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Abstract. In recent years, with the rapid development of science and technology, many new technologies 
have made people’s exploration of the ocean deeper and deeper, and due to the requirements of national 
defense and marine development, the underwater acoustic sensor network (UASN) has been paid more and 
more attention. Nevertheless, the underwater acoustic channel has the properties of considerable propagation 
delay, limited bandwidth, and unstable network topology. In order to improve the performance of the medi-
um access control (MAC) protocol in UASN, we propose a new MAC protocol based on the Slotted-FAMA 
of Multiple Reception (MR-SFAMA) protocol. The protocol uses the Q-Learning algorithm to optimize the 
multi-receiver handshake mechanism. The current state is judged according to the received node request, and 
the Q-table is established. Through the multi-round interaction between the node and the environment, the 
Q-table is continuously updated to obtain the optimal strategy and determine the optimal data transmission 
scheduling scheme. The reward function is set according to the total back-off time and frame error rate, which 
can reduce the packet loss rate during network data transmission while reducing the delay. In addition, the 
matching asynchronous operation and uniform random back-off algorithm are used to solve the problem of 
long channel idle time and low channel utilization. This new protocol can be well applied to unstable network 
topology. The simulation results show that the protocol performs better than Slotted-FAMA and MR-SFAMA 
regarding delay and normalized throughput.

Keywords: underwater acoustic sensor network, medium access control, multiple reception, Slotted-FAMA, 
Q-Learning

1   Introduction

UASN has a wide range of applications in defense and industry fields. Its development level is related to the 
realization of the full utilization of marine resources and the military game between countries. At present, the 
international situation is complex and changeable, and the demand for UASN is increasing day by day. In order 
to gain the initiative in the complex underwater environment battlefield, underwater combat will inevitably tran-
sition from standalone combat to system-supported group combat, in which the UASN plays an important role.

MAC is one of the core protocols of UASN, which determines the channel usage and distribution mode in 
UASN. Compared with terrestrial wireless sensor networks, MAC protocol for UASN faces the following diffi-
culties in design [1]:

(1) The propagation delay of the underwater acoustic link is extended. In underwater environments, acoustic 
waves are used as a propagation medium, resulting in a propagation delay in the water five orders of magnitude 
higher than land. Therefore, the MAC protocol suitable for land radio frequency networks has the problem of 
low throughput and high delay in UASN.

(2) The available bandwidth resources of underwater acoustic links are limited. In wireless communication, 
bandwidth division is the division of signal frequency. In the underwater environment, the available frequency 
band range is small because the high-frequency signal has a high power attenuation rate. It will be further de-
creased with the increase in transmission distance.

(3) The Multipath effect and Doppler effect in the underwater environment make the underwater acoustic link 
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unstable, and the node drift or the movement of the underwater autonomous vehicle also directly affects the on-
off change of the network link.

The competitive MAC protocol based on the handshake mechanism has played a significant advantage in the 
performance of UASNs, which can effectively alleviate the above problems. The MR-SFAMA protocol proposed 
in Reference [2] has an ideal effect. MR-SFAMA protocol achieves multiple data by requiring the sink node to 
receive as many RTS (Request To Send) control packets as possible in one-time slot, thus overcoming the disad-
vantages of Slotted-FAMA [3], such as low throughput and poor fairness. However, in terms of data transmission 
scheduling calculated by receiving nodes, new problems are introduced. Due to the unstable network topology 
of UASN and the significant change of acoustic velocity with the environment, the probability of data transmis-
sion collision is greatly enhanced. Therefore, we use the Q-Learning algorithm to optimize the data transmission 
scheduling scheme, adopt the time-slot asynchronous operation, and apply a new random back-off algorithm [4, 
5]. We call the new protocol MR-SFAMA-Q (SFAMA of Multiple Reception based on Q-Learning). The status 
of our work is that we have used the Q-Learning algorithm to optimize the data transmission scheduling scheme 
in the protocol and designed a suitable asynchronous time slot scheme and random back-off algorithm. The simu-
lation results show that compared with Slotted-FAMA and MR-SFAMA, MR-SFAMA-Q significantly improved 
throughput and delay. In summary, our main technical achievements are as follows:

(1) The Q-Learning algorithm is used to optimize the data transmission scheduling scheme of the multiple 
reception mechanism handshake protocol. The learning environment of communication nodes in UASN is 
mapped, and the state set, action set, and value function are defined. The optimal strategy is obtained by estab-
lishing a Q-table to obtain the optimal data transmission scheduling scheme;

(2) In order to improve the channel utilization, the total back-off time and the frame error rate are used as the 
evaluation indexes of the reward function. The total back-off time can intuitively reflect the quality of the back-
off mechanism, and the inclusion of the frame error rate can effectively reduce the packet loss rate during net-
work data transmission;

(3) The time slot asynchronous operation and the new random back-off algorithm are used to adapt to the pro-
tocol, which solves the problem of long channel idle time and low channel utilization.

