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Abstract: Visual grounding locates target objects or areas in the image based on natural language expression. 
Most current methods extract visual features and text embeddings independently, and then carry out complex 
fusion reasoning to locate target objects mentioned in the query text. However, such independently extracted 
visual features often contain many features that are irrelevant to the query text or misleading, thus affecting 
the subsequent multimodal fusion module, and deteriorating target localization. This study introduces a com-
bined network model based on the transformer architecture, which realizes more accurate visual grounding by 
using query text to guide visual feature generation and multi-stage fusion reasoning. Specifically, the visual 
feature generation module reduces the interferences of irrelevant features and generates visual features related 
to query text through the guidance of query text features. The multi-stage fused reasoning module uses the 
relevant visual features obtained by the visual feature generation module and the query text embeddings for 
multi-stage interactive reasoning, further infers the correlation between the target image and the query text, 
so as to achieve the accurate localization of the object described by the query text. The effectiveness of the 
proposed model is experimentally verified on five public datasets and the model outperforms state-of-the-art 
methods. It achieves an improvement of 1.04%, 2.23%, 1.00% and +2.51% over the previous state-of-the-
art methods in terms of the top-1 accuracy on TestA and TestB of the RefCOCO and RefCOCO+ datasets, 
respectively.
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1   Introduction

A deeper insight into unimodal information (e.g., text and images) and new possibilities of maching learning in-
spired recent studies on multi-modal tasks, including image captioning [1], cross-model retrieval [2], and visual 
question answering [3, 4]. In multi-modal tasks, learning the correspondence between text and images is vital. 
Visual grounding (also denoted as referring to expression comprehension [5, 6] or phrase localization [7, 8]) 
aims to locate the target object or area in the image according to natural language expression. Therefore, visual 
grounding is beneficial for accurately implementing other multi-modal tasks (e.g., image captioning and visual 
question answering).

Methods based on one-stage [9-11] and two-stage [5, 6, 12] model architectures are a common class of visual 
grounding methods, which transform the visual grounding task into the problem of ranking the detected candi-
date objects or areas. Methods based on the one-stage model, such as SSG [9] and FAOA [13], use pretrained 
fully convolutional networks to directly extract pixel-level visual features, fuse the extracted features with query 
text embedding to generate dense detections, and then select the detection target with the highest confidence 
score. These methods are effective in learning and reasoning about simple relationships between modalities but 
do not perform well for complex queries of various objects and relationships in images and text [10]. 

And methods based on the two-stage model, such as MAttNet [12] and DGA [14], use pretrained target de-
tectors (e.g., Faster-RCNN [15]) to obtain a set of sparse region proposals, compute their similarity with query 
text features and then obtain the regional proposal that best matches the query text by ranking the similarity. 
Compared to the methods based on the one-stage model, the methods based on the two-stage model introduce a 
more complex multi-modal fusion and reasoning mechanism and thus perform better in visual grounding tasks 
[16, 17]. Nevertheless, the performance of target detectors and the quality of region proposals significantly im-
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pact the multi-modal reasoning performance in fused modules and limit the consideration of visual contextual 
information in the methods based on the two-stage model [18, 19].

Visual grounding methods based on a transformer model [18-21] perform multi-modal reasoning via pix-
el-level feature mapping and modeling of global visual information. By relying on the attention mechanism in the 
transformer architecture, intra- and intermodal interactions are achieved. Thus, the query objects can be localized 
with a more concise architecture and direct coordinate regression [19]. 

The methods based on the transformer model [19] use mutually independent visual and text encoders to ex-
tract their respective features, directly input these visual features and query text features into the coding layer ar-
chitecture of the transformer, and then use the internal attention mechanism for encoding to achieve cross-modal 
fusion and direct location of the target object, as shown in Fig. 1. The pretrained visual encoder encodes only the 
information within the image, and the extracted features contain visual features irrelevant to the query text. These 
features may be redundant or even misleading, and transmitting them to the subsequent multi-modal fusion mod-
ule may cause unreasonable reasoning. Meanwhile, the multi-modal fusion module directly adopts the transform-
er encoding architecture without considering the deeper interaction and reasoning between the query text and the 
visual objects, which would also affect the model’s overall performance.

