 15,324 frames for testing purposes. The dataset includes
abnormal activities such as throwing objects, wandering, and running. It is worth noting that the person’s size
may vary depending on the camera’s position and angle. Training videos contain videos of normal situations. The
test video contains normal and abnormal event videos. Furthermore, each frame has pixel-level labeling.

Normal Abnaormal

UCSD Ped2

cycing and
skateboarding |

CUHK Avenue

throwing running in
object great hurry

Fig. 3. Illustration of dataset types

(We list the different abnormal behaviors of the two datasets, with those identified as abnormal highlighted in
red.)

4.2 Evaluation Criterion

The thresholds for changing the anomaly scores and calculating the actual positive rate (TPR) and false positive
rate (FPR), commonly used in video anomaly detection tasks, are used in the experiments to generate the ROC
curves. As in most previous work, the area under the ROC curve at the frame level, AUC, is used to evaluate the
model’s performance. It effectively avoids the subjectivity of parameter setting. It makes the experimental results
more reasonable, which is especially suitable for evaluating the performance of the detection task when the data
distribution is highly unbalanced. In the anomaly detection task, the higher the value of AUC, the better the per-
formance of the algorithm detection.

4.3 Implementation Details

The RTX3090 graphics card and Pytorch framework were used to construct the model in the experiments.
Preprocess the raw data in all datasets, resize the video frames to 32x32, and standardize them; set the capacity
of each memory module to 2K with a shrinkage threshold of 5e-4. The Adam optimizer [17] was used for optimi-
zation, with the learning rate initialized to 0.01 and decayed by 0.8 every 20 epochs. The batch sizes of Ped2 and
Avenue were 256, the epoch was set to 100, and the training loss-weight hyperparameters 4,..., » Ayem > Auan » a0d
Jm Were set to 1.0, 2e™ 0.1, and 2¢™, respectively.
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4.4 Result

In order to illustrate the improvement in the detection performance of the anomaly detection task due to the mod-
el CMAAE, we compare the method in this paper with other state-of-the-art anomaly detection methods in recent
years, such as MemAE [5], MNAD [6], DAML [24], AMAE [29], and MGAE [27]. We obtain performance data
for each method on the Ped2 and Avenue datasets from the original paper. The comparison results are shown in
Table 1.

Table 1. Comparison of experimental results with other state-of-the-art methods

AUC (%)
Year Methods Pedd Avenue
2019 MemAE [5] 94.1 83.3
2020 MNAD [6] 97.0 88.5
2020 IPR [25] 96.2 83.7
2020 CDAE [26] 96.5 86.0
2021 DAML [24] 95.1 88.8
2021 HF’-VAD w/o FP [14] 98.8 86.8
2022 STCEN [28] 96.9 86.6
2022 AMAE [29] 97.4 88.2
2022 CRVAD-GAN [30] 96.3 87.1
2022 MTT [31] 97.8 88.5
2023 MGAE [27] 97.8 87.6
2023 ARAE [23] 974 86.7
2023 CMAAE (our) 99.2 89.4

As shown in Table 1, CMAAE achieves better results than the state-of-the-art methods in recent years on both
UCSD Ped2 and CUHK Avenue datasets, proving our method’s effectiveness. Among the reconstruction anoma-
ly detection methods, the CMAAE model obtains an accuracy of 99.2% on the UCSD Ped2 dataset, which is also
a 0.4% accuracy improvement over the previous best-performing HF2-VAD w/o FP [14]. However, it also uses
three memory modules embedded in the model. The contents of these memory modules learn a large amount of
redundancy in isolation. In contrast, the CMAAE model carries out a flow of attention weights of memory mod-
ules between the embedded memory modules, which promotes the model to learn more comprehensive global in-
formation and improves the model detection accuracy. An accuracy of 89.4% was obtained on the CUHK Avenue
dataset, which is 0.6% higher than the previous best method, DAML [24], whose model learned appearance and
motion separately, ignoring the correlation between appearance and motion information, resulting in incomplete
information being learned. In contrast, CMAAE incorporates the SE attention module into the memory module
to learn to remember more comprehensive data information, which enhances the robustness of the model and is
more conducive to distinguishing between normal and abnormal events.

4.5 Analysis of Experimental Results

The anomalies of all frames in the video are plotted as continuous anomaly curves to demonstrate the method’s
effectiveness, we show in Fig. 4 and Fig. 5, respectively, the anomaly score variation curves in Ped2 and Avenue
datasets, where anomalous and normal events can be accurately detected and differentiated by the level of the
anomaly score curves.