The rest of this paper is organized as follows: Section 2 mainly analyzes the work related to MAC protocol 
for UASN based on the existing literature. Section 3 presents the model of UASN and some hypotheses. MR-
SFAMA-Q protocol and related issues are described in Section 4. Section 5 covers the verification and perfor-
mance comparison analysis of the simulation platform. A brief conclusion is given in section 6.

2   Related Works

In this section, the research related to the topic of this paper is proposed, and the related work is compared to dis-
tinguish it from the work of this paper.

2.1   MAC Protocols for UASN

As one of the core protocols of UASN, MAC protocol is responsible for using and allocating channels, which 
guarantees efficient communication of UASN. Whether the MAC protocol can use the limited frequency spec-
trum reasonably and efficiently directly affects the performance of UASN.

Generally, the MAC protocols are divided into two basic mechanisms [6] according to the allocation poli-
cies: fixed allocation MAC and competitive MAC. The fixed allocation MAC divides the channels from time, 
frequency, and space perspectives. Because UASN has the characteristics of narrow bandwidth, time extension, 
and complex synchronization, it is not suitable for using a fixed MAC allocation mechanism [7]. Therefore, most 
studies are designed based on competitive MAC mechanisms. Competing MAC is a network node that sends 
data by preempting or reserving the channel. The mainstream competitive MAC protocols include random com-
petition MAC protocol and MAC protocol based on handshake reservation.

The most easily implemented competitive MAC protocol is ALOHA [8], first developed by the University of 
Hawaii in the United States. It has low communication delay and good communication performance when the 
communication network load is small. Based on this, the UW-ALOHA [9] protocol considers the possible distri-
bution of underwater nodes and selects the binary index and Poisson’s escape scheme, which is better applied in 
USAN. 
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To solve the problem of hidden terminals, the node applying CSMA listens to the channel before sending data 
packets. If the channel is idle, the node will send data packets. In ALOHA-CS [10], a new contention window ac-
commodates variable propagation delays. The window size is between two and five times the maximum propaga-
tion delay. As soon as the node senses that the channel is idle, it transmits data, and the unsuccessful transmission 
is assigned a random back-off time. This provides a particular avoidance of communication collision. However, 
because of the longer delay and narrower bandwidth in the underwater acoustic channel, new problems of hidden 
terminal and exposed terminal are brought. 

The competitive MAC protocol based on the handshake mechanism plays a significant advantage in the per-
formance of UASNs. MACA protocol is the first underwater acoustic MAC protocol using an RTS/CTS hand-
shake mechanism [11]. Bharghavan [12] improved it and proposed the MACAW protocol, which adopted an 
adaptive back-off algorithm. It added an automatic request retransmission mechanism and adopted RTS-CTS-
DS-DATA-ACK control packet mode. It effectively solves the problem of high collision rate and packet loss rate. 

In addition, Molins and Stojanovic [13] proposed an improved Slotted-FAMA protocol based on FAMA, 
which set the RTS and CTS (Clear To Send) control packet length and divided the time into time slots for the 
characteristics of UASN to reduce the impact of propagation delay on performance. 

The Slotted-FAMA protocol only allows one pair of sending-receiving nodes to access the channel in one data 
transmission cycle, dramatically affecting the performance of UASN, such as throughput and delay. Zhang [14] 
proposed a MAC protocol for UASN based on data link based on Slotted-FAMA, named SFAMA-DT, which 
improves the channel utilization rate by forming data packet sequences of multiple transmission pairs during 
each round of simultaneous handshake. The problem of multiple RTS attempts of Slotted-FAMA in high-traffic 
environments is overcome, significantly reducing the relative proportion of time wasted due to control packet 
propagation delay.