Fig. 1. Visual grounding with a transformer-based architecture

In this study, an end-to-end Visual Grounding model based on the guidance of Query text and Multi-stage rea-
soning, denoted as QMVG, was proposed for transformer-based architecture. As shown in Fig. 2, the contextual 
features of query text were obtained from the linguistic module and then introduced into the visual module to 
guide the generation of visual features closely related to the query text and suppress and reduce the generation of 
the visual features that are irrelevant to the query text or misleading; then, in the multi-stage reasoning module, 
multi-stage interactive reasoning was conducted for the visual features and the query text features to obtain an 
accurate representation of the query object gradually, thus achieving precise localization.

  

Fig. 2. End-to-end visual grounding framework based on the guidance of query text and multi-stage reasoning

The main contributions of this study can be summarized as follows:
(1) An end-to-end visual grounding model for transformer-based architecture was proposed. Through the 
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guidance of query text, the visual encoding was focused on the feature areas related to query text, and query text 
embedding was combined for multi-stage interactive reasoning, thus achieving accurate localization of query tar-
gets.

(2) Multiple sets of experiments were designed to verify the proposed model’s performance, the proposed 
model’s operation mechanism was analyzed in detail, and the model’s good performance was verified on five 
public datasets.

2   Related Work

As a fundamental task in multi-modal learning tasks, visual grounding is used to locate relevant object instances 
in an image by the natural language expression of the described object. Most tasks can benefit from good local-
ization between linguistic descriptions and visual objects. Therefore, visual grounding can provide reliable and 
effective support for multi-modal learning tasks such as visual question answering [4, 22] and visual language 
navigation [23]. The existing visual grounding methods can be broadly classified into one-stage, two-stage, and 
transformer-based methods [19-21].

One-stage methods extract visual features from images directly by a feature extractor, perform a complex 
transmodal fusion of query text embeddings and visual features, and then use the fused features for bounding 
box prediction. Two-stage methods split the visual grounding task into two stages: the stage of generating a set of 
candidate object proposals and the stage of sorting the proposals. Transformer-based methods achieve intramod-
al and intermodal interactions by relying on the attention mechanism in the transformer architecture, and visual 
grounding tasks are implemented in an end-to-end form. Specifically, Table 1 summarizes the work related to the 
three types of visual grounding methods.

However, one-stage methods are highly efficient but have inflexible models, and they cannot associate detailed 
descriptions in the query text and may ignore local information in images. Two-stage methods rely heavily on the 
performance of pretrained target detectors and only consider objects in predefined categories, making them un-
able to take full advantage of the contextual information in the scene. Given the excellent performance of trans-
formers in visual grounding tasks [21], this study adopted Swin-transformer [29] as the visual feature extraction 
backbone network and used the hierarchical structure and moving window of the Swin-transformer to obtain dif-
ferent scales of features and global information of the images for modeling visual features. Based on the work of 
[20] and [21], an end-to-end visual grounding model was designed based on query text guidance and multi-stage 
reasoning.

Table 1. Related work of the visual grounding

Method types References Descriptions

One-stage methods

Yang et al. [13]

It exploited encoding the query text to obtain the text embeddings and further 
fusing the obtained text embeddings into the YOLOv3 [24] target detector and 
enhancing them with spatial features to achieve rapid and accurate localization 
of query objects.

Yang et al. [10]
It designed a recursive subquery framework to iteratively adjust the sentence em-
bedding to solve the problem of complex query statements, while the embedding 
of each subquery still remained a single vector.

Huang et al. [25] It made use of the relative spatial relationship between the target object and land-
marks and the background information of landmarks to achieve localization.

Two-stage methods

Yu et al. [12]
It constructed the similarity between modals in terms of fine granularity by in-
troducing modular components of topics, locations, and relations related to the 
query text description.

Hong et al. [26]
It decomposed query text sentences into semantic components in a recursive way 
to construct a binary semantic tree, and then performed visual reasoning along 
the tree structure in a bottom-up manner.

