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Abstract. With the complexity of the robot operating environment increases, there becoming higher demands 
on the optimal path planning for robots. Most of the path planning is performed in known environments 
and static models. However, there are still challenges for robots to perform path planning in complex un-
known or dynamic environments, which will suffer from deadlock problems and obstacle avoidance failures. 
Reinforcement learning (RL) can help fuzzy algorithm to optimize the strategy. However, the difficulty of de-
signing the rewards in RL makes the algorithm require a large number of samples to learn the strategy, result-
ing in computational complexity. To solve these problems, a new local path planning based on the improved 
fuzzy and Q(λ)-learning algorithms is proposed, aiming to plan the shortest path and avoid obstacles. For 
solving the problems of breaking through and avoiding obstacles, a fuzzy controller is designed.  The distance 
of nearest obstacle in front of the mobile robot and the distance between the obstacles in the two breakout 
directions are regarded as the two inputs for this controller. And the two fuzzy quantities of the mobile robot’s 
running angle and the safe step length are outputted. In the path planning, the Q(λ)-learning algorithm are 
used to optimize the weights of the running angle and the safe step, obtaining a more accurate robot position 
and speeding up path planning efficiency. Furthermore, to solve the overlap problems among the starting 
point, end point, and obstacles, a safer running environment is designed considering radiuses of these objects. 
Besides, the mobile robot breakout scheme and sustainable obstacle avoidance scheme are designed to solve 
the deadlock problem and “large obstacle” avoidance problem, respectively. Simulation results in the sparse 
and complex operating environment show that our proposed algorithm can plan a relatively optimal and safe 
path, improving the success rate of path planning.    
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1   Introduction

With the continuous development of artificial intelligence technology, the field of mobile robotics has received a 
lot of attention from researchers at home and abroad. Path planning is one of the essential core elements in robot-
ics research and development, and is the basis for robots to accomplish a given task in a certain environment [1-
3]. The path planning capability of the robot intuitively reflects its operational and risk management capabilities, 
and its main goal is to allow the target object to find a collision-free and safe path from the starting point to the 
end point within a defined area [4]. Path planning has been widely used in high technology, daily life, logistics 
management and other fields, such as: manipulator path planning [5, 6], aircraft trajectory planning [7], cruise 
missile path planning [8], traveling salesman problem [9], path planning based on road networks [10], electronic 
maps GPS navigation path search and planning [11], and other areas [12, 13]. However, most of the current path 
planning algorithms are for known environments or static models, which are less robust to environmental chang-
es, errors and noise. And there are few researches on challenging path planning in unknown environment or dy-
namic model, which limits the application and development of mobile robots to a certain extent. 

Compared to known operating environments, complex unknown or dynamic environments place higher de-
mands on path planning. There are many methods of path planning, and their scope of application varies depend-
ing on their own advantages and disadvantages. Traditional path planning algorithms include simulated annealing 
algorithm, artificial potential field method, fuzzy logic algorithm, tabu search algorithm, etc. [14-17]. Fuzzy con-
trol algorithm is a classical algorithm of path planning. The fuzzy logic algorithm simulates the driver’s driving 
experience by combining physiological perception and action to obtain planning information through look-up ta-
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bles based on the system’s real-time sensor information to achieve path planning. The algorithms conform to hu-
man thinking habits and facilitate the conversion of expert knowledge into control signals with good consistency, 
stability and continuity [18, 19]. Fuzzy control is a computer control technique based on natural language con-
trol rules and fuzzy logic reasoning. This technique relies on fuzzy rules converted from operational experience 
and expressive knowledge to achieve intelligent control [20, 21]. Fakoor et al. [22] proposed a decision-making 
method based on fuzzy Markov decision process for path planning in an unknown environment. Xiang et al. [23] 
proposed an improved DWA algorithm with an improved dynamic windowing method to achieve local path plan-
ning for robots, and added a fuzzy controller to achieve weight coefficient self-adaptation for adapting to more 
complex environments. Sun et al. [24] proposed an optimized fuzzy control algorithm to plan paths in complex 
3D underwater environments, making AUVs automatically avoid dynamic obstacles. The fuzzy algorithm does 
not require an accurate mathematical model and has good robustness. Xiang et al. [25] proposed an improved 
DWA algorithm to make the obstacle avoidance path of the robot smoother. In this model, a fuzzy controller was 
added to achieve the adaption of weight coefficients to adapt to more complex environments. For the path track-
ing problem of automatic ground vehicles, Hwang et al. [26] proposed a hierarchical improved fuzzy dynamic 
sliding mode control designed to handle system uncertainties such as different payloads. However, in the envi-
ronment of unknown dense obstacles and polygonal obstacles, the path planning using fuzzy logic algorithm is 
prone to deadlock problem and obstacle avoidance failure problem.

In recent years, reinforcement learning (RL) algorithms with decision performance have received wide at-
tention to solve the challenges in path planning. RL algorithms are an important branch of machine learning, 
the essence of which is to learn strategies through trial and error of interaction between an intelligence and its 
environment to maximize the reward or achieve a specific goal. Segato et al [27] proposed a safe and effective 
intraoperative planning framework for flexible neurosurgical robotic lock-hole, which integrates an inverse re-
inforcement learning path planning algorithm to optimize surgical criteria. Xi et al [28] proposed an AUV path 
planning scheme using integrated ocean information and reinforcement learning, by carefully designing the state 
transition function and rewards to construct a 3D grid model. Zhao et al [29] proposed a formation control model 
for unmanned surface ships based on deep reinforcement learning to formulate a new stochastic braking mech-
anism, preventing the training of the decision network from falling into a local optimum. Zhang et al [30] pro-
posed a new algorithm based on risk-sensitive learning with stability guarantees to train the strategies for motion 
planning of self-driving cars.  However, the RL algorithm itself has some problems, such as dimension disaster, 
exploration and utilization difficulties. To solve the above problems, the researchers proposed that input should 
be fuzzy first, then RL is used for path planning. Liu et al. [31] proposed a multi-controller model combining du-
eling DQN with fuzzy control, and used fuzzy control to provide a large number of positive samples, improving 
the generalization ability of the model. Chen et al [32] proposed a path planning method based on conditional 
deep Q-networks, which applied end-to-end neural networks to autonomous driving to reduce the dependency 
between different motion commands and improve the stability of path planning. Soares et al [33] developed an 
autonomous driving path planning method based on deep reinforcement learning model using a set of IF-THEN 
rules to approximate the deep reinforcement learning model. RL can theoretically be used to optimize strategy, 
including environments where the world model is unknown. However, the difficulty of designing the reward 
function in RL makes the algorithm difficult to use for learning specific problems, which makes it necessary to 
use a large number of samples to learn, thus causing computational complexity.

