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Abstract. Single nucleotide polymorphisms (SNPs) are the most prevalent and stable class of genetic diver-
sity that exist in most organisms. Functional SNPs are the most commonly used genetic markers for diver-
sity study and molecular breeding in plants, and their quick recognition is in urgent demand. In this work, a
computational approach to identify functional SNPs in rice genome based on machine learning is presented.
To characterize and prioritize variants, two different categories of features, the nucleotide-sequence based
features and the allele-specific based features, are extracted. In particular, the weighted Euclidean distance is
employed to measure the changes of the transcription factors (TFs) binding affinities caused by SNPs. To deal
with the classification problem on unbalanced data, the support vector machine (SVM) together with an over-
sampling method is employed. We use mRMR to find the optimal feature set, and the result shows that our
method can achieve accuracy with sensitivity of ~74.2% and specificity of ~72.3% after 10-fold cross-valida-
tion. Furthermore, the sources of data to build the proposed prediction model are mainly sequence context of
SNP and TF profiles in JASPAR database, which are all easy to be acquired. So, the prediction method can be
easily applied to other plant species.

Keywords: transcription factor binding affinity, position weight matrix, functional SNP, support vector ma-
chine

1 Introduction

Rice (Oryza sativa L.), one of the most important food crops, provides the daily dietary intake for approximately
50% of the worldwide human populations. The genome size of rice is limited and diploid, owing to this reason,
rice has become one of the most excellent choices for initiating genomic studies among the cereal food species.
So, rice serves as a model organism for agricultural research and plant biology. Since the first two subspecies
of rice, i.e., japonica (cultivar Nipponbare) and indica (cultivar 93-11), have been sequenced in 2002 [1, 2], nu-
merous rice accessions in the germplasm have been genotyped in the past decade [3]. At the same time, huge
amounts of rice variation databases have been constructed in the wake of developments in sequencing technolo-
gies [4]. All these genomic data provide us with abundant resources for rice genomics research and breeding.

It’s known that nucleotide variants can lead to different gene-phenotype or gene-trait associations and thus
translate into phenotypic diversity of plants, so they are playing increasingly important roles in plant breeding
[5]. Among all the nucleotide variants, Single Nucleotide Polymorphism (SNP), the DNA sequence polymor-
phism at the genomic level caused by variant of a single nucleotide, is the most common genetic variant, and
SNP is also the most prevalent and stable type of genetic diversity that exists in most organisms [6-8]. As SNP
genotyping is becoming faster and more cost-effective, it is widely used as the genetic marker for diversity study
and molecular breeding in plants [9, 10]. However, the number of SNP in rice genome is very huge, with nearly
32M [11], thus bringing a very large obstacle to conducting genomic studies. The cost and time of genotyping is
one of the most important factors to consider in plant molecular breeding, as molecular breeding usually requires
the rapid genotyping of thousands of samples, often within days or even hours. So, low SNP density genotyping
technologies are very necessary, because they can offer great flexibility through the rapid detection of a small
quantity of candidate SNPs which have the ability to mark thousands of DNA samples [12]. In this context, the
question facing us is how to quickly and accurately identify those functional trait-associated SNPs for complex
phenotypes.
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Although the number of SNPs in genomes is very large, only a small fraction of them have been found to
be associated with phenotype or trait. In the era of biological data outbreak, it is time- and money-consuming
to identify functional SNPs only by experimental methods. Therefore, computational methods are very es-
sential to be used to help identify functional SNPs. Previous studies of functional SNPs identification through
computational methods have mainly focused on disease-associated SNPs in the human genome. GWAVA [13]
trains random forest classifiers to differentiate functional SNPs based on numerous features extracted from dif-
ferent annotation sources, such as open chromatin, RNA polymerase binding and evolutionary conservation.
CERENKOV?2 [14] constructs a 248-dimensional feature matrix using a large amount of genome annotation
data from the Encyclopedia of DNA Elements (ENCODE) project [15], the Ensembl project [16], the Genotype
Tissue Expression (GETx) project [17], etc., and then trains gradient boosted decision trees to identify functional
variants. However, few of these methods can be directly used to identify the functional SNPs in plants, for reason
that these methods always need large amounts of human genome annotation data. But for plant genomes, such a
large number and large scale of sequencing and annotation projects have not been launched yet, making the same
type of annotation data difficult to be obtained in plant genomes. Kharabian et al. estimate the influence of SNPs
in rice GBSSI gene through a series of functional elements prediction tools [18]. The limitation of this method
is that the functional elements prediction tools they used are mainly designed for human genome, so the effec-
tiveness of these tools remains to be tested and verified for plants, and it isn’t suitable for the rapid prediction of
large-scale functional SNPs.