Chen et al. [27]

It used query text features to guide the nonmaximum suppression of object pro-
posals in the first stage to increase the recall of key objects, which solved the 
problem of mismatch between the proposals generated based on the detection 
confidence and the query text.
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Transformer-based 
methods

Deng et al. [19]

It proposed a transformer-based end-to-end visual grounding framework 
TransVG. This method used the DETR [28] encoder to extract visual features, 
incorporating the extracted visual features and text features into the coding layer 
of a transformer for intermodal interaction, with a final direct output of the target 
location through an MLP layer.

Yang et al. [20]
It used the feature extraction module in the TransVG [19] network to encode and 
iteratively decode the obtained visual features and text features through crossed 
multi-head attention blocks to achieve the localization of query objects. 

Ye at al. [21]

It proposed a query-aware dynamic attention mechanism called QRNet, includ-
ing a query-aware multiscale fused module, which was incorporated into the 
transformer in the visual backbone network to solve the inconsistency problem 
between intermediate features and query text features in the visual backbone net-
work.

3   Method

In this section, we first introduce the QMVG model architecture. Then, we describe the three modules of our 
model: linguistic module, visual module and multi-stage reasoning module. Finally, we introduce the location of 
query objects.

3.1   Model Architecture and Process

Fig. 3. The overall model framework of the QMVG
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The QMVG model depicted in Fig. 3 mainly consisted of three modules: linguistic, visual, and multi-stage rea-
soning ones. The query text features are extracted by the linguistic module to guide the feature extraction of the 
visual module, so as to suppress the generation of the visual features that are irrelevant to the query text. Then 
the two modal features are interactively reasoned through the multi-stage reasoning module to achieve more ac-
curate localization.

Specifically, the image and the query text are two inputs of the QMVG. The linguistic module encoded the 
query text to generate text embeddings. The visual module introduced the query text contextual information en-
coded by the linguistic module into each layer of the Swin-transformer architecture, guided the learning of visual 
features at different scales with the help of the attention mechanism, and aggregated the visual features at differ-
ent scales to obtain the visual features related to the query text. Then, the query text features and visual features 
obtained from the first two modules were incorporated into the multi-stage reasoning module; thus, the accurate 
localization of the query objects could be gradually obtained.

3.2   Linguistic Module

For the query text, the BERT model [30] was used in the linguistic module to extract query text features. First, 
query text was tokened. Then, the tokened query text expressions were added with the [CLS] token at the begin-
ning and the [SEP] token at the end. After that, the token query text was used as input to the text feature extractor 
and encoded to obtain the token of the query text contextual information Fquery∈RCq×1 (contextual information 
was tokened by [CLS]) and the token of each word in the query text Fq∈RCq×Nq as the query text features, where 
the channel size Cq is 768 dimensions and Nq is the number of word tokens.

3.3   Visual Module

The image I ∈R H×W×3 was given as the input of the visual module, where H and W represent the height and width 
of the image, respectively. QMVG used the query text guiding network to extract relevant visual features and 
flattened them into feature sequence Iv ∈R Cv×Nv, where the channel dimension Cv = 256 and the number of input 
tokens Nv = H × W. The visual module extracted visual features under the guidance of the query text features 
through the attention mechanism. It fused the visual features of different scales to obtain only those closely relat-
ed to the query text.

Visual Feature Map.  As the backbone network of visual module, the Swin-transformer outputted a hierar-
chical list of visual feature maps [F1

v , F
2
v , F

3
v , F

4
v]. Each stage in the QMVG was composed of multiple Swin-

transformer blocks (i.e., a Swin module) and an attention module, and the visual feature map of each stage was 
extracted as shown in the visual module in Fig. 3. Through the patch partition operation,the image I was embed-

ded into 
CWH

v RF
××

∈ 440 , where C is the dimension of embedding. Then, F 0
v and query text feature Fquery were in-

putted into the Swin-transformer architecture to guide the visual feature extraction at the four stages through the 
attention module. That is, at the m-th stage (1 ≤ m ≤ 4) stage, the visual feature map of the previous stage Fv

m−1 
and Fquery were incorporated into the Swin-transformer blocks. The attention module realized the guided learning 
of Fquery for visual features. Then, the visual feature map F m

v at each stage was obtained.
By adopting the QRNet concept [21], visual feature extraction under the guided learning of query text used a 

dynamic linear layer to compute the channel and spatial attention maps related to query text.
First, the dynamic linear layer adopted a query text feature Fquery to guide the mapping from a given input vec-

tor zin∈RCin 
to an output vector zout∈RCout

. The formula is as follows.