Fig. 4 shows the evolution of the anomaly score curves in the Ped2 test datasets. The anomaly scores are all
in the state of shallow scores on the sidewalk without anomalous events. Moreover, the curve rises rapidly when
anomalous events (cycling, skateboarding) occur, indicating that this paper’s method can detect anomalously.
However, due to the shooting angle, the anomalies will be occluded, and the value of the obtained anomaly curve
will decrease after the anomaly is occluded. Subsequently, with the occluded anomalies separated, the model
detects the anomalies more accurately, and higher anomaly scores are obtained. A higher value of the anomaly
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curve indicates a greater likelihood of an anomalous situation. Fig. 5 shows the visualization results of the detec-
tion performed on the Avenue test dataset. The figure (left) shows a person performing a fast run back and forth
twice. The anomaly score rises rapidly when the running anomaly is detected and drops rapidly to a shallow level
after he disappears from the video. The figure (right) demonstrates the anomaly of a small child running. A high
anomaly score is detected when he moves with a large amplitude, and the value of the anomaly curve drops rap-
idly to O after he runs out of the frame, indicating that there is no anomaly at the moment, proving the excellent
detection performance and robustness of the model.
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Fig. 4. Anomaly score curves of the model on the UCSD Ped2 dataset and their corresponding anomalies
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Fig. 5. Anomaly score curves of the model on the CUHK Avenue dataset and their corresponding anomalies
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In Fig. 6, we show the process of accuracy AUC worth changing when the model is trained on different data-
sets to demonstrate the applicability of the model. During training, the model within 60 to 70 epochs has the
highest AUC. In contrast, the model has a relatively low AUC in other parts of the model, indicating the applica-
bility of the model.
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Fig. 6. Comparison of AUC for different models

(The epoch of completion of training is used as the x-axis to show the change of AUC values during the model’s
training process on Ped2 and Avenue datasets.)

4.6 Ablation Studies

To thoroughly analyze the impact of various components of our model on the Ped2 dataset, we conducted a
comprehensive ablation study. This study focused on assessing the effects of different components, including the
weight connection of the memory module, the SE attention module, the reconstruction loss, the sparsity loss, the
transient loss, and the structural similarity loss. By systematically evaluating these components, we gained valu-
able insights into their contributions to the overall performance of our model.

Weighted Connection Analysis. Weight connection can help the model share feature information between dif-
ferent levels of features, improving the model’s performance. In order to demonstrate the impact of weight con-
nections within the model’s memory modules, we conducted experiments with different weight configurations.
Specifically, we explored various weight connections for the three memory modules. The experimental outcomes
are summarized in Table 2. The results show that after adding weight connections, the AUC value of the model
increases from 98.6% to 99.2%, and the model’s accuracy is significantly improved. Meanwhile, the AUC of
using only the single-stage weight connection methods b and ¢ is improved to 99.1% and 98.8%, respectively,
while the improvement effect of using the two-stage weight connection method d is more pronounced, reaching
99.2%. The weights generated by the memory module connected by way b obtain higher boosts than c. This is
because the attention weights generated by the memory module M1, which is at the bottleneck, record deep-
er-level features, while the memory module, during the up-sampling process, records relatively shallow-level
features, resulting in the model presenting different performances. The dual-level connection of d can constitute
the circulation of deep-level and shallow-level features, which promotes the model to learn different levels of
feature information and record more comprehensive feature information, making the model more expressive.
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Table 2. Comparison of results of ablation experiments on weighted connections of memory models

Index Weighted connection AUC (%)
Encon i s> > M
a der 98.6
———
Encon l
b dor "M > M> > M> 99 1
L 4 A

Encon l
c der > M>» > M > M > 98.8

|I|—4 A

Encon J’ l L l
> M > M > M > 992

d der
L a A

Attention and Loss Function Analysis. We conducted an ablation study of the attention and loss functions of
the CMAAE model on the Ped2 dataset, and the experimental results are shown in Table 3. We gradually re-
moved the training loss and attention modules during the experiment to see the effects of SE attention and indi-
vidual losses on the model performance. The results show that with the addition of SE attention, the importance
weighting of the features in the memory module makes the model pay more attention to the critical features in
recording normal event features, and the AUC value is improved by 1.6%. The model’s performance improved

by 2.2% to 97.5% after using the reconfiguration loss £, . Adding memory sparsity loss £,.,, and transient loss

L,

+an Nelps the model to manage the memory capacity and focus on storing the information that is most import-
ant for anomaly detection, which brings 0.7% and 0.4% performance improvement respectively. The structural
similarity loss, on the other hand, helps the model retain the global features of the input data and promotes better
anomaly capture by the model, which also brings a 0.6% improvement to the model. After weighted fusion train-

ing of these losses, the optimal model with 99.2% performance is obtained.

Table 3. Comparison of the results of ablation experiments on various loss and SE attention modules of the models

Model SE L L, L, L, AUC (%)
1 93.7
2 v 95.3
3 NG NG 97.5
4 Vi N Vi 98.2
5 v/ N Vv Vv 98.6
6 J J J N N 99.2
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5 Conclusion

This paper proposes a deep learning model based on Cascaded Memory-augmented Autoencoder (CMAAE) for
video anomaly detection. By embedding multiple memory modules in the bottleneck of the encoder-decoder
structure and the up-sampling process and sharing the transfer of attention weights within the memory mod-
ules, the model improves the recording of normal features and the sensitivity to anomalous events. In addition,
introducing the SE attention mechanism and the soft-shrinkage sparse function improves the performance of
the memory modules, allowing them to learn better and memorize normal features. The utilization of skip con-
nections in the up-sampling process proves beneficial as it incorporates both low-level and high-level features,
resulting in improved reconstruction quality. Additionally, employing multiple loss functions aids the model in
detecting anomalies more effectively. Our method demonstrates its effectiveness in anomaly detection through
extensive experiments conducted on two widely used datasets, UCSD Ped2 and CUHK Avenue.
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