Here, we are targeted at the prediction of functional SNPs in rice genome. A set of documented trait-associat-
ed SNPs found by Genome Wide Association Studies (GWAS) and functionally neutral SNPs were used to build
the prediction model. To characterize and prioritize the variants, an extensive range of characteristics, such as the
position weight matrix (PWM) scores of k-mers, significant motif scores and changes of transcription factor (TF)
binding affinities are analyzed. After feature selection using mRMR, the SVM classifier together with a powerful
over-sampling method — G-SMOTE is utilized to find the optimal feature sets and present the final prediction re-
sults of the unbalanced data. We hope such a prediction method will help geneticists to rapidly assess likely func-
tional SNPs from massive background genetic polymorphisms for feature diversity study and molecular breeding
research in plants.

2 Materials and Methods

2.1 Datasets

The functional SNPs were retrieved from the Rice SNP-Seek Database (http://snp-seek.irri.org/) [11]. To obtain
a high-quality functional SNPs dataset, all SNPs with association p-values less than 107 to the recorded traits for
Nipponbare (japonica) rice were downloaded first. 1106 SNPs were collected at this step, and they were SNPs
with high association to all the 11 reported traits for Nipponbare rice, including grain weight, grain width, culm
length, leaf length, seeding height, etc. Then these SNPs were mapped to dbSNP database (dbSNP build 151,
Rice Genome Build IRGSP-1.0) [19] to ensure their validity. Finally, 929 SNPs were left as the positive samples.
From the chromosome and position information of the SNP nucleotide provided by dbSNP, the SNP sequence of
any length can be retrieved from the complete sequences of rice genome stored in NCBI [20].

For control set, neutral SNPs were retrieved from dbSNP. 350 SNPs were randomly chosen from each chro-
mosome first and then those also exist in our collected functional SNPs dataset were removed. Then the redun-
dant data with a sequence identity cut-off threshold of 0.8 were picked away using CD-HIT [21], a widely used
program for clustering biological sequences thus reducing redundancy. The purpose of removing redundancy was
to get a high quality control dataset and meanwhile reduce the difference in the number of positive and negative
samples. 3747 SNPs were remained as the functionally neutral control samples finally.

2.2 Feature Extraction
Nucleotide-sequence Based Features. Nucleotide-sequence based features just take the characteristics of the
reference sequence of an SNP into consideration while regardless of the variant nucleotide. This kind of feature

is designed to find the genome region in which if a variant happens, the variant would more likely to cause trait
changes of an organism. We counted the position-specific nucleotide distribution profiles of sequences that sur-
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rounding the SNP nucleotide with length 201bp (+/-100bp of the SNP site) and the result was shown in Fig. 1.
The base A and base T of functional SNPs seemed to appear more frequently than that of control SNPs in posi-
tions both upstream and downstream of the SNP nucleotide, while the base C and base G revealed the opposite
situation. The PWM scores of k-mers were used to describe the differences in position-specific nucleotide distri-
butions between functional and control SNPs accordingly.

k-mers PWM Scores. The term k-mers originally refers to all substrings of length £ in a string. In computational
genomics, k-mers refer to all subsequences of length £ in the sequence fragments obtained by DNA sequencing.
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Fig. 1. Position-specific distribution profiles of nucleotides for both functional and control SNPs, X-axis represents the nucle-
otide position with 0 being the SNP site

As there are only 4 bases in DNA, that are A, C, G, and T, the total number of k-mers is 4*. For example, the
all 16 forms for 2-mers are AA, AC, AG, AT, CA, CC, CG, CT, GA, GC, GG, GT, TA, TC, TG, and TT. The
k-mers strings are often used to find genomic regions of interest and can also be used to predict biological pat-
terns of interest by calculating the probability distributions of a large number of k-mers [22]. PWM, also known
as the position-specific scoring matrix (PSSM), was put forward for the first time by Stormo et al. as an alter-
native to consensus sequences [23]. PWM has been widely used to depict the conservative sequence patterns in
computational biology [22]. The mathematical expression formula of the £-mers PWM is as follows:

Wl 1 WIZ Wli Wlm
WZ] W22 WZi W2m
W= (1)
Wi Wi Wi 0 Win
L Wnl w n2 Wni an

where n=4" is the number of all k&-mers; m=I-k+1 is the total number of position-specific k&-mers in the sequences
of length /; the log-likelihood ratio of finding a pattern (the jth k-mer, 1< j <4") at a given position i was denoted

as w,,, and it was calculated as follows:
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where p;; represents the probability of finding a pattern (the jth k-mer) at the given position 7, and p,, is the pri-
ori probability of finding the pattern in genome with pjv0=(1/4)k given here; f;, refers to the occurrence frequency

of the jth k-mer at given position #; N;=) f,, is the number of all samples at position i; \/ﬁ, /4" denotes a pseu-

do-count proportional to the standard deviation of the counted frequencies according to Kielbasa et al. [24].
Then, the final PWM score S, was computed by accumulating all the weights corresponding to different patterns
observed in a sequence within a window of length N:

Sy =220 W Q)

For an input sequence of the same length with the calculation window, a score can be generated corresponding
to equation (3), and the larger the score is, the more likely it will be the functional site described by the matrix.
The PWM score can effectively reflect the overall similarity between the testing sequence and the training sam-
ple sequences. In this work, we chose £=2 and a sliding window of length 10 and overlap 5 was used to catch S,.
Scores were calculated by w;, generated from both the positive and negative datasets using equations (1) and (2).
Therefore, a 4(L/5-1)-dimensional feature vector was extracted here to an SNP sequence with both flanking se-
quence lengths being L.

Significant Motif Scores. STREME [25] (version 5.4.1) was used to discover the most statistically significant
motifs in our positive dataset. As the result shown in Table 1, 6 motifs were found to have statistically signif-
icance (p-value < 0.05). Subsequently, the position-specific frequency matrices (PSFMs), that were matrices
comprising of the frequencies of nucleotides occurring at a specific location (namely f;, in equation (2)), of these
6 motifs were obtained from STREME tool. Then the PSFMs were converted to PWM using equation (2) and
the matching scores between a given DNA fragment and these frequent motifs were calculated by equation (3).
When calculating the matching score for each SNP sequence, the window size N was equal to the length of the
corresponding motif. In other words, a group of matching scores for a long sequence at each position were gen-
erated using a shifting window with the same length as the motif to be matched. So, for an SNP sequence with
length L, L-N+1 scores will be generated totally for each motif. Finally, the maximum score was selected as the
final feature to measure the matching degree of the SNP sequence and each motif. Thus, a 6-dimensional feature
vector for each SNP was generated here.

Table 1. The most statistically significant motifs found by STREME and their corresponding p-values

No. Motif Logo p-value
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Allele-specific Based Features. The allele-specific based features were drawn to catch the effects caused by the
variant base. Feature of this category was delta score of the TF binding affinities caused by SNPs. Kasowski et
al. [26] analyzed the binding patterns of the TFs Pol-II and NF-kB on the genomes of different human individu-
als, including the gorilla. They found that the binding patterns of Pol-II and NF-kB were 75% and 92.5% similar
among different individuals respectively, while the remaining ones were greatly affected by genetic variants.
Further studies revealed that the differential binding patterns of TFs on noncoding DNA caused by variants can
influence the expression of surrounding genes, thus relating to individual phenotypic differences and disease sus-
ceptibility. Variants in plant genomes have also been found to be phenotype- or trait-associated by changing TFs
bindings. For example, the nucleotide variants in the promoter region of a TF (Ghd8) were found to be able to
control grain number, plant height and heading date in rice [27]. So, the changes of TF binding affinities caused
by SNP variants were used here to distinguish functional SNPs from the neutral ones.
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(c) Scores generated by Dof2 PWM for both the forward (the top figure) and reverse (the bottom figure) sequences