( )( ) ( ).
query queryout M in F inz DyLinear z DyLinear zΨ∗= = (1)

where Mquery = {Wquery, bquery}= Ψ*(Fquery), linear layer parameter Wquery∈RCin×Cout
, bias bquery∈RCout

, and Ψ*(Fquery) 
indicates that Mquery is calculated by matrix decomposition.
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Then, a visual feature map Fm∈RH×W×Cv was generated in the Swin module for calculating a channel attention 
map at each stage. Firstly, average and maximum poolings were used to gather spatial information and generate 
the corresponding feature vCc

mean
c RFF ××∈ 11

max , . Secondly, the pooled visual features were processed through the 
dynamic linear layer and ReLU function. After that, the sigmoid function was used to sum the processed visual 
features with average pooling and maximum pooling to obtain the channel attention map Acq. The calculation 
process was as follows.

max 1 2 max(Re ( ( ))).cq cF DyLinear LU DyLinear F= (2)

1 2(Re ( ( ))).cq c
mean meanF DyLinear LU DyLinear F= (3)

max( ).cq cq cq
meanA Sigmoid F F= + (4)

By calculating the product of the visual feature map Fm and Acq, the visual feature Fm
c in the channel was ob-

tained. The calculation formula is as follows.

.m cq m
cF A F= ⊗ (5)

For calculating a spatial attention map, the dynamic linear layer was used to reduce the dimensionality on the 
channel instead of compressing the channel dimensionality to obtain the areas related to query text. Then, the 
sigmoid function was used to generate the spatial attention map.

( ( )).sq m
cA Sigmoid DyLinear F= (6)

.m sq m
v cF A F= ⊗ (7)

where Asq∈RH×W×1 refers to the spatial attention map, and F m
v  is the final output of the attention module.

Multiscale Fusion.  Multiscale visual features are helpful to detecting objects of different scales. Through the hi-
erarchal architecture of the Swin-transformer, QMVG obtained four visual feature maps of different scales, with 

a resolution of [ ]
4 4 8 8 16 16 32 32
H W H W H W H W
× × × × × × × . To effectively fuse the visual feature maps obtained from different 

stages, QMVG performed average pooling for the multiscale visual features using a convolutional block with a 
convolutional kernel of 2×2. That is, average pooling was conducted for the visual feature map F m

vf generated at 
the m-th stage (1 ≤ m ≤ 3) so that the map had the same dimension as that generated at the (m+1) stage, and the 
two visual feature maps were averaged to obtain F m+1

vf . Finally, the visual features map F 4
vf was flattened into the 

sequence Iv , which was utilized as the input for the multi-modal reasoning module.

3.4   Multi-stage Reasoning Module

Under the guidance of the query text contextual features introduced in the visual module, the relevance of the 
generated visual features and the query text was coarse-grained. The construction of fine-grained relevance was 
required to obtain accurate localization. The QMVG applied a multi-stage decoder for iterative reasoning and 
achieved iterative interactions between visual information and linguistic information using a cross-attention 
mechanism to reduce ambiguity in reasoning and thus gradually locate the final target object location.

According to the multi-stage reasoning module shown in Fig. 2, referring to the settings of the number of 
layers in VLTVG [20], the number of layers of the decoder in QMVG was set to six, i.e., corresponding to six 
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stages, and each stage consisted of the same network architecture. Additionally, the feature output of the decoder 
at each stage was used as the feature input of the target query object in the next stage, and iterative reasoning was 
performed. 

In the first stage, a learnable query object O 1
query∈RCv×1 was preset as the initial representation of the target 

object and inputted into the first layer of the decoder. Then, through the multi-head cross-attention module, inter-
active learning was performed between O 1

query and text embedding Fq and visual features Iv  to collect the features 
related to query text object (O 1

v) from the visual feature Iv . After that, through the feed forward neural network 
(FFN) and residual connection and layer normalization (Add&Norm), the target object feature of the first stage  
O 2

querywas obtained. Then, the visual object feature O 2
query generated in the first stage was used as the representa-

tion of the query object to input into the decoder in the second stage, which process was consistent with the first 
stage. Finally, the optimal representation of the query object was obtained through the iterative reasoning of the 
six stages. The target object O i

query (1 ≤ i ≤ 6) at each stage was updated as follows:

( ).i i
query query vO LN O O′ = + (8)

1 ( ( )).i
query query queryO LN O FFN O+ ′ ′= + (9)

where LN(∙) is the layer normalization, and FFN(∙) comprises two linear projection layers and one ReLU activa-
tion function.