Lin [2] proposed the MR-SFAMA protocol, which allows the sink nodes to receive multiple RTS control 
packets in one-time slot. By controlling the scheduling time of packets sent by its neighbor nodes, the possibility 
of collision is effectively reduced, and the throughput is better improved. However, its data transmission sched-
uling algorithm does not consider the adverse factors such as the everchanging topology structure of UASN and 
the immense change of acoustic velocity with the environment, which significantly enhances the probability of 
data transmission collision, resulting in the reduction of network data transmission throughput, unstable work 
efficiency, and other problems. To solve this problem, we use the Q-Learning algorithm to optimize the data 
transmission scheduling scheme, adopt the time-slot asynchronous operation, and use the new random back-off 
algorithm [15]. The improved MAC protocol has better performance and stability.

2.2   Summary

As one of the core protocols of UASN, MAC protocol is responsible for the use and allocation of channels, 
which is the guarantee of efficient communication of UASN. Whether the MAC protocol is able to use the limit-
ed frequency spectrum reasonably and efficiently directly affects the performance of UASN.

Table 1. MAC protocols for UASN

Protocol Topology Synchronization Advantage Disadvantage

UW-
ALOHA

Distributed Yes The principle is simple and easy to 
implement.

It is unsuitable for large UASNs, and 
the throughput is challenging to im-
prove.

ALOHA-CS Distributed No It can use long propagation delay to 
improve network throughput.

Underwater listening mechanism leads 
to high energy consumption of nodes.

MACAW Multi-hop No Using fewer control packets to solve 
the exposed terminal problem.

The handshake time is longer, leading 
to the node waiting time extension.

Slotted-
FAMA

Distributed Yes Reasonable control of packet length 
and division of time slots reduce the 
impact of propagation delay on proto-
col performance.

Frequent control packet interaction 
leads to low channel utilization.

MR - 
SFAMA

Centralized Yes The multi-receiver mechanism is used 
to improve network throughput.

It is not suitable for UASN with to-
pology changes.
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This section reviews the contention-based MAC protocol, mainly discussing the random contention MAC 
protocol based on the carrier sensing mechanism and the handshake mechanism. In practical applications, hid-
den terminals and exposed terminals will bring some challenges to the random contention protocol. The proto-
col based on the ALOHA variant does not consider the channel state before sending data, resulting in a higher 
collision probability. The protocol based on the CSMA variant listens to the channel before sending data, which 
reduces the collision probability. However, due to the long propagation delay in UASN, it may lead to ultralong 
listening time. In addition, underwater carrier detection is costly and needs to be more suitable. The competition 
MAC protocol based on handshake can not only effectively avoid the exposed terminal problem but also ensure 
the stability of information transmission. However, its frequent control packet interaction significantly affects the 
throughput and delay of the underwater acoustic communication network. The multi-receiver protocol based on 
handshake is the most efficient solution at present. Based on the existing research, we discuss how to design an 
excellent data reception scheduling scheme to apply to UASN with topology changes so as to improve the per-
formance of the MAC protocol.

3   System Model and Assumptions

This section will introduce the UASN system architecture and Q-learning algorithm.

3.1   System Model

UASN system is mainly composed of UASN, a Data Transmission Network, and a Management Control Center, 
among which UASN includes underwater sensor nodes, underwater sink nodes, and surface relay nodes [16], as 
shown in Fig. 1. The ideal working mode of UASN is described as follows: underwater sensor nodes and under-
water sink are arranged in a designated area to form a UASN. Each underwater sensor node collects data within 
the network, which is first transmitted to the underwater sink node (AUV). After the mobile AUV receives the 
data sent by the sensor node within the transmission range, it is transmitted to the surface relay node through 
multiple hops. AUV moves according to the preset path. The surface relay node then sends the data or processed 
information to the control center through the transmission network. The network adopts the Static routing pro-
tocol. The data transmission path in a cluster is set as all child nodes transmit to the central node, and the central 
node transmits to the sea buoy node.

Data center

Satellite

Relay node

Sensor node

Radio link

Management Control Center Data Transmission Network

Underwater Acoustic Sensor Network

AUVA

B

C

D

E F

G H

I

J

K

Fig. 1. UASN system

We make the following assumptions:
(1) The control packet transmission process can calculate the propagation delay between each underwater sen-

sor node and the sink node.
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(2) Underwater sensor nodes can save recent data transmission situations locally.
(3) Except for data packet collision, all nodes can receive data packets successfully.