Fig. 2. The changes of Dof2 TF binding scores caused by the SNP rs877503295
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The data of TF binding profiles was got from JASPAR [28], an open access database containing manually
curated, non-redundant TF binding profiles for TFs across six taxonomic groups. The profiles of all 656 TFs
contained in the core collection for plants in JASPAR were downloaded. With the frequency matrix of these TFs,
TFs binding affinities can be measured using equation (3), and then the changes on TFs binding affinities caused
by SNP variant can be observed. To clarify further, we use an SNP (rs877503295, shown in Fig. 2(a)) as an ex-
ample to demonstrate how to calculate the changes on TFs binding affinities caused by the variant. The Dof2
(shown in Fig. 2(b)) was chosen as the example TF, as the Dof family TFs had been reported for their involve-
ment in numerous important developmental processes and responses to various environmental stresses in rice
[29]. The influence of the TF binding score at each position caused by the variant was shown in Fig. 2(c) for both
the forward and reverse sequences. The number of nucleotide positions where the binding scores will be changed
by SNP variant is equal to the length of the corresponding TF. Then, the score change of TF binding affinity
(AScore) was measured by the weighted Euclidean distance as follows:

AScore = \/Ziwi X(Srl. —Sal.)2 = \/Zimax(S;;,Sai)x(Si; - Sa, )2 . ©)]

where Sr; and Sq; are binding scores at the position i of the reference and alternative allele respectively, and i (i=
SNP,,-TF,,+1: SNP,,., SNP,, is the position of SNP site and 7F},, is the length of the potential TF) represents
the position where the binding scores will be affected by SNP variant. We chose the maximum value among Sr;
and Sa; as the weight, considering that a larger binding score means that the site is more likely to be a TF binding
site, and so variant happened at this site is more likely to be functional. AScore for both the forward and reverse
sequences were calculated, and then the larger one was chosen. Among the 656 TFs, 94 TFs show statistically
significant differences (p<0.01) in binding scores between the collected functional and background SNPs using

Mann-Whitney U-test. Here, a 94-dimensional feature vector for each SNP sample was generated.

2.3 Feature Selection

The mRMR (Minimum Redundancy Maximum Relevance) method [30], one of the most widely used feature se-
lection algorithms, was used to select the relevant features in our work. mRMR can rank a set of features accord-
ing to their importance based on their relevance to the target for a given classification task, and the redundancy
of features will be penalized at the same time. In other words, mRMR reduces the feature dimensions by finding
a set of features that have the most correlation with the final output, but the least correlation with each other. The
maximum dependency between a set of features and the class was measured by mutual information. The mutual
information (denoted as /) between feature pairs was defined as follows:

[(4B)=3Y p(a,b)log(M] . (5)

beB acd p(a)p(b)

where p(a) and p(b) are the marginal probabilities of the two features vectors 4 and B, and p(a, b) is the joint
probability between them. Given a dataset D={(x,, y,)},i=1,2,...,n, where x=[f;, 2,...,fp]Te R’ is a p-dimensional
feature vector and y,€ {1,2,...,k} is the corresponding class label, the purpose of mRMR is to select a feature
subset that has the maximum correlation between features and the label while has the minimum relevance among
features. Due to the huge search space of feature subsets, the incremental feature selection strategy was adopted
in mRMR, that is, the feature having the maximum mutual information with the class label was selected at first
and then the m+1 feature was chosen based on the fore m (m>1) features according to the criteria shown in the
following equation:

250 (6)

1
myres,

max I(fj;y)

/, €G-S,

where, G is the complete feature set; S,, is the subset consisting of the selected fore m features; /(f; y) is the rele-
vance between feature f; and class label y,; and /(f; f)) is the mutual information between feature f; and feature f;.
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2.4 G-SMOTE Sampling

To solve the problem of biased error caused by imbalanced data, a powerful oversampling method — G-SMOTE
(Geometric Synthetic Minority Over Sampling Technique) was applied before classifying [31]. The main princi-
ple of G-SMOTE is increasing the number of the minority class by oversampling and new synthetic samples are
created by data interpolation into a geometric region around each selected minority instance. Here, the number of
neighbors was chosen as 5 and 2818 feature vectors were interpolated into the functional SNP feature space. So,
the positive and negative datasets will have a sample size ratio from 1:4 to 1:1.

