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Abstract. In the domain of cloud computing and network resource virtualization, existing fusion techniques 
for containers and virtual machines suffer from high energy consumption, inflexible scheduling requirements, 
and suboptimal resource utilization. This study critically examined the current methods, accounted for the 
contemporary requirements, and developed a novel strategy aimed at maximizing resource utilization while 
minimizing energy consumption. Comprehensive experiments illustrate the superiority of our approach over 
state-of-the-art fusion strategies such as Kubernetes+Kubevirt and OpenStack+Kubernetes, demonstrating 
significant reductions in energy consumption, improved resource utilization, and enhanced system perfor-
mance.
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1   Introduction

Cloud computing is a computer model that is built on the Internet. By storing data and processing power in a 
data center (cloud), it is possible to provide customers with a wide range of computing resources and services, 
allowing them to use and share resources on demand [1]. Traditional computing approaches typically need us-
ers to have local particular computer equipment and software to deal with and store data. However, in the cloud 
computing mode, users can connect to the cloud service provider’s data center via the Internet and use the com-
puting resources provided by the cloud service provider, such as virtual machines, storage space, databases, ap-
plications, and so on to complete various computing tasks. With the continuous development of cloud computing 
systems, relevant core technologies such as virtualization technology, distributed technology, microservice tech-
nology, and container orchestration technology have steadily progressed. In recent years, the emergence of new 
technology, such as the Docker container system [2], distributed storage systems based on erasure code technol-
ogy [3], the Spark system based on memory computing [4], a copy of the based on distributed data storage tech-
nology, and distributed concurrent programming models based on graphs, have subverted the original virtual-
ization technology. These new technologies not only increase cloud platform resource utilization and computing 
speed, but also provide organizations with more big data application models such as batch processing, real-time 
data processing, stream data processing, random data inquiry, and data mining.

Virtualization technology is the most important and fundamental technology in cloud computing [5]. There 
are now two types of virtualization technologies: hardware-based virtualization technology and operating sys-
tem-based virtualization technology. Multiple virtual machines can be installed and run on the same physical ma-
chine using hardware-based virtualization, each with its own operating system and separated from other virtual 
machines on the same physical machine. By providing a virtualization layer, the primary premise is to separate 
the hardware from the operating system. The virtualization layer’s primary job is to run numerous operating sys-
tem instances on a single physical server at the same time. The virtualization layer enables operating system in-
stances to share physical server resources via dynamic partitioning, so that each virtual machine has a set of inde-
pendent simulation hardware equipment, including CPU, memory, storage, motherboard, graphics card, network 
card, and other hardware resources. These virtual hardware resources are then used to install their own operating 
systems, known as Guest operating systems, on their own computers. The user’s program is ultimately executed 
in the Guest operating system. Infrastructure as a service (IaaS) is a crucial component of cloud services, and us-
ers can create virtual machines as needed. Hosted architectures and “bare metal” architectures are two common 
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server virtualization designs. The virtualization layer is run as an application on top of the operating system in 
the hosted architecture [6].

However, in bare-metal designs, the virtualization layer is run directly on x86 hardware platforms, followed 
by the installation of the operating system and applications. VMware Server is representative of residential archi-
tecture virtualization, whereas Xen [7] and KVM [8] incorporate bare metal architecture virtualization.

Containers in an operating system-based model share a host operating system and any required library, driver, 
or binary files. Services can run inside containers at a fraction of the overhead introduced by virtual machines 
because there is no hardware abstraction layer. Their central tenet is to establish Control Groups on the Linux 
kernel to isolate the service runtime environment; this isolated runtime environment is referred to as a container. 
Containers can be thought of as instruments for packaging, delivering, and orchestrating software services and 
applications. Docker is a container platform that simplifies and standardizes application deployment in a variety 
of contexts. There are numerous ecosystem software applications related to distributed container management.

In the field of cloud computing virtualization, virtual machine technology and containers complement one 
another. They apply virtualization to different levels. The fundamental advantage of containers is their lower per-
formance overhead, whereas VMS provides better isolation.