To address the above problems, a local path planning method based on improved fuzzy algorithm and Q(λ)-
learning algorithm is proposed in this paper. Firstly, the kinematic model of the improved fuzzy algorithm is 
established for the first time in the operating environment of the mobile robot. In this model, a new fuzzy con-
troller is designed, which inputs the distance of the nearest obstacle in front of the mobile robot and the distance 
between two breakthrough direction obstacles, and outputs the running angle and safety step of the mobile robot. 
In the unknown dense obstacle environment, we analyze the overlap problem, deadlock problem and “big ob-
stacle” avoidance problem that may occur in the path planning. The corresponding solutions are proposed for 
these problems, and the simulation is verified in the robot path planning environment. Additionally, the Q(λ)-
learning algorithm are used to optimize the weights of the running angle and the safe step in the process of robot 
path planning, obtaining more accurate robot positions and improving the efficiency of robot path planning. The 
high-density obstacle environments and rectangular environments are designed to verify the performance of the 
proposed algorithm.

The main contributions of this paper are summarized as follows:
(1) In the robot operating environment, a new local path planning algorithm is proposed to achieve the goal 

of shortest path planning and safe obstacle avoidance, which is based on the improved fuzzy and Q(λ)-learning 
algorithm in the framework of kinematic model.



267

Journal of Computers Vol. 34 No. 5, October 2023

(2) To solve the overlaps problem between the starting point, the end point, and the obstacles, a safer running 
environment is designed. To solve the deadlock problem and safety “large obstacle” avoidance problem, the mo-
bile robot breakout scheme and sustainable obstacle avoidance scheme are designed, respectively.

(3) In the path planning, Q(λ)-learning algorithm is used to optimize the weights of the running angle and 
the safe step, obtaining a more accurate robot position, accelerating the path planning efficiency, and avoiding 
complex calculations. In addition, the sparse and complex operational environments are designed to validate the 
proposed local path planning algorithm based on the improved fuzzy and Q(λ)-learning algorithm.

The rest of this paper is organized as follows. Section 2 introduces the basics of traditional fuzzy algorithms, 
reinforcement learning, and Q-learning that are relevant to this paper. Section 3 introduces the kinematic frame-
work based on improved fuzzy and Q(λ)-learning algorithm for mobile robot path planning, and gives a corre-
sponding scheme for the problems in the path planning process. Section 4 presents the simulation and experi-
mental results in sparse obstacle and dense obstacle environments. Section 5 draws the conclusion and discusses 
the future works.

2   Preliminaries

In this section, the fuzzy algorithm and reinforcement learning are reviewed to make the theoretical foundation 
for the following.

2.1   Fuzzy Algorithm

For complex systems that are difficult to describe with existing laws, the intelligent control is realized via quali-
tative, inaccurate and fuzzy conditional sentences of the fuzzy algorithm. The main idea of fuzzy control is that 
the machine realizes automatic control by imitating people’s operation experience, which is described as fuzzy 
rule [34-35]. The process of fuzzy control is shown in Fig. 1. 

x uFuzziness of 
input

Fuzzy 
inference 

Certainty of 
outputs

Fuzzy rule 
base

Fig. 1. Principle and structure of fuzzy controller

Given the input variable x = [x1, x2, …, xi, …, xn]
T, each component xi is a fuzzy language variable. T(xi) is set 

in Eq. (1),

( ) { }1 2, , , , 1, 2, ,im
i i i iT x A A A i n= =  ,                                                   (1)

where Ai
j (j = 1, 2, ..., mi) is the jth language variable value of xi, which is a fuzzy set defined on the domain xi, 

corresponding to membership function μ j
Ai

 (xi)(i = 1, 2, ..., n; j = 1, 2, ..., mi).
Given the set Tu = {B1, B2, ..., Bmμ}, where the output u is a fuzzy language variable, and Bj (j = 1, 2, ..., mμ) is 

the jth language variable value of u, corresponding to the membership function μBj(μ).
If the input variable adopts the fuzzy method of single point fuzzy set, the rule fitness of the given input x is 

given,
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( ) ( ) ( )
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x x xα µ µ µ=  .                                                         (2)

Through fuzzy inference, the membership function of the fuzzy set Bi for the output of each fuzzy rule is cal-
culated,

( ) ( )1i

i
B Bµ µ α µ µ= ,                                                                  (3)

Therefore, the total fuzzy set of quantity is calculated,

 ( ) ( ) ( )
1

1 1 mi i i

m m
B i B i B

µ µ µ µ µ µ
=

= == ∨ = ∨


.                                                     (4)

Weighted average method is adopted to make the certainty of outputs,

( )
( )

u

u
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BU

u u du
u

u du

µ

µ
=
∫
∫

,                                                                   (5)

Where Uu represents the domain of the total fuzzy set μB(u), and μ Î Uu. 

2.2   Reinforcement Learning

The problem of RL is described as an intelligence that continuously learns from its interaction with the environ-
ment to accomplish a specific goal [36]. RL aims to find an optimal strategy that allows the intelligence to obtain 
as many rewards from the environment as possible. Discounted rewards at time t are calculated by Eq. (6),

t 1
0

,tR rτ τ
τ

γ + +
=

= ∑


                                                                      (6)

where rt + τ +1 indicates the immediate rewards, γ represents the discount factor,  represents the total time.
The value function and state value function are defined to evaluate the expected return of a strategy, and the 

state value function Vπ(s) is the expectation of the state-action value function Qπ(s, a) with respect to the action a 
by Markov property.

Definition 1 (Value function). The expected return in state s is ( ) [ ] 1
0

s | |t t t tV E R s s E r s sπ τ
π π τ

τ

γ
∞

+ +
=
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 
∑ .