2.5 SVM Classifier

The support vector machine (SVM) is a very useful method for two-target classification problems [32, 33]. In our
work, the freely available LIBSVM toolbox was employed to actualize the training and prediction procedures on
our collected dataset [34]. When facing nonlinear samples, the SVM method transforms the input feature space
into a high-dimensional space through a nonlinear transformation defined by the inner product function (namely
the kernel function), and then SVM looks for the linear relationships between the input variables and the output
in this high-dimensional space. The kernel function is one of the most important parts in SVM. However, there
is still no theoretical basis for selecting the right kernel function, and it’s mainly tried in experiments. The most
commonly used kernel functions are Linear kernel, Polynomial kernel and Radial Basis Function (RBF) kernel.
For reasons that RBF kernels are generally the most widely used and RBF kernels can not only classify more
multidimensional functions compared to Linear kernel but also need less parameters compared to Polynomial
kernel, the RBF kernel was chosen to apply LIBSVM in our work.

Parameter setting is also very important for conducting SVM method. The RBF kernel based SVM requires
two important pre-determined parameters including the penalty coefficient ¢ and the width coefficient of the ker-
nel g. These two key tuning parameters were optimized by implementing a grid search of the parameter space
using grid.py, a python script included inside LIBSVM. The grid search was repeated several times on different
subsets generated by subset.py, which was also a python script in LIBSVM. Other insensitive parameters and
parameters related to model settings were set with the default values. Since the SNP is only a single nucleotide,
sequences of a certain length needed to be obtained by extending upstream and downstream nucleotides that
centered on the SNP site when conducting parameter optimization and classification. In our work, the sequence
length was chosen at 201bp (100bp for both flanks). After parameter optimization, finally, the two parameters
were set at c=10 and g=0.02.

3 Results

3.1 Performance Evaluation

For unbalanced data, the accuracy (4CC) can’t reflect the effect of the classification algorithm very well, as ACC
will be more affected by the classification effect of the majority class. Sensitivity (SN) and specificity (SP) are
the most commonly used indicators for evaluating unbalanced data classification problems. SN is the accurate
identification rate of the model on positive samples, while SP measures the classification accuracy of the model
on negative samples. The Matthews Correlation Coefficient (MCC) is also used to evaluate the comprehensive
performance of our proposed method. Their calculation formulas are as follows:

No TP _p TN
TP+ FN TN + FP
dcc—— TPHIN -
TP+FN +TN + FP

TPxTN - FPxFN

MCC = .
J(TP+FP)(TP+FN)(IN + FP)(TN + FN)

where TP is true positive; TN is true negative; FN is false negative and FP is false positive numbers.
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3.2 Performance on Collected Functional SNPs

As an SNP is just a single nucleotide, the SNP sequence with a certain length can be obtained by expanding
upstream and downstream. The sequence length we chose to build the prediction method was 201bp, that was
a sequence with 100bp flanking sequences both upstream and downstream of the SNP site. For a sequence with
length 201bp, there are 76 features of 2-mer PWM scores. So, after feature extraction, the total dimension of the
feature vector was 176. In order to obtain a relatively objective result, 10-fold cross-validation was adopted. It
means all data were divided into 10 groups randomly with one group selected as the test set while the remaining
9 as training sets, and then cycled for ten times until every last group was used as the test set.

To find the optimal feature combination, we examined the prediction effect of the proposed method with fea-
ture numbers from 1 to 176 selected by mRMR, and the result is shown in Fig. 3. From the figure, we can see the
sensitivity increases with the feature dimension increases while specificity decreases. The MCC rises first and
then decreases slightly with the feature dimension increasing. Taken together, when the feature dimension is 41,
the method achieves the best comprehensive performance with MCC equal to 0.41. At this time, the sensitivity is
71.0% and the specificity is 77.1%. Of course, the aim we built the prediction model is to identify as many true
functional SNPs as possible and meanwhile control the number of false positives. Under this criterion, a feature
dimension of 42 may be a better choice, with the sensitivity being 74.2% and specificity being 72.3%.