KVM hardware virtualization technology and Docker container technology have emerged as the current major 
virtualization technologies after years of development and competition. These two technologies’ popular applica-
tion frameworks are relatively mature, stable, and open source. OpenStack and Kubernetes are both open-source 
projects. OpenStack is a project that aims to create an open-source cloud management platform that is both stable 
and efficient. Computational, storage, network, and other resources are abstracted into computational resource 
pools, network resource pools, and storage resource pools using virtualization technology. Then, keystone, nova, 
neutron, glance, cinder, and other components are used to achieve unified scheduling and management of funda-
mental virtual resources such as virtual machines, bare metal, block storage, file storage, object storage, network, 
load balancing, security groups, and firewalls [9]. Keystone is used for authentication service in an OpenStack 
cluster, Nova for virtual machine deployment and calculation, Neutron for network service, Cinder for cloud 
hard disk storage, Glance for mirror service, Swift for object storage, Ceilometer for monitoring, Horizon for 
the visual interface, and Heat for application orchestration. The Google company’s open-source Kubernetes is 
used to provide automatic deployment across the host cluster, extension, and application of the system manage-
ment container. Kubernetes clusters can be easily run across a variety of container management applications, 
providing load balancing, resource monitoring, logging access and acquisition, authentication and authorization, 
health examination, horizontal extension and automatic discovery, and other functions [10]. Kubernetes clusters 
are divided into two types of nodes: Master and Minion. The Master serves as a control node, while the Minion 
serves as a compute node. The Master node carries the weight of Kubernetes’ essential control components, 
such as kube-apiserver, kube-controller-manager, and kube-scheduler. These components can handle Kubernetes 
API queries as well as integrate controllers to handle routine cluster operations and background process man-
agement. Furthermore, the Master node is in charge of scheduling the pod, the most basic deployment unit in 
the Kubernetes cluster, as well as providing key-value storage services for storing Kubernetes cluster data infor-
mation. Minion nodes are installed with kubelet and kube-proxy, which are important components required to 
maintain the pod runtime environment. kubelet serves as a proxy service for pods, monitoring them via apiserver 
or local configuration and performing tasks such as loading volumes, downloading keys, starting containers, pe-
riodic health checks, reporting pod health status, and making image backups. kube-proxy, on the other hand, im-
plements the Kubernetes-abstracted service notion by keeping network rules and a connection forwarding mech-
anism on the host node. The underlying method relies on iptables to forward traffic. In general, in the Kubernetes 
cluster design, the Master and Minion nodes each conduct their own tasks while working together to produce an 
efficient containerized cluster management system.

In conclusion, container technology and virtual machine technology are critical in the field of cloud comput-
ing virtualization. However, their traditional implementations have some restrictions. Although virtual machine 
technology can provide isolation and diverse operating system support, it is slow to boot and requires a lot of 
resources. While container technology has the advantages of being lightweight and quick to start, there are issues 
in terms of resource separation and security. As a result, techniques to fully use the benefits of containers and vir-
tual machines while overcoming their constraints have emerged as the primary focus of current research [11].
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2   Related Work

Previous research has suggested two key VM and container convergence approaches [12]: physical and logical. 
Both approaches aim to increase resource use and overall performance. In the case of physical convergence, run-
ning the container as a process of the VMs, or the VMs in the container [13] can take full advantage of the con-
tainer’s lightweight characteristics, reduce resource consumption and start-up time, and take into account its iso-
lation [14]. However, this shared environment increases system complexity and virtualization overhead because 
they run on the same physical computer. As a result, performance may be compromised.

Conversely, logical convergence can improve system availability while also reducing system complexity. 
Logical convergence optimizes resource utilization, accelerates start-up times, and improves overall stability and 
security by operating containers and VMs on different physical servers and exploiting the lightweight nature of 
containers. Additionally, running VMs and containers on different physical machines enhances accessibility and 
prevents the destruction of all virtualized processes in the event of a server failure. However, although logical 
convergence simplifies resource management, it may lead to lower resource utilization, increased energy con-
sumption [15], and overly complex deployment and management processes.

3   Background

RedHat’s Kubevirt technology utilizes container group pods to launch VMs, as depicted in Fig. 1. This approach 
is well-suited for physical convergence solutions [16] and is implemented through the use of the OpenStack 
Foundation’s Kata Container technology [17]. Fig. 2 illustrates the presence of container group pods within VMs, 
which enables a careful balance between isolation and portability. This balance is particularly important in multi-
tenant environments that require rapid deployments as well as resource sharing for development and testing pur-
poses [18].

Fig. 1. Running virtual machines in a container

Fig. 2. Running a container in a virtual machine
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In a recent study on logical convergence, it was found that China UnionPay implements an OpenStack cluster 
on a specific set of physical computers [19], whereas a separate Kubernetes cluster is deployed on another set, 
as illustrated in Fig. 3. This approach of using dedicated clusters for VMs and containers is particularly suitable 
for scenarios that demand high availability, such as large-scale application clusters and distributed systems. 
Moreover, adopting a logical convergence strategy can simplify system architectures and their management, re-
sulting in improved operational efficiency and maintenance effectiveness.