3.2   Reinforcement-Learning Technique

Reinforcement learning is one of the paradigms and methodologies of machine learning. Learning strategies 
are used to maximize reward in the agent interacting with the environment. As shown in Fig. 2, reinforcement 
learning mainly comprises agents, environment, states, actions, and rewards. After an agent performs an action, 
the environment transitions to another state, and the environment rewards the conversion. The agent then per-
forms a new action according to the reward strategy based on the new state and environment feedback. When 
performing an inevitable step, the evaluation of the current agent in this state is mainly represented by the value 
function, including the state value function and the state-action value function (action-value function for short). 
Reinforcement learning is a general paradigm using the Bellman equation, which can be simplified as a Markov 
Decision Process (MDP) [17].

Agent

Environment

action

rewardstate

tA
tRtS

t 1R +

1tS +

Fig. 2. Reinforcement-Learning technique
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In the formula, S represents the state space set, S={s1, s2, …, sn }, where si represents the state of time step i. 
A denotes the set of action spaces, A={a1, a2, …, an }, where ai represents the action of time step i. Pat stst+1 is the 
state transition probability, representing the probability distribution of moving to another state st+1 after executing 
an action in the current state st. R is the reward function, representing the reward obtained by moving to another 
state st+1 after executing an action in state st.

In fact, solving reinforcement learning is equivalent to optimizing the Bellman equation. The state value func-
tion can be divided into two parts: the immediate reward Rt and the discount value of the future state γV(st+1), 
whose Bellman equation is:
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Similarly, the Bellman equation of the action value function is:
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The objective of reinforcement learning is to solve the optimal strategy of the MDP, and the value function 
is the expression of the optimal strategy (the optimal strategy is the strategy that maximizes the value function). 
The optimal value function can represent the optimal strategy.
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In other words, if the optimal value function is known, the optimal strategy of MDP can be obtained. 
Therefore, the optimal strategy can be obtained by maximizing.
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Q-learning is a model-free and non-fixed strategy algorithm, which belongs to the Temporal Difference algo-
rithm; when updating the Q-value, the target uses the maximum value of the action value function and is inde-
pendent of the strategy used when selecting the action [18].

3.3   Analyses and Discussions

The algorithm we designed dynamically adjusts the multi-receive data scheduling strategy by learning from the 
current communication process to avoid data conflicts in the channel and improve the fairness of indirect channel 
access of nodes. After the nodes start working, all sending and receiving nodes establish contact through RTS 
control packets. According to the number of control packets received by the receiving node and the receiving 
order, it is mapped into a state, and each state establishes a Q-table, which is used to store the order and timing of 
the sending nodes to send data packets after that. After several rounds of interaction, the data scheduling strategy 
corresponding to the maximum Q value in the Q-table is selected to improve the network throughput. Because 
there is an interaction process between the node and the communication environment, the Q-table is constantly 
updated with the change in the environment. Hence, the algorithm is suitable for UASN with changing network 
topology.

4   MR-SFAMA-Q Protocol

In this section, we will introduce the MR-SFAMA-Q protocol in detail, including the mechanism of the MR-
SFAMA-Q protocol, the design of the reward function, and the convergence property.

4.1   The Protocol Overview

In UASN, each underwater sink node is mapped as an agent of reinforcement learning, and the communication 
process of the whole network is the learning environment of the agent.

Fig. 3 is an example, and the protocol workflow is as follows:
1) To establish a connection, three asynchronous nodes send RTS control packet requests to the sink node at 

the beginning of the time slot.
2) Sink receives the first RTS moment as the time-slot start time and receives three RTS control packets in a 

time-slot, which are node1, node3, and node2. The optimal data transmission scheduling scheme is selected ac-
cording to the Q-Learning algorithm, and the scheme is sent to all nodes along with CTS in the next time slot.

3) The first node of the data transmission scheduling scheme sends data immediately in the next time slot, and 
the other two nodes wait for some time to send data, respectively. The node that failed to receive the CTS control 
packet enters the back-off state. The waiting time of the two nodes is shown in (6) and (7).

1 1 2
Pr_1 T op TwaitTime Delay Delay Delay= + − .                                                (6)

2 2 3
Pr_ 2 _1T op TwaitTime Delay Delay waitTime Delay= + + − .                                   (7)
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Where waitTime_1 and waitTime_2 are the waiting times of two nodes, respectively, Delayn 
T  represents the 

transmission delay of the nth packet, and Delay n 
Prop represents the propagation delay of the nth packet.