Definition 2 (State value function). The expected return after performing the action a in the state s is 

( ) [ ] 1
0
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π π τ

τ

γ
∞
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=

 = = = = = = 
 
∑ .

Q-learning is a time-sequence difference learning algorithm with different strategies, and its Q value is updat-
ed as follows [37],

( ) ( ) ( ) ( )( )1 1, , max , , ,t t t t t t t ta
Q S A Q S A R Q S a Q S Aα ξ+ +← + + −                               (7)

where α (0 < α ≤ 1) represents the learning rate, ξ represents the decay factor.
The main idea of Q-learning is to form a Q-table with state and action to store Q values, and then select the 

actions that can obtain the maximum return according to the Q values.
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3   Local Path Planning with the Improved Fuzzy and Q(λ)-learning

Based on the kinematics analysis of the local path planning, the new proposed algorithm uses the fuzzy controller 
to find the optimal or sub-optimal path of the safe obstacle avoidance. To obtain a more accurate robot position, 
Q(λ)-learning algorithm is used to optimize the weights of the running angle and the safe step, accelerating the 
path planning efficiency, and avoiding complex calculations. In the local path planning, both the safe obstacle 
avoidance of the mobile robot, and the shortest path from the starting point to the end point are considered. 

3.1   Kinematics Model based on the Improved Fuzzy and Q(λ)-learning

Fig. 2 shows the kinematics model of the mobile robot. (xrob, yrob) indicates the location of the mobile robot, (xobs, 
yobs) represents the position of obstacles, (xgoal, ygoal) indicates the position of goal. And Goal1, Goal2, Goal3 are 
the positions of the goals that are vertical, normal, and horizontal to the starting point of the mobile robot, respec-
tively. 

Robot

Goal2

x

y

α
NGoalR

NGoalL

α

Obstacle
(xobs,yobs)

Right breakout line 

Goal1

Goal3(xrot,yrot)

(xgoal,ygoal)

Fig. 2. The kinematics model of the mobile robot

Based on the normal position Goal1, NGoalL and NGoalR are the positions corresponding to the new goals in 
the left and right breakout directions, respectively. The angles to the left and right breakout directions both are α, 
respectively. dro indicates the distance from the current position of mobile robot to the obstacle, and dol represents 
the distance from the obstacle to the right detection line.

In Fig. 2, if the goal is in the vertical direction of the mobile robot, the linear equation between the mobile 
robot and the goal is x = bline. If the goal is in the horizontal direction of the mobile robot, the linear equation 
between the mobile robot and the goal is y = bline. Therefore, the distance dol from the obstacle to the left or right 
detection lines are calculated, respectively,

ol line obs

ol line obs

d b x x b

d b y y b

 = − =


= − =
.                                                               (8)

If the goal is in the normal direction of the mobile robot, the linear equation between the mobile robot and the 

goal is y = kline x + bline . With rob rob

goal rob goal rob

y y x x
y x x x

− −
=

− − , the equation of the line dro is calculated by Eq. (9),

goal rob goal rob
rob rob

goal rob goal rob

y y y y
y x x y

x x x x
− −

= − +
− −

,                                                   (9)

where kline indicates the slope of the line connecting the current position of mobile robot to the obstacle, bline indi-
cates the intercept of line connecting the current position of mobile robot to the obstacle.

The distance from each obstacle to the line between the current position of the mobile robot and the goal is 
calculated,
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.                                       (10)

The distance between the current position of the mobile robot and each obstacle is calculated,

( ) ( )2 2
ro rob obs rob obsd x x y y= − + − .                                                    (11)

In the direction connecting the current position of the mobile robot and the end point, the distance from the 
mobile robot to the obstacle is calculated,

2 2
rol ro old d d= + .                                                                  (12)

Because the number of the obstacles is set to Nobs, the smallest distance dro is taken as the distance of the ob-
stacle detected by the mobile robot,

( )minro rold d= .                                                                  (13)

The distance of the nearest obstacle dro in the detection direction is obtained by Eq. (13). Algorithm 1 is the 
pseudocode to judge whether the front of the mobile robot is blocked, which can help the mobile robot to com-
plete the objective of safe obstacle avoidance. dlro indicates the distance dro in the left detection direction, dmro 
indicates the distance dro in the middle detection direction, drro indicates the distance dro in the right detection di-
rection, and Sp indicates the standard one-step running distance of the mobile robot.

Algorithm 1. Judging whether the front of mobile robot is blocked
1: Given dlro, dmro, drro, Sp 
2: Compute Dis = 2 × Sp  
3: If  Dis > dlro, Dis > dmro, or Dis > drro
4:   Mobile robot meets with obstacles at the front.
5: else
6:   Mobile robot does not meet with obstacles at the front.
7: End

Moreover, 

lro rroDf d d= − ,                                                                                                                     (14)

where Df indicates the distance between the obstacles in the two breakout directions of the mobile robot.
If the mobile robot is blocked, it will enter the breakout state, and then invokes the fuzzy controller for routine 

path planning; otherwise, it will call the fuzzy controller for routine path planning directly. With the inputs of the 
distance dro and Df, the scale of running angles Na of the next action and the number of safe steps Ns are obtained 
that can avoid obstacles. The running angle Ar and safe step length of the next step Sr is calculated,

r a p

r s p

A N A
S N S

= ×
 = ×

,                                                                    (15)

where Ap indicates the standard angle of each rotation for mobile robot avoiding obstacles, Sp indicates the stan-
dard single-step running distance of the mobile robot.
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To complete the objective of shortest path planning from the starting point to the end point, in the coordinate 
system, the angle Ar of the line between the current starting point and the end point is obtained. If the line lcre, 
connecting the current position of the mobile robot before moving and the end point, is horizontal, Ar  = Ar will 

be obtained. If the line lcre is vertical, 
2r rA Aπ

= +  will be obtained. If the line lcre is normal, Ar = arctan (kline) + Ar 

will be obtained.

( )
2
arctan

r r

r r

r line r

A A Horizontal

A A Vertical

A k A Normal

π
=

 = +

 = +

.                                                    (16)

The new coordinate points (xrn, yrn) of the mobile robot is calculated,

( )
( )

1 2

1 2

cos

sin
rn rob r r

rn rob r r

x x S A

y y S A

ω ω

ω ω

= + ×


= + ×
,                                                        (17)

where ω1 indicates the weight of the running angle Ar , helping to achieve the objective of planning the shortest 
path. And ω2 indicates the weight of the safe step, which helps to achieve the objective of safe obstacle avoid-
ance. 