Fig. 3. Logical convergence of virtual machines and containers

This study introduces a resource-scheduling strategy aimed at addressing the limitations of the logical conver-
gence approach [20]. OpenStack [21] and Kubernetes [22] frameworks are employed to manage containers and 
VMs, respectively. Additionally, the Prometheus [23] framework is utilized to manage physical resources and 
intelligently schedule clusters based on resource utilization. By implementing this scheduling policy, the results 
demonstrate reduced energy consumption and enhanced resource utilization, thereby improving overall efficien-
cy.

4   Logical VM and Container Resource Scheduling Optimization

In the previous section, we introduced the background of the logical fusion strategy of containers and virtual 
machines, as well as their partial shortcomings. In this chapter, a detailed introduction is provided to the newly 
proposed resource scheduling optimization strategy based on the fusion of virtual machines and containers.

4.1   Strategy Overview

To address the issues of low resource utilization, complex deployment and management, and high energy con-
sumption observed in logical convergence, a resource scheduling optimization strategy was proposed. Containers 
and VM clusters were deployed separately, and the compute-node servers in each cluster were monitored. If an 
underloaded cluster was identified, the VM and/or container instances were relocated, and the vacated hardware 
was placed into hibernation. Subsequently, overburdened clusters can utilize the hardware resources by bringing 



137

Journal of Computers Vol. 34 No. 6, December 2023

them out of hibernation. The load-balancing result leads to reduced energy consumption and improved resource 
optimization.

4.2   Agent Architecture

The initial step in the deployment process involved setting up OpenStack and Kubernetes as the management 
frameworks. Subsequently, the Prometheus framework was deployed to monitor resource utilization. Our 
novel converged scheduling (CS) middleware was then introduced, which interfaced with the OpenStack and 
Kubernetes application program interfaces (APIs). It retrieved cluster monitoring data collected by Prometheus 
and performed resource-based scheduling and management of containers and VMs. The architectural layout of 
this system is illustrated in Fig. 4.

Fig. 4. Resource scheduling policy based on the logical convergence of virtual machines and containers

4.3   Core Algorithms

(1) Cluster Resource Detection
Resource monitoring and data collection in CS were performed through continuous polling of computation-

al nodes in container and VM clusters [24]. A shell acquisition script was utilized to collect hardware resource 
data (e.g., central processing unit (CPU), memory, and power) [25]. These data were subsequently linked to the 
Prometheus time-series database, and real-time and historical resource data from each computing node of every 
cluster were analyzed using a PromQL query through the Prometheus API [26]. Fig. 5 illustrates our cluster re-
source detection algorithm. The memory consumption of compute node i is determined as follows:

available 100%
i i

i total
memory i

total

M M
U

M
−

= × ,                                                       (1)
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where M i
total, M

i
avaliable, and U i

memory represent the total memory, usable memory, and memory consumption of node 
i, respectively.

The full CPU utilization of node i is determined as follows:
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where Ci
total, C

i
idel, and Ui

cpu.  represent the total, idle, and running CPU utilization of node i, respectively.
The energy use of node i is determined as follows:

1

ni i
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U E
=

= ∑ ,                                                                     (3)

where Ui
energy represents the energy consumption of node i, Ei

j isnergy expenditure of all processes j, and n is the 
total number of processes.

Fig. 5. Our cluster resource detection algorithm

(2) Dynamic Threshold Prediction
To detect instances of under- or over-utilization of resources in the compute node, a threshold must be estab-

lished. Therefore, our algorithm utilizes the mean and standard deviation to predict a reasonably broad threshold 
range while accounting for the comprehensive historical data of resource utilization per cluster type. The thresh-
old range can be further adjusted based on real-time performance data collected from all nodes. This approach is 
facilitated by the continuous polling of cluster resource data.