4) After receiving all packets or maximum waiting time, the sink broadcasts an ACK packet radio success, and 
the node that fails to receive the packet enters the back-off.

312 S

S

SS

2 S

S1

11

2

3

Sink

Node1

Node2

Node3
3

3 2

S S

waitTime_1

waitTime_2

n S n SnRTS CTS nDATA ACK

Fig. 3. The procedure of MR-SFAMA-Q protocol

4.2   Transmission Mechanism

This part introduces the working process of the Q-Learning algorithm for data transmission scheduling in MAC 
protocol.

In the scheme, the corresponding agent is each underwater node in the network, and the learning environment 
corresponds to the communication process of the whole network. The agent’s state st(st ∊ S) is the RTS control 
packet received by the sink node in a time slot ( including the total number of RTS control packets and the re-
ceiving order ). A set of Q-tables is established for all possible data transmission orders, and a data transmission 
policy is selected as the action at(at ∊ A) based on the Q-Learning algorithm.

The environment will generate a reward Rt based on the action feedback of the agent. Definition Q(st,at)rep-
resents the average reward expectation of the underwater node at time t when selecting action at in the state st. 
According to the Bellman equation, the Q-table is updated by (8) as follows:

1( , ) ( , ) [R max ( , ) ( , )]t t t t t t t t tQ s a Q s a Q s a Q s aα γ +← + + − .                                    (8)

Where α ∊ (0,1] represents the learning rate, its value determines the speed at which the model training can 
obtain the optimal solution. If the learning rate is too large, the optimal solution may be missed, and the model 
cannot converge. On the contrary, it will affect the training efficiency of the model. γ ∊ [0, 1] represents the dis-
count rate and maxQ(st+1, at)represents the impact of long-term decisions on current behavior. Represents the 
maximum expected value corresponding to the new state st+1(st+1 ∊ S) entered by the environment under the ac-
tion of the current action in the Q-table.

State 1 State 2 State 3 State 4 State 5

order 2 order 3 order 4

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 22 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 22 00 00 00 00 --11 00 00 00 00 00 00 00 00 00

initial value

update 1

update 2

update n

order 1 order 2 order 3 order 4order 1 order 2 order 3 order 4order 1 order 2 order 3 order 4order 1 order 2 order 3 order 4order 1

Fig. 4. Updating process of Q-table
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The updating process of the Q-table is shown in Fig. 4. According to the different sending requests received 
by the receiving node, it is represented as a state (i.e., the total number of RTS control packets received and the 
receiving order). Each state maintains a Q-table, and an action (i.e., data transmission sequence) corresponds to 
a Q value. After multiple rounds of interaction, the Q-table is updated, and the action with the most significant 
Q value is performed. The number of states in the Q-table is a crucial parameter in the Reinforcement Learning 
process regarding memory capacity that should be investigated.

Q-learning can be used to deduce the optimal action strategy of underwater nodes without knowing the system 
model. When the optimal data transmission sequence strategy is selected, the Q-value is updated according to (8) 
after this round of data transmission. If Q*(st at) represents the Q value obtained when the optimal strategy π* is 
followed, the optimal strategy can be deduced:

* *arg max ( , )t t
a A

Q s aπ
∈

= .                                                                (9)

Q-learning can be used to deduce the optimal action strategy of underwater nodes without knowing the system 
model. When the optimal data transmission sequence strategy is selected, the Q-value is updated according to (8) 
after this round of data transmission. If Q*(st at) represents the Q value obtained when the optimal strategy π* is 
followed, the optimal strategy can be deduced:

In order to avoid falling into the suboptimal solution state, the strategy 𝜀-greedy is adopted to adjust in time 
according to the selected action and feedback reward. The algorithm compromises exploration and utilization 
based on probability, that is, to explore with the probability of exploration rate ε and to utilize with the probabil-
ity of 1-ε. When ε is large, the model has better flexibility, can explore the potential higher reward faster, and the 
convergence speed is fast. When 𝜀 is small, the model has better stability and more opportunities to take advan-
tage of the current best reward, but the convergence rate is slow. Based on this, the strategy of underwater nodes 
performing action is designed as follows:

( ( , ) 0),     
max( ( , )),                

t t

t t

random Q s a rand
a

Q s a rand
ε
ε

> ≤
=  >

.                                                (10)

Where rand = random[0,1].
The q-learning algorithm for the data transmission sequence is shown in Algorithm 1.