Through the dynamic updating of the query object O i
query at different stages of the decoder, more attention 

could be paid to the various descriptions of the query text at each stage. This helped find the target object more 
finely, aggregate more complete features of the target object, and thus obtain a more accurate visual representa-
tion of the target object described by the query text.

3.5   Location of Query Objects

The QMVG inputted the target object features output at each stage of the multi-modal reasoning module to an 
MLP with a ReLU activation function. The target objects’ output coordinate positions at each intermediate stage 
were used for calculating the loss function. The output of the last stage was used as the coordinate position of the 
final target object.

The QMVG outputted the coordinates of the final target object’s bounding box through the final MLP, cal-
culated the losses between the predicted bounding box and the ground-truth box for each decoder stage, and 
summed the calculated losses. Herein, 1

ˆ{ } ( , , , )N
i i i i ib x y w h= =  denotes the predicted coordinates of the target box 

from Stage 1 to Stage N, and b = {x, y, w, h} denotes the ground-truth box. The training target was as follows.

 

1 1
1
( ( , ) ( , )).

N
i i

giou giou L L
i

L L b b L b bλ λ
=

= +∑ (10)

where Lgiou(∙) and LL1(∙) are the GIoU and L1 loss functions, respectively, and λgiou and λL1 are the hyperparameters 
that balance the two losses during training.

4   Experimental

First, the datasets used in the experiments and the relevant settings of the model were introduced. Then, the per-
formance of the proposed model on five public datasets was analyzed in detail and compared with other state-of-
the-art methods. After that, the effectiveness of the proposed model was evaluated and verified through relevant 
ablation experiments and qualitative visual analysis.
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4.1   Datasets and Implementation Details

Datasets.  Each referred object in the RefCOCO/RefCOCO+/RefCOCOg datasets corresponded to multiple re-
ferring expressions. Herein, the samples in the RefCOCO [6] dataset were split into the training set, validation 
set, TestA set, and TestB set, containing 120624, 10834, 5657, and 5095 referring expressions, respectively. The 
RefCOCO+ [6] dataset was subdivided in the same way, with each subset containing 120191, 10758, 5726, and 
4889 referring expressions, respectively. The referred objects included multiple identical classes in the subsets 
obtained by the division of the two datasets. The referred objects in the TestA and TestB sets were people and 
ordinary objects, respectiveky. The difference between RefCOCO+ and RefCOCO was that the referring expres-
sions in the former dataset contain no “absolute position” -indicating words, such as “left” and “right”.

However, compared to the above two datasets, the length of expressions in RefCOCOg [5] was usually lon-
ger (the average lengths of RefCOCO, RefCOCO+, and RefCOCOg were 3.61, 3.53, and 8.43, respectively). 
Additionally, the RefCOCOg dataset had two splitting conventions, namely RefCOCOg-google(Val-g) [5] and 
RefCOCOg-umd [31] (herienafter abbreviated as Val-u and Test-u, respectively). This study conducted a com-
prehensive experimental comparison of the two conventions.

The details on the used experimenal data are summarized in Table 2. The images in ReferItGame [8] were 
extracted from the SAIAPR-12 dataset [32], each image containing one or several areas with corresponding 
referring expressions. By following the normal method [19], the dataset was partitioned into three subsets: the 
training set, testing set, and validation set, which had 54127, 5842, and 60103 referring expressions, respectively.

Most referred entities in Flickr 30K Entities [33] were short noun phrases. Meanwhile, 29783 of these images 
were used for training, 1000 for validation, and 1000 for testing [33, 34].