Compute node i is characterized by its CPU resource consumption Ui
cpu , memory resource utilization Ui

memory, 
and total resource utilization Ui

synthetical. The weight coefficient of the CPU is represented by Cweight, and the mem-
ory weight coefficient is denoted as Mweight. These weight coefficients are empirical parameters that are set based 
on the specific application scenario. In the current algorithm, the CPU weight is assigned a value of 0.3, whereas 
the memory weight is set to 0.7. Equation (4) is employed to calculate the total resource utilization while ac-
counting for the weighted contributions of CPU and memory.
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synthetical weight weight
i i i

cpu memoryU U C U M= × + × .                                                 (4)

The pseudocode of the dynamic threshold prediction algorithm is as follows:

for cloud in cluster do
   for i in cloud do

    get synthetical weight weight
i i i

cpu memoryU U C U M= × + ×

    get hs
iU

    compute avg
iU  from hs

iU

    compute std
iU  from hs

iU

    upt
iU  = avg std

i iU U+

      lot avg std
i i iU U U= −

    get osavg
iU

    compute upt lot   i iU and U  from osavg
iU

endfor
endfor

In the first step, the VM and container clusters are traversed to collect the most recent comprehensive resource 
utilization metric Ui

synthetical for each computing node. Subsequently, the historical comprehensive resource utiliza-
tion Ui

hs is gathered for each computing node. The average resource utilization Ui
avg is then determined using the 

historical data Ui
hs. The standard deviation is also computed based on the historical integrated resource usage Ui

hs. 
These values are then used to determine the upper and lower thresholds, Ui

upt and Ui
lot, respectively. The threshold 

can be fine-tuned by adding or subtracting the mean and variance over time. 
The threshold can be made more broadly representative, dynamically adaptable, and statistically stable by es-

timating the average resource usage of the other hosts, Ui
osavg. U

i
upt and Ui

lot are then modified based on the instance 
measures of Ui

osavg, where Ui
upt is increased by 0.1 and Ui

lot is decreased by 0.1, if Ui
synthetical is greater than Ui

osavg. 
When Ui

synthetical falls below Ui
osavg, U

i
upt decreases by 0.1 and Ui

lot increases by 0.1.
(3) Dynamic Threshold Scheduling 
The pseudocode of the dynamic threshold scheduling algorithm is as follows:

for cloud in cluster do
   for i in cloud do

    get synthetical
iU

    get upt lot    i iU and U

    if synthetical upt
i iU U>

      add nU
      migrate cvm

iU  into cvm
nU

    if synthetical lot
i iU U< .

      if cvmc
iU  < cvmc

oU  

        migrate cvm
iU  into cvm

oU
        delete iU
      else:

        adjust upt
iU



140

Mitigating Cloud Computing Virtualization Performance Problems with an Upgraded Logical Convergence Strategy

    end
  endfor
endfor

Each compute node Ui in the cluster cloud is evaluated to determine its load status based on the threshold 
range generated by the dynamic threshold prediction algorithm. If a node is identified as being overloaded, a 
sleeping compute node Ui is awakened from hibernation to rejoin the cluster, and the VM instance or container 
Ui

cvm at the overloaded node is migrated to the newly added compute node Un
cvm to alleviate the overload. Ui

cvm is 
then moved to another compute node Uo

cvmc, if it is overloaded. Prior to migration, the method determines wheth-
er the other nodes in the cluster have sufficient Uo

cvmc to accept Ui
cvmc . The host is then assessed using a dynamic 

threshold prediction technique, and its underload threshold Ui
upt is increased to ensure it is no longer overloaded. 

Upon successful migration, compute node Ui departs the cluster, clears all its cached data, and enters into hiber-
nation.

5   Experiment

5.1   Experimental Environment

In this study, the effectiveness of our proposed resource scheduling model was evaluated by combining VMs 
and containers. To replicate a datacenter cluster environment, VMs were generated using VirtualBox. A total of 
14 VMs were created in three different environments, and their precise configurations are provided in Table 1. 
The initial Centos7-equipped VM was configured, and the remaining 13 VMs were cloned to ensure consistent 
environmental conditions. The study compared the Kubernetes+Kubevirt and OpenStack+Kubernetes strategies, 
representing physical and logical convergence approaches, respectively. By conducting VM and container con-
vergence studies, the performance and outcomes of these two strategies were assessed and compared.

In the experiments presented in this study, the CPU, memory, and energy usage of all compute nodes in a clus-
tered environment were compared for each convergence technique. To ensure fair comparison, the exact identical 
test data were executed on each cluster setting. The test data were generated using the stress tool, which creates 
four container sets with random calls to free the CPU and random-access memory, and two VMs instances run-
ning a private Alpine Linux system.

Throughout the study, the performance metrics in each set of environments were continuously tracked using 
the Prometheus tool to enable the monitoring and analysis of various performance indicators alongside a compre-
hensive evaluation of the resource utilization and system performance for each convergence technique.