Algorithm 1. Q-Learning algorithm for data transmission sequence
1: Initialize Q(st, at), ∀st∊S, at∊A, arbitrarily, and Q(terminal-state, ∙)=0
2: Receive RTS from nodes
3: Repeat (for each episode):
4:   Initialize S
5:   Repeat (for each step of the episode):
6:    Choose from st using policy 𝜀-greedy from Q
7:    Take action at the observer, st+1

8:    Q(st, at)←Q(st, at) + α[r + γmaxQ(st+1, at) – Q(st, at)]
9:    st←st+1

10:   Broadcast Q(st, at) using RTS
11:   until it is terminal

4.3   Asynchrony and Back-off

Relevant studies have shown that, in the ground environment, data packet reception is time-synchronous, and the 
propagation delay can be ignored. Therefore, data packets from different nodes can be successfully received at 
the receiver with only a tiny protection time. Under this condition, the channel utilization rate is high. However, 
if an asynchronous operation is applied, a large number of collisions will occur because packets will collide at 
the receiving end due to the short time-slot duration. However, in the underwater environment, the time slot 
length requires more time to complete the control packet and the packet interaction to accommodate the longer 
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propagation delay [19]. The long propagation delay results in a long idle time on the receiver node, which re-
duces channel utilization. However, the idle time is often enough to avoid overlapping reception, so the protocol 
using asynchronous operations is less prone to conflict [20].

The node will enter the back-off state when the data collision occurs and transmission fails. The traditional 
time-slot protocol back-off algorithm is defined as follows:

_ int[CW ()] _time back off Random slot time− = × × .                                       (11)

CW indicates the size of the node back-off window, and slot_time indicates the time-slot length.
In this way, the starting time of each node’s slot frame cannot be changed, which is unfavorable to the above 

asynchronous operation and leads to network convergence failure. Therefore, this protocol adopts a uniform ran-
dom back-off algorithm, as shown in the Fig. 5. Using this scheme, for each collision, the nodes randomly delay 
the start time of the next slot according to a uniform distribution.

2

1

1

Sink

Node1

Node2

2 Collision！

uniform random back-off

uniform random back-off

Fig. 5. Uniform random back-off algorithm

4.4   Design of Reward Function

The MAC back-off mechanism in UASN based on Q-Learning aims to improve the channel utilization rate and 
ensure the fairness of node competition. The design of the reward function is an essential aspect of Q-learning, 
which directly affects the model’s learning efficiency and convergence effect. In order to evaluate the feasibility 
of action execution, various indexes are introduced into the reward function, including the total time of back-off 
and frame error rate. Then the reward function of choosing action at in state st at time t is defined as follows:

1 2( ) ( )t t tR r back off r FERβ β= × − + × .                                                 (12)

Where β1, β2 ∊ (0,1].
The total back-off time refers to the time from triggering the back-off mechanism to occupying the channel to 

send data before each successful data transmission, which can be expressed as:

( ) _t n
n

T back off back off time− = −∑ .                                                  (13)

Where n indicates the number of conflicts, back-off_timen represents the back-off time of the nth conflict.
The total back-off time can reflect the back-off mechanism. Here, the difference between the total back-off 
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time at time t and the total back-off time at time t-1 is used as the reward value:

1( ) ( ) ( )t t tr back off T back off T back off−− = − − − .                                          (14)

However, only using the total back-off time to evaluate the index may increase the packet loss rate, so the 
frame error rate [21] is also included in the evaluation index. Specifically:

1FER
( ) ln

FER
t

t
t

r FER −= .                                                               (15)

In summary, the reward function is defined as follows:

1
1 1 2

FER
[ ( ) ( )] ln  

FER
t

t t t
t

R T back off T back offβ β −
−= × − − − + × .                                 (16)

4.5   Convergence Property

Convergence is also an essential problem in reinforcement learning algorithms. Watkins and Dayan use a sto-
chastic process and fixed-point theory to give [22]:

1) The learning process is Markov; 
2) All state-action pairs can be accessed indefinitely; 

3) The learning rate α must meet four value conditions at the same time: 0 ≤α≤ 1, 
0

t
t
α

∞

=

= ∞∑ 2

0
t

t
α

∞

=

< ∞∑
the learning process can converge to the optimal action-value function Q*(st, at). Therefore, we can see that the 
back-off algorithm satisfies all convergence conditions.