In Eq. (17), to get better weights ω1 and ω2, the Q(λ)-learning is utilized to learn the weight parameters. Q(λ)-
learning is a kind of Q-learning. The algorithm uses eligibility trace to record the track of each episode, which 
makes the node memory closer to the end stronger. The mobile robot’s memory of the trajectory diminishes with 
taking a step. Thus, Q(λ)-learning can strengthen the weight near the end point and speed up the learning process.

In the learning process of the weights ω1 and ω2, the Q(λ)-learning inputs the distance dro and the difference  
Df, and outputs the actions. The TD error δt = rt+1 + γ maxat+1

 Q(st+1, at+1) − Q(st, at) is utilized to calculate gradient 
used for parameter updating. To simplify the calculation, Q value corresponding to the maximum probability be-
havior in q-table is used to estimate maxat+1

 Q(st+1, at+1),

( ) ( )1 , , ,t t t t t t t tQ s a Q s a eαδ+ = +                                                        (18)

where ( )
1

,t t t
t t

Q s a
e eγλ

ω−

∂
= +

∂
. And ω is the updated parameters ω1 or ω2, which is updated by Eq. (19):

( ) ( ) ( )
1

,
1 ,t t t

t t

Q s a
t t eω ω ηδ γλ

ω−

∂  + = + + 
∂  

                                             (19)

where η represents the learning rate, γ is the discounted factor, λ(0 ≤ λ ≤ 1) indicates the trace-decay parameter. 

0.1 0.09 ,
.

i
Max Episodes

η
 

= −  
 

                                                       (20)

0.01 0.009 ,
.

i
Max Episodes

λ
 

= −  
 

                                                    (21)

where i indicates the current episode and Max.Episodes represents the number of episodes. The trace-decay pa-
rameters decrease with episodes increase, speeding up the learning process.
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Table 1. Initial setting parameters of the algorithm

Parameter Value
Initial value of Q 0
Eligibility trace e 0
Decay factor ξ 0.9
Discounted factor γ 0.95

After experimental analysis, the optimal solutions of ω1 and ω2 are set to 0.5 and 0.5, respectively. After the 
mobile robot completes one step of operation, it enters the next step of path planning.

3.2   Design of Fuzzy Controller based on Q(λ)-learning

The obstacle avoidance control of path planning for the mobile robot based on fuzzy algorithm and Q(λ)-learning 
algorithm is shown in Fig. 3, which consists of the fuzzy controller and learning of weighting parameters. In Fig. 
3, the fuzzy controller is composed of four parts: fuzzification, fuzzy rules, fuzzy reasoning and clarity. And the 
Q(λ)-learning algorithm is used to optimize the weights ω1 of the running angle and the weight ω2 of the safe 
step. Additionally, with Na, Ns, ω1, and ω2, the new coordinate points of the mobile robot can be obtained. By the 
interaction between the mobile robot and operating environment, the obstacle distance in front of robot and dis-
tance difference can be calculated.

Next position of 
robot

Fuzzy rules

Fuzzy 
reasoning

Fuzzy controller

Clarification 

Fuzzy input
variables

Number of  step length 
Ns

Number of running 
angle Na

Obstacle distance dro in 
front of robot

Distance difference Df

RL: Q(  )-learning

Weight of the 
running angle

Weight of the safe 
step

1

2

Obstacle distance dro in 
front of robot

Distance difference Df



Robot operating 
environment 

Fig. 3. Obstacle avoidance control of the local path planning for the mobile robot

Given the current position of the mobile robot and the position of the obstacle, the distance dro of the nearest 
obstacle in front of the mobile robot, and the difference Df of the obstacle distances in the left and right breakout 
directions are obtained. Taking dro and Df as the inputs of the fuzzy controller, after fuzzy inference, the scale 
of the running angle Na for the mobile robot and the number of safe step length Ns are obtained, respectively. 
Furthermore, with Na and Ns, the angle and distance of the mobile robot’s next operation are obtained after the 
clarification process.

1) Fuzzy set, fuzzy domain, membership function
Inputs of the fuzzy controller are the distance dro of the nearest obstacle in front of the mobile robot and the 

distance difference Df between the obstacles in the left and right breakout directions. The outputs are the scale of 
the running angle Na for the mobile robot and the number of safe step length Ns.

The maximum detection distance of the mobile robot is set to 5 times as long as the standard one-step length 
Sp. The domain range of the distance dro is set to [0 5], and its fuzzy subset is set to {VN, N, M, F, VF} (VN: 
Very Near, N: Near, M: Medium, F: Far, VF: Very Far). The domain range of the difference Df is set to [-5 5], 
and its fuzzy subset is {NB, NS, ZO, PS, PB} (NB: Negative Big, NS: Negative Small, ZO: Zero, PS: Positive 
Small, PB: Positive Big). To obtain better results, Gaussian function is selected as the membership function, and 
the width and center of the membership function of each fuzzy subset are shown in Table 2.
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Table 2. The width and center of membership function

dro Df
VN [1.100 -0.30] NB [1.679 -5.31]
N [0.425 1.49] NS [0.944 -2.22]
M [0.425 2.49] ZO [0.943 -0.00]
F [0.425 3.57] PS [0.944 2.22]

VF [1.295 4.73] PB [1.964 5.43]

The domain range of Na is set to [0 2], and its fuzzy subset is {VL, L, ME, M, VM} (VL: Very Less, L: Less, 
ME: Medium, M: More, VM: Very More). The number of safe step length Ns has a domain ranged between [-2 
2], and its fuzzy subset is set to {NL, NS, ZO, PS, PL} (NL: Negative Large, NS: Negative Small, ZO: Zero, PS: 
Positive Small, PL: Positive Large). To obtain better results, Gaussian function is selected as the membership 
function of the scale factor, and the width and center of the membership function of each fuzzy subset are shown 
in Table 3.