Table 1. Experimental environment configuration

Policy Host Host IP CPUs M e m o r y 
(MB)

Hard disk 
(GB)

Operating 
system

Node type

Kubernetes
+Kubevirt

K8sControllerKubevirt 10.20.0.27 2 2048 80 Centos7 control
K8sComputeNode1 10.20.0.10 2 4000 80 Centos7

calculateK8sComputeNode2 10.20.0.11 2 4000 80 Centos7
K8sComputeNode3 10.20.0.12 2 4000 80 Centos7

OpenStack
+Kubernetes

K8sController 10.20.0.28 2 2048 80 Centos7 controlOpenStackController 10.20.0.09 2 5000 80 Centos7
K8sOsComputeNode1 10.20.0.13 2 4000 80 Centos7

calculateK8sOsComputeNode2 10.20.0.14 2 4000 80 Centos7
K8sOsComputeNode3 10.20.0.15 2 4000 80 Centos7

OpenStack
+Kubernetes
+rsm

K8sController 10.20.0.29 2 2048 80 Centos7 controlOpenStackController 10.20.0.08 2 5000 80 Centos7
K8sOsComputeNode1 10.20.0.16 2 4000 80 Centos7

calculateK8sOsComputeNode2 10.20.0.17 2 4000 80 Centos7
K8sOsComputeNode3 10.20.0.18 2 4000 80 Centos7
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5.2   Experimental Analysis

Each environment’s test data and results were distinct, and three indicators were assessed at identical times in 
each trial. Each environment’s processing node’s median energy consumption, CPU, and memory usage totals 
were tracked for the period from the start of the test for 10 min. This collection technique contributed to the ac-
curacy and stability of the results in comparison to other methods.

The findings in Fig. 6 indicate that the compute node using the RSC policy exhibited significantly lower ener-
gy consumption compared with the other policies. Similarly, in Fig. 8, the RSC policy at the K8sComputeNode1 
and K8sComputeNode2 demonstrated more effective memory utilization than the other policies. Fig. 7 shows 
that the RSC policy achieved better CPU utilization at the K8sComputeNode1 compared with the other poli-
cies. Additionally, in terms of CPU consumption at the K8sComputeNode2, the RSC policy outperformed the 
OpenStack+Kubernetes approach. 

Table 2 provides a comprehensive comparison, revealing that the RSC method achieved a 39.96% reduction in 
energy consumption for cluster compute nodes compared with Kubernetes+Kubevirt. Moreover, the RSC method 
was 33.3% more cost-effective than the OpenStack+Kubernetes approach. The OpenStack+Kubernetes strate-
gy exhibited a 0.71% improvement in overall CPU utilization compared with the other approaches, whereas its 
memory utilization was 8.37% better. Compared with Kubernetes+Kubevirt, the improvement in memory utili-
zation was 2.15%. In summary, the RSC technique demonstrates significant advantages in terms of lower energy 
consumption and improved resource utilization.

Fig. 6. Comparison of energy consumption of fusion strategy calculation nodes

Fig. 7. Comparison of CPU utilization of fusion strategy computing nodes
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Fig. 8. Comparison of memory utilization of fusion strategy computing nodes

Table 2. Comparison table of overall performance of fusion strategy calculation nodes

Policy name Total energy 
consumption (mw)

Total CPU 
utilizatio (%)

Total memory 
utilization (%)

Kubernetes+Kubevirt 38316.3 54.28 33.62
OpenStack+Kubernetes 36495.1 35.5 27.4
OpenStack+Kubernetes+rsc 27376.3 36.21 35.77

6   Conclusion

This study introduced a novel technique for fusing VMs and containers that effectively leveraged the advantages 
of virtualization while addressing its limitations through a logical conversion strategy. The experimental com-
parison between the conventional Kubernetes+Kubevirt technique and OpenStack+Kubernetes demonstrates 
significant benefits in terms of reduced energy consumption, improved resource utilization, and enhanced system 
performance.

As part of future work, the threshold scheduling method of our strategy will be enhanced by incorporating ma-
chine learning techniques to achieve more accurate threshold prediction. Additionally, the scheduling algorithm 
will be modified to improve migration efficiency, and the entire fusion architecture will be optimized for better 
utilization of idle resources. Finally, the integration of cluster compute nodes will be further enhanced to ensure 
seamless operation and improved overall performance.
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