5   Evaluations

5.1   Simulation Settings

The NS-3 discrete event network simulator is used for simulation and verification. The ideal channel model pro-
vided in the UAN module is adopted. In order to evaluate the proposed solution, the configuration of simulation 
network parameters and learning parameters is shown in Table 2. The MAC protocol proposed in this paper 
mainly solves the problem that the traditional multiple reception handshake protocol has low throughput and 
poor performance in an unstable topology network. Therefore, the AUV in this paper adopts the simplest linear 
motion movement model: the roundtrip movement between two points, and the underwater sensor nodes are ran-
domly distributed around the AUV trajectory.

Table 2. Simulation parameters table

Parameter Value
Node layout range 600m×600m

Depth of nodes 70m
Packet generation rate 80bit/s

Carrier center frequency 12kHz
The velocity of AUV 0.2m/s-2m/s

α 0.87
γ 0.9
ε 0.1
β1 0.73
β2 0.27
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5.2   Performance Evaluation Criteria

In order to illustrate the performance of the MAC protocol, we use time delay and normalized throughput to 
evaluate the performance of the MAC protocol in UASN.

1) Delay. The delay reflects the timeliness of data transmission. It refers to the time that a packet goes through 
in the channel from the sending node to the sink, which can be divided into processing delay DelayProc, queue 
waiting time TQwait, transmission delay DelayT, and propagation delay DelayProp according to different stages [23].

Pr Proc Qwait T opDelay Delay T Delay Delay= + + + .                                           (17)

2) Normalized throughput. The throughput represents the number of bits the node successfully sends data 
frames per unit time [24]. The normalized throughput is the value that normalizes the network’s throughput to a 
value from 0 to 1. It is the most representative performance indicator that reflects the working efficiency of the 
algorithm and network performance.

5.3   Simulation Results

Fig. 6. Normalized throughput performance of 3 MAC protocols without AUV

Fig. 7. Normalized throughput performance of 3 MAC protocols with AUV

Fig. 6 and Fig. 7 show the normalized throughput performance of MR-SFAMA-Q compared with Slotted-FAMA 
and MR-SFAMA without and with AUV, respectively. In the scenario without AUV, all nodes are fixed. It can 
be found that the throughput of MR-SFAMA-Q is similar to that of traditional multiple reception protocols 
and sometimes even worse. In the scenario with AUV， when the data rate is less than 0.15, the throughput 
of the three protocols increases with the data rate increase. When the data rate is more significant than 0.15, 
the throughput of Slotted-FAMA and MR-SFAMA decreases slowly. This is because the traditional handshake 
mechanism increases the channel conflict rate under the condition of unstable network topology. In addition, the 
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throughput of MR-SFAMA-Q increases with the increase in the number of nodes due to the efficient convergence 
of the Reinforcement-Learning algorithm adopted in this paper.

Fig. 8. Delay performance of the three MAC protocols without AUV

Fig. 9. Delay performance of the three MAC protocols with AUV

Fig. 8 and Fig. 9 show the comparison of the delay performance of the three MAC protocols without and with 
AUV. MR-SFAMA-Q achieves significant performance improvement in UASN with network topology changes. 
For example, when the node data transmission rate increases, the delay of MR-SFAMA increases significantly, 
which is caused by more data collisions. In addition, we can see that as the number of nodes increases, the MR-
SFAMA-Q delay of the MR-SFAMA-Q protocol increases more slowly than the other two protocols. However, 
in the fixed network topology scenario, the traditional multiple reception protocol performs better because the 
traditional multiple reception protocol has no learning and computing process, and the response is faster.

6   Conclusion

In order to improve the data transmission performance of UASN, we propose a MAC protocol called MR-
SFAMA-Q. The reinforcement learning framework based on the Q-Learning algorithm is introduced. According 
to the different reception requests received by the receiving node, it is expressed as a state. Each state maintains 
a Q-table. The data scheduling strategy corresponding to the maximum Q value in the Q-table is selected to opti-
mize the data transmission scheduling scheme of multiple receiving nodes, which is suitable for mobile acoustic 
networks with unstable topology. The total back-off time and frame error rate are used as the criteria for setting 
the reward function to reduce the network delay and reduce the collision rate. The results show that compared 
with Slotted-FAMA and MR-SFAMA, the protocol has better performance in terms of throughput and delay. On 
the one hand, future work will do something within its power from the methodology perspective. On the other 
hand, it will explore the impact of reinforcement learning on network energy consumption and solve the problem 
of excessive energy consumption in the process of peers.
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