Table 3. Width and center of the membership function

Na Df
VL [0.237 0.12] NL [0.639 -1.95]
L [0.170 0.60] NS [0.340 -0.80]

ME [0.170 1.00] ZO [0.340 0.00]
M [0.170 1.40] PS [0.340 0.80]

VM [0.406 1.90] PL [0.486 1.78]

2) Fuzzy rules and fuzzy reasoning
Fuzzy control rule is the core of fuzzy controller, and also is the main content of designing control system. 

There are two methods for obtaining fuzzy control rules: one is to obtain from experts’ actual operating experi-
ence and knowledge of the control system, the other is to summarize from the input-output data of the test sys-
tem. Our improved fuzzy algorithm uses the latter to generate fuzzy control rules.

The path planning rules of the mobile robot based on the improved fuzzy algorithm are as follows.
Firstly, the principle of the step length of mobile robot for avoiding obstacles is designed. When the fuzzy 

subset of the nearest obstacle distance in front of the mobile robot is {VN, N, M, F, VF}, the corresponding out-
puts of the scale of mobile robot running angle are {VL, L, ME, M, VM}.

And then the corner principle of avoiding obstacles for the mobile robot is designed. The line between the 
starting point of the mobile robot to the end point is regarded as the navigation line. When the distance of obsta-
cles detected by the mobile robot on the right detection line is larger than that detected on the left detection line, 
the mobile robot will move to the right next. When the distance of obstacles detected by the mobile robot on the 
left detection line is larger than that detected on the right detection line, the mobile robot will move to the left 
next. Otherwise, the mobile robot will move in the direction of the navigation line.

The control rules of the path planning based on the improved fuzzy with Q(λ)-learning algorithms are 
summarized using the input-output data, as shown in Table 4.

Table 4. Fuzzy control rules

dro

                                                          Df

NB NS ZO PS PB
VN [NB VN] [PB VN] [ZO VN] [PB VN] [PB VN]
N [NB N] [NS N] [NB M] [NB F] [NB VF]
M [NS M] [NS M] [ZO M] [PS M] [PS M]
F [NS F] [NS F] [ZO F] [PS F] [PS F]

VF [NS VF] [NS VF] [ZO VF] [PS VF] [PS VF]

3) Clarification
After clarification processing, the fuzzy quantity obtained by the approximate reasoning becomes the clear 

quantity, which can drive the subsequent actuators. The area barycentric method in Eq. (22) is used to find the 
center of the area surrounded by the fuzzy set membership function curve and the abscissa. With Eq. (5), the ab-
scissa of this center is used as the representative value of the fuzzy set to obtain the amount of clarity, 
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where uB(uj) is the membership function at uj. For the scale of the running angle Na, the domain is set to [0 2], 
thus uj Î [0 2] and n will be set to 5. And for the number of safe step length Ns, the domain is set to [-2 2], thus 
ujÎ [0 2], and n will be set to 5.

4) Effectiveness of fuzzy controller
In the designed fuzzy controller, the curved observation window of the output is obtained, as shown in Fig. 4.

                   

                                                      (a) Number of step                                 (b) Scale of angle

Fig. 4. The surface observation window of the outputs

In Fig. 4(a), x-coordinate represents the distance of the nearest obstacle in front of the mobile robot, y-coor-
dinate represents the difference of the obstacle distances in the left and right breakout directions, z-coordinate 
denotes the number of safe step length. In Fig. 4(b), z-coordinate represents the scale of the running angle for 
the mobile robot. Fig. 4 shows the surface observation window of the outputs is a plane in the three dimensions, 
indicating the output is a nonlinear function of the input. Because the smoother the surface, the better the system 
performance, our proposed fuzzy algorithm has good performance for path planning.

3.3   Path Planning Process based on Improved Fuzzy and Q(λ)-learning

Based on MATLAB 2016a simulation platform, the control value of mobile robot operation is obtained with the 
input and output variables of fuzzy controller.

The steps of local path planning for the mobile robot based on the improved fuzzy and Q(λ)-learning algo-
rithm are as follows.

Step 1: A coordinate system Ʃs is established.
Step 2: In the coordinate system Ʃs, the starting point, the size of the environment, and the number and loca-

tion of obstacles are randomly set. 
Step 3: The parameters of the improved fuzzy algorithm are initialized: lsg indicates the line between the cur-

rent starting point to the end point, and Ms is the maximum number of steps for the mobile robot from the starting 
point to the end point. (k, b, f) are the slope, intercept, and position relationship of the line lsg (f = 0 means the di-
rection of the line lsg is normal, f = 1 means it is vertical, and  f = 2 means it is horizontal). And dsg is the distance 
from the current starting point to the end point, Sp is the standard one-step running distance of mobile robot, Ar is 
the running angle at the current position, Sr is the running step length at the current position; (xrn, yrn) is the cur-
rent starting point.

Step 4: The mobile robot starts from the current starting point. And the (k, b, f) of the line lsg can be calculated.
Step 5: Judging whether the mobile robot reaches the goal, if Sp is greater than dsg, the mobile robot reaches 

the goal, and the path planning is completed; otherwise, the mobile robot will take the next step.
Step 6: Calculate the (k, b, f) of the detection line on the left and right sides of the measurement line lsg, and 

the distances disl, dism, disr of the nearest obstacle in the left, middle, and right detection directions for the mo-
bile robot.

Step 7: Calculating whether the front of the robot is blocked with Algorithm 1, if yes, flagblock = 1, the mobile 
robot will enter step8; otherwise, flagblock = 0, the mobile robot will enter step9.
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Step 8: When the mobile robot enters the breakout state, it will constantly explore the left and right sides, 
looking for a feasible exit. If a feasible exit is not found, the path planning fails this time; otherwise, it goes to 
the next step.

Step 9: Taking the distance of the obstacle that is closest to the mobile robot dis = min (disl, dism, disr), the 
fuzzy controller is called, which can calculate and output the scale of running angle and the number of the safe 
step (Na, Ns) with the inputs (dis, disl − disr). 

Step 10: The Q(λ)-learning algorithm is used to optimize the weights ω1 of the running angle and the weight 
ω2 of the safe step.

Step 11: Calculating the coordinates (xrn, yrn) of the new starting point of this path planning with Eq. (17), the 
mobile robot will reach a new starting point.

Step 12: Judging whether the number of the current steps is greater than the maximum number of steps Ms, if 
yes, the mobile robot will end this path planning; otherwise, it returns to step 4 for the next path planning.