The top 42 discriminating features selected by mRMR are listed in Table 2. Among these features, the kind of
feature 2-mers PWM scores has the largest number, indicating that there are some differences between the base
compositions of the functional and background SNP sequences. The features of significant motif scores also con-
tribute much to discriminating functional SNPs in rice genome. The changes of 14 TFs binding affinities are also
on the list, and previous studies have found that most of them are involved in the developmental and physiolog-
ical processes of plants. For example, the ERF family are found to play an important role in signal transduction,
plant growth, development, and response to various stresses [35], and the HSFs family are found to relate to the
heat stress-responsive of plants thus significantly influencing plant growth and development [36].
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Fig. 3. The prediction performance of our method, X-axis represents the dimensions of different feature combinations using
mRMR
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3.3 Performance Comparison Against Other Methods

As there are few tools of functional SNPs prediction designed for plants, we compared the performance of our
method to Blastn [37], a tool used for finding regions of similarity between biological sequences. Blastn can be
used to infer functional and evolutionary relationships between nucleotide sequences. The principle of using
Blastn to discover functional SNPs is that Blastn can find evolutionarily conserved regions between nucleotide
sequences, and the conserved regions in genome are usually enriched with functional elements, so if variants
happened in or near these regions, the variants are more likely to show function. After 10-fold cross-validation,
64.7% of testing positive samples are found to have some similarity with the training positive samples, under a
relatively relaxed threshold (alignment length=30, %identity=70%). While 46.6% of testing negative samples are
also found to have similarities with the training positive samples under the same threshold. Therefore, under the
above-mentioned threshold, Blastn achieves performances of sensitivity 64.7% and specificity 53.4%. Of course,
a more stringent threshold can significantly increase the specificity, but will also decrease the sensitivity. So, in
general, the method we proposed performs better than Blastn.

Table 2. The top 42 features selected by mRMR

No. Feature No. Feature

1 2-mers PWM score ' 25 2-mers PWM score

2 Score of motif 6 2 26 Score of motif 2

3 ATF-MA1053.1 ERF109° 27 ATF-MA1807.1_ZHD10
4-5 2-mers PWM score 28 2-mers PWM score

6 Score of motif 3 29 ATF-MA1666.2 HSFB2B
7 ATF-MA1188.1_At3g11280 30 2-mers PWM score

8 Score of motif 5 31 ATF-MA1060.1_SPL7

9 Score of motif 1 32-33 2-mers PWM score

10-11 2-mers PWM score 34 ATF-MAO0549.1 BZR2

12 ATF-MA1761.1 HSFB3 35 ATF-MAO0128.1 EmBP-1
13-16 2-mers PWM score 36-37 2-mers PWM score

17 ATF-MA0943.1 ARFS5 38 ATF-MA1426.1 MYBI124
18 2-mers PWM score 39 ATF-MA1794.1 NLP7

19 ATF-MA1083.2 WRKY30 40 2-mers PWM score

20-23 2-mers PWM score 41 ATF-MA1198.1 HAT2

24 ATF-MA(0955.1 POPTR 42 2-mers PWM score

" This kind of features are k&-mer PWM scores generated with a sliding window of length 10 and overlap 5.
*This kind of features are PWM scores of significant motifs, and the number here indicates the No. of motifs listed in Table 1.
*This kind of features are A score of TF binding affinities, and the symbol “-” follows by the potential TF matrix in JASPAR.

4 Conclusion

With the development of sequencing technologies, more and more SNPs are discovered in plants and other spe-
cies. So, more efforts are in urgent demand in order to fully interpret their biological functions. In this paper, a
new computational method for identifying functional SNPs in rice genome is proposed, according to sequence
information and TF bindings. The original data we used to build the prediction model, which are sequence con-
text of SNP and TF profiles in JASPAR, are all very easy to be obtained. So, the prediction method can be easily
applied to other plant species. With a reliable recognition result, the proposed model might help experimental
researchers to find potential SNPs for further diversity study and molecular breeding research in plants.

In addition, there is still much room for improvement in our proposed functional SNPs prediction model.
Firstly, both the quantity and quality of documented trait-associated SNPs in rice should be greatly improved,
thus we are able to further improve our model by parameter optimization. Secondly, we just discussed the effect
of the SNP variant on TFs binding affinities, while more functional elements can be considered, such as promot-
er, miRNA, IncRNA, etc. Adding the analysis of these functional elements can not only help to further improve
the prediction model but also help to understand the possible functional mechanism of functional SNPs in rice.
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