Table 2. Experimental data details

Dataset Number of 
images

Number of referred 
objects

Number of referring ex-
pressions

RefCOCO [9] 19994 50000 142210
RefCOCO+ [9] 19992 49856 141564
RefCOCOg [8] 25799 49822 95010
ReferItGame [12] 20000 96654 120072
Flickr30K Entites [41] 31783 275775 427193

Implementation Details Settings for Model Input.  Settings for the model inputs, the size of the input images 
was set to 640x640, and the maximum length of the query text was set to 40. In resizing the images, their long 
edges were resized to 640, and the shorter ones were filled to 640 to maintain the original aspect ratio of each 
image. If the query text length exceeded the maximum allowlable length, the query text was truncated from the 
end, and then the [CLS] and [SEP] tokens were appended to the beginning and end of the text, respectively. 
Otherwise, empty tokens were filled after the [SEP] token to make the input length of each batch the same.

During training, QMVG used the AdamW optimizer [35] for end-to-end optimization, and the batch size was 
set to 16. The initial learning rate of the visual and text feature extraction modules was set to 10-5, and the learning 
rate of other modules was set to 10-4. The proposed visual module was built based on the Swin-transformer and 
initialized with the corresponding weights obtained from training on MSCOCO [36]. The linguistic module was 
initialized with BERTbase (uncase).

Xavier initialization strategy [37] was used to randomly initialize the parameters for the other components in 
the network. For all datasets, the proposed model was trained for 90 epochs, and the learning rate was reduced by 
a factor of approximately ten after 60 epochs. The weights of the visual and text feature extraction modules were 
frozen in the first ten epochs to stabilize the training. The common data augmentation strategy was used, which 
detailed description can be found elsewhere [10, 13, 19].

4.2   Comparative Analysis Versus Other State-of-the-art Methods

Table 3 compares QMVG and one-stage, two-stage, and other transformer-based visual grounding models on 
three datasets: RefCOCO, RefCOCO+, and RefCOCOg. In compliance with the consistent standard protocol 
[19], the top-1 accuracy (%) was used as the comparison metric of model performance, i.e., the prediction was 
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considered correct if the value of IoU between the predicted area and the ground-truth bounding box exceeded 
0.5.

QMVG adopted an end-to-end form, making it possible to avoid the limitations incurred by the performance 
of auxiliary tools as much as possible. It filtered out the irrelevant object features through the guidance of the 
query text, and further identified the target object from the visual objects related to the query text by iterative rea-
soning, thus achieving the accurate location of query objects. 

The QMVG model outperformed the compared models on all split subsets of the three datasets. Herein, com-
pared with best-performing one-stage LBYL-Net [25] and HFRN [38] models, the proposed model’s accuracy on 
the split subsets Val, TestA, and TestB of RefCOCO and RefCOCO+ was higher by 7.15%, 5.61%, 9.06%, and 
7.62%, 6.25%, 8.19%, respectively. Here, the split subset TestB exhibited the most significant improvement. 

Table 3. Comparison of QMVG with other state-of-the-art methods on RefCOCO, RefCOCO+, and RefCOCOg in terms of 
top-1 accuracy (%)

Model Backbone RefCOCO RefCOCO+ RefCOCOg
Val TestA TestB Val TestA TestB Val-g Val-u Test-u

One-stage methods
SSG [9] DarkNet-53 - 76.51 67.50 - 62.14 49.27 47.47 58.80 -
FAOA [13] DarkNet-53 72.54 74.35 68.50 56.81 60.23 49.60 56.12 61.33 60.36
ReSC [10] DarkNet-53 77.63 80.45 72.30 63.59 68.38 56.81 63.12 67.30 67.20
HFRN [38] ResNet-101 79.76 83.12 75.51 66.80 72.53 59.09 - 69.71 69.08
ISRL [39] ResNet-101 - 74.27 68.10 - 71.05 58.25 - - 70.05
LBYL-Net [25] DarkNet-53 79.67 82.91 74.15 68.64 73.68 59.49 62.70 - -
Two-stage methods
MAttNet [12] ResNet-101 76.65 81.14 69.99 65.33 71.62 56.02 - 66.58 67.27
DGA [14] VGG16 - 78.42 65.53 - 69.07 51.99 - - 63.28
RvG-Tree [26] ResNet-101 75.06 78.61 69.85 63.51 67.45 56.66 - 66.95