4   Analysis of Problems in the Path Planning

In a sparse obstacle environment, the mobile robot can use the improved fuzzy and Q(λ)-learning algorithms to 
plan path. However, in the complex running environments, the mobile robot will encounter a series of problems. 
To improve the efficiency of the mobile robot for path planning, specific problems are analyzed and correspond-
ing specific solutions are proposed.

4.1   Overlap Problems between the Starting Point, End Point, and Obstacles

The obstacles are randomly set in the simulation environment of the mobile robot in Fig. 5. Because the radi-
us robstacle of the obstacles, the radius rgoal of the end point, and the radius rrobot of the mobile robot are ignored, 
the starting point or end point may overlap with obstacles, and the starting point may overlap the end point. 
Therefore, considering the radiuses of these objects in the environment, the pseudo code of the improved de-
signed environment is designed as shown in Algorithm 2, which can calculate the coordinate (Xobs, Yobs) and the 
number of the obstacles Nobs.

(xg,yg)
(xobs,yobs)

(xr,yr)

rrobot

Robot

Obstacle1 Goal

Environment

Obstacle2
Obstacle3

Obstacle4

rgoalrobstacle

Fig. 5. The running environment of the mobile robot

Algorithm 2. Improved running environment
Input: Starting point (xr, yr), end point (xg, yg), obstacles (xobs, yobs), number of obstacle

 Nobs, maximum detect distance Dm of the mobile robot, standard one-step running 
distance Sp, and [Sp] which indicates the largest integer no more than Sp.

Output: New obstacles (xobs, yobs) and number of obstacle Nobs.
1: Design (xr, yr), (xg, yg), and Nobs 
2: Calculate Dm = 5([(xg, xr)

2+(yg, yr)
2] +1) 

3: In the intervals (Dm, xg − Dm) an (Dm, yg − Dm), Nobs-dimensional coordinate matrix (Xobs, Yobs) of the 
obstacles is randomly generated, respectively, which can prevent the end point from overlapping with 
the obstacles or the starting point;
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4: Repeat
5:    di = [(Xobs,i − xr)

2 + (Yobs,i − yr)
2]     

6:     if di < 3
7:         Omitting obstacles points (Xobs,i, Yobs,i) from the matrix (Xobs, Yobs)
8:        Nobs = Nobs − 1
9:     else
10:      Nobs = Nobs

11:    end
12: Until i = Nobs

13: Preventing the starting point from overlapping with the obstacles.

The radiuses of the obstacles, end point, and mobile robot are all set to 1 unit. To prevent the end point from 
overlapping the obstacles, the maximum detect distance Dm of mobile robot needs to meet Eq. (23),

         m obstacle goalD r r> + ,                                                               (23)

where robstacle indicates the radius of obstacle, rgoal indicates the radius of goal. Dm = robstacle + rgoal means that the ob-
stacle is exactly tangent to the goal. Therefore, in Algorithm 2, if Dm ≤ 2, Dm will be set to 3; otherwise, Dm = Dm.

4.2   Deadlock Problem of Obstacle Avoidance for the Mobile Robot

In the complicated environment with dense obstacles, many obstacles may form the “semi-circular obstacle”. In 
this case, the mobile robot will trap in a deadlock problem of left-right circular motion, and the mobile robot is 
difficult to find the optimal path for safe obstacle avoidance. Therefore, a breakout scheme is designed to guide 
the mobile robot to plan the optimal path. According to the positions of the mobile robot and the end point, the 
positions can be divided into three situations: horizontal, vertical, and normal, as shown in Fig. 6(a). And the 
three cases are analyzed as shown in Fig. 6(b), Fig. 6(c), and Fig. 6(d), respectively. Therefore, a mobile robot 
breakout scheme is designed.
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Fig. 6. Analysis of the deadlock problem
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In Fig. 6, the triangle represents the mobile robot and the rectangle represents the goal. When the mobile robot 
detects an obstacle ahead, it takes a left and right breakout along the direction of the line between the mobile ro-
bot and the end point. The angle of left breakout is α, and the angle of right breakout is β α= − . In the direction 
of the left side of Fig. 6, the line LG and line RL (RL represents the line between the mobile robot and point L) 
are perpendicular to each other with the intersection point L. And at the point G, the line LD is perpendicular to 
the line RG (RG represents the line between the mobile robot and point G).

In Fig. 6(b), the position of the new goal (xg, l, yg, l) in the direction of left breakout is calculated,

 
,

,

cos cos
cos sin

g l
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.                                                             (24)

In Fig. 6(c), the position of the new goal (xg, l, yg, l) in the direction of left breakout is calculated,
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In Fig. 6(d), the position of the new goal (xg, l, yg, l) in the direction of left breakout is calculated,
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where γ indicates the angle the line RG.
Similarly, substituting β into the above formulas, the position of the new goal in the right breakout direction 

can be obtained (see Appendix).

4.3   Failure Problem of Breaking through Obstacles in Path Planning

In a complex environment with a lot of obstacles, many obstacles may partially overlap to form a “large obsta-
cle”. Because the “large obstacle” has long sides, which will increase the complexity of planning path, as shown 
in Fig. 7. When the mobile robot repeatedly falls into the complex environment of “large obstacle”, the mobile 
robot will eventually fail to break through the obstacles, hitting the obstacles.

Robot

Goal

Obstacles

Fig. 7. The obstacle avoidance of “large obstacle” for the mobile robot

To overcome the failure problem of avoiding “large obstacles” for the mobile robot, a sustainable obstacle 
avoidance scheme is designed to prevent the mobile robot from failing to avoid obstacles when repeatedly break-
ing in the complex environment of “large obstacles”. The flow chart of sustainable obstacle avoidance scheme is 
shown in Fig. 8.
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Initialization: Flagl=1 indicates that a feasible exit is found on the left, Flagr = 0 
indicates that a feasible exit is not found on the right; Aal is the number of rotation 

angles on the left of the feasible exit and Aar is the number of rotation angles on the 
right of the feasible exit. 

Find feasible exit with the sustainable 
obstacle avoidance plan

Is it in a“Large obstacle”environment? 

Are feasible exit found? 

Y

Leaving the“Large 
obstacle”environment 

If Flagl=Flagr=1?

If Aal<Aar?

Breakout to the left 
Breakout to the 

right

Breakout to the 
right 

If Flagl=1, Flagr=0?

Breakout to the left

Ending the sustainable obstacle 
avoidance scheme

Y

Y

YN

N

N

N

Y

The robot rotates at random angles

N

Fig. 8. Design scheme of sustainable obstacle avoidance

5   Simulation and Experiments

In the process of local path planning, the mobile robot may encounter some problems, such as the overlap prob-
lems between the starting point, end point and obstacles, deadlock problem, and obstacle avoidance failure 
problem. To address the existing problems, this section performs experimental simulations based on the corre-
sponding solutions proposed in Section 4. Then different obstacles, starting point and end point for the mobile 
robot are randomly set for the simulation of path planning. Additionally, to better illustrate the performance of 
the improved fuzzy and Q(λ)-learning algorithm, it is compared with the fuzzy algorithm, the improved fuzzy 
algorithm, Q-learning algorithm, Q(λ)-learning algorithm.

5.1   Simulation of the Existing Problems

Because the radiuses of the starting point, end point and obstacles are ignored in setting the running environment 
for the mobile robot, the starting point may overlap with the obstacles or the end point, and the end point may 
overlap with the obstacles. These cases may make it difficult for mobile robots to find their starting point and end 
point with safe obstacle avoidance. In Fig. 9(a), because the starting point overlaps with the obstacles, the mobile 
robot starts near the starting point for path planning. In Fig. 9(b), the goal overlaps with the obstacles; thus, the 
mobile robot regards the obstacle that overlaps with the end point as the new end point.
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Fig. 9. Overlap problems that between the starting point, end point, and obstacles 
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To prevent the overlap problems, the solution to this problem in subsection 4.1 considers the radiuses of these 
objects in the environment, for solving the overlap problems between the starting point, end point, and obstacles. 
Therefore, a safer simulation environment is designed than before, as shown in Fig. 9(c). In Fig. 9(c), the start-
ing point and end point do not overlap with the obstacles. Therefore, the influences of overlap problems on path 
planning are avoided, increasing the success rate of mobile robot path planning.

In a complicated environment with the “semi-circular obstacle”, the mobile robot may encounter the deadlock 
problem that the robot runs back and forth, as shown in Fig. 10(a). It is difficult for the robot to find the optimal 
path with safe obstacle avoidance. Thus, the breakout scheme proposed in subsection 4.2 is used to solve the 
deadlock problem. And the simulations of the three cases are carried out to illustrate the performance of our pro-
posed scheme for planning path, respectively, as shown in Fig. 10(b), Fig. 10(c), and Fig. 10(d).
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Fig. 10. Mobile robot’s deadlock problems

In Fig. 10(a), the mobile robot repeatedly runs in a “semicircle obstacle” composed of multiple obstacles, and 
is stuck in a deadlock problem. To solve this problem, a mobile robot breakout scheme is designed, which can 
help the mobile robot plan the optimal path in a complex environment. Fig. 10(b) to Fig. 10(d) show the path 
planning when the connecting lines between the mobile robot and the end point are horizontal, vertical, and nor-
mal, respectively. In Fig. 10(d), the mobile robot finds a feasible planned path after several runs in the “semi-cir-
cular obstacle” with the design scheme. Simulation results in Fig. 10(b) to Fig. 10(d) show that the mobile robot 
can plan a feasible optimal or sub-optimal path. 

Because the obstacles are many and densely distributed, multiple obstacles will form “big obstacle”, which 
may cause the mobile robot to fail to find a path to escape, and hit the obstacles directly. To solve the failure 
problem of obstacle avoidance for the mobile robot, a sustainable obstacle avoidance scheme for obstacle avoid-
ance is proposed. The simulation results are shown in Fig. 11. 

In Fig. 11(a), the mobile robot fails to avoid obstacles in a complex environment with “big obstacle”. To over-
come the failure problem of obstacle avoidance for the mobile robot, the feasible path from the starting point to 
the end point can be planned, as shown in Fig. 11(b). It can be seen from Fig. 11 that the mobile robot can find 
the path to break through the obstacles through repeated test runs in the “big obstacle” area. And considering the 
radiuses of the starting point, end point and obstacles, the end point doesn’t overlap the obstacles. Therefore, the 
mobile robot can plan the optimal path.
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Fig. 11. Mobile robot obstacle avoidance for “big obstacle”
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5.2   Simulation of Path Planning for Mobile Robot

After verifying the feasibility of the solutions to the problems in subsection 4.1, the different experimental en-
vironments are randomly set up to perform simulation validation of the proposed algorithm for path planning. 
Some simulation results are shown in Fig. 12. In Fig. 12(a) to Fig. 12(c), relatively sparse 80 obstacles are set 
and the locations of the obstacles are set randomly, which increases the learning difficulty of the environment. 
Compared to Fig. 12(a) and Fig. 12(b), the starting and end points of the robot are changed in Fig. 12(c).         
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It can see from Fig. 12(a) to Fig. 12(c) that the robot can plan a better path to achieve safe obstacle avoid-
ance in the relatively sparse obstacle environment where the starting point and end point are randomly set. In 
Fig. 12(d) and Fig. 12(e), 120 obstacles are set, and their positions are set randomly. In this environment, the 
robot uses a break scheme to solve the “semi-circular obstacle” problem, which can still avoid the high-density 
obstacle environment and plan a better path. In Fig. 12(f) and Fig. 12(g), environment with multiple rectangular 
obstacles are set up. As can be seen from the Fig. 12(f) and Fig. 12(g), even if the starting point and the end point 
of the robot change, the robot can still safely avoid obstacles and plan the optimal or sub-optimal path from the 
starting point to the ending point. In addition, to increase the difficulty of the experiment, an environment with 
dense rectangular obstacles are set up in Fig. 12(h) and Fig. 12(i). After 200 episodes of learning, the robot’s path 
planning also works well.  

Simulation results in Fig. 12 show that the mobile robot can plan the safe optimal or suboptimal path from 
starting point to end point in different and complex obstacle environments.

To further illustrate the performance of our proposed algorithm, 5, 10, 15, 20, 25, …, 125 obstacles are set in 
the environment for planning the path, respectively. The number and ratio of successful mobile robot path plan-
ning are obtained in Fig. 13 over 50 tests. In the robot operating environments, the same starting point and end 
point of the robot are first set. Then, after setting the number and location of obstacles, the proposed algorithm is 
compared with the fuzzy algorithm, the improved fuzzy algorithm, Q-learning algorithm, and Q(λ)-learning al-
gorithm. In the environment with set obstacles, the robot is defined as successful once if it can find a reasonable 
route from the starting point to the end point without colliding with the obstacles; otherwise, it is a failure. The 
experiment is then run 50 times and the ratio of the number of successful experiments to the total run time is de-
fined as the success rate.

uccessful rates= s

e

Num
S

Num ,                                                            (27)

where Nums indicates the number of success, Nume represents the number of the running. 
Higher success rate indicates better performance of the algorithm. It can be seen from Fig. 13 that the perfor-

mance of the fuzzy algorithm is the worst, mainly because the algorithm lacks the necessary obstacle avoidance 
rules. In a complex obstacle environment, the mobile robot gets caught in a cluster of obstacles and then loses 
its obstacle avoidance function, crossing the obstacles or directly hitting them. In the improved fuzzy with Q(λ)-
learning algorithm, the radiuses of these objects, a break scheme for “semi-circular obstacle”, and a sustainable 
obstacle avoidance scheme are considered. Thus, the robot can basically avoid obstacles safely and find the 
obstacles from the starting point to the end point, and the success rate has improved significantly. Furthermore, 
at a certain position, when the robot computes the next position after executing the action in Eq. (15), the Q(λ)-
learning are used to compute the weights of the running angle and safe step, improving the robot’s path planning 
efficiency. Therefore, the improved fuzzy with Q(λ)-learning algorithm has the highest success rate and the best 
efficiency of planning path. Furthermore, because Q-learning algorithm and Q(λ)-learning algorithm suffer from 
the problem of dimensional catastrophe and do not capture the task structure well, their performance of the path 
planning is slightly worse than the improved fuzzy with Q(λ)-learning algorithm.
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Additionally, 50 obstacles are set up and the average number of steps from the starting point to the end point 
obtained using the improved fuzzy with Q(λ)-learning algorithm after the experiments are repeated 20 times in-
dependently is shown in Table 5. It can see from Table 5 that the fuzzy algorithm uses the simplest fuzzy ideas 
and does not consider the overlap problems, deadlock problem, failure problem of obstacle avoidance, etc. 
Therefore, the mobile robot may fail in obstacle avoidance or fall into a dead loop inside the “semi-circular ob-
stacle”, which makes the robot’s planning path steps significantly larger. The improved fuzzy algorithm solves 
the existing problems in the fuzzy algorithm so that the number of path steps from the starting point to the end 
point is 115. Additionally, Q-learning algorithm and Q(λ)-learning algorithm can help the mobile robot to find 
the better path from the starting point to the end point, but the number of steps is 128 and 146 with the constraint 
of the algorithm itself. The improved fuzzy with Q(λ)-learning algorithm solves the drawbacks of the fuzzy algo-
rithm and combines the advantages of the Q(λ)-learning algorithm, so that the optimal or suboptimal path from 
the starting point to the end point can be planned and the minimum number of steps for path planning can be ob-
tained.

Table 5. The average number of steps for these algorithms

Algorithms Number of steps
Fuzzy algorithm 2342
Improved Fuzzy algorithm 115
Improved Fuzzy with Q(λ)-learning algorithm 82
Q-learning algorithm 128
Q(λ)-learning algorithm 146

In the above experiments, the path planning for the mobile robot is simulated and verified in the environment, 
and our proposed improved fuzzy with Q(λ)-learning algorithm is compared with the fuzzy algorithm, the im-
proved fuzzy algorithm, Q-learning algorithm, and Q(λ)-learning algorithm. It is experimentally verified that the 
improved fuzzy with Q(λ)-learning algorithm can obtain optimal or suboptimal paths with better planning results.

6   Conclusions

To plan optimal path with safe obstacle avoidance, a new local path planning is proposed. Based on the construc-
tion of the kinematics model with the improved fuzzy algorithm, a fuzzy controller based on Q(λ)-learning is 
designed. Through fuzzification, fuzzy inference, and clarification, the control amount is obtained to control the 
operation of the mobile robot. For overcoming the overlap problems, the deadlock problem and the failure prob-
lem of breaking through “large obstacle”, a safer operating environment, a mobile robot breakout scheme and a 
sustainable obstacle avoidance scheme are designed, respectively. In the robot path planning process, the Q(λ)-
learning algorithm is used to optimize the weights of the running angle and safe step to improve the efficiency of 
the robot path planning. Then, the number and location of obstacles, the location of the starting point and the end 
point are randomly set, and the improved fuzzy with Q(λ)-learning algorithm is simulated and verified in simple 
and complex environments. Compared with the fuzzy algorithm, the improved fuzzy algorithm, Q-learning al-
gorithm, Q(λ)-learning algorithm, simulation results show that the success rate of the improved fuzzy with Q(λ)-
learning algorithm is the best and the number of steps for planning path is the least in the same planning environ-
ment. The improved fuzzy with Q(λ)-learning algorithm not only overcomes the problems in fuzzy algorithm, 
but also combines the better decision-making performance of Q(λ)-learning algorithm, thus, its performance of 
path planning is better than the existing methods.

Our proposed algorithm in this paper compensates for some shortcomings of existing path planning algo-
rithms and improves the theoretical study of path planning to a certain extent. Furthermore, the improved fuzzy 
with Q(λ)-learning algorithm is tried to applied to our unmanned vehicle tracing. Our later work is to apply the 
proposed algorithm to the autonomous collision-free action of unmanned vehicles in a real environment, realiz-
ing the practical application of the algorithm.
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Appendix

In the right direction of Fig. 6, the line G  and line ( represents the line between the mobile robot and 
point ) are perpendicular to each other with the intersection point . And at the point G , the line is perpen-
dicular to the line RG� ( RG represents the line between the mobile robot and G point).

In Fig. 6(b), the position of the new goal in the direction of right breakout is calculated,
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In Fig. 6(c), the position of the new goal in the direction of right breakout is calculated,
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In Fig. 6(d), the position of the new goal in the direction of right breakout is calculated,
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where γ  indicates the angle the line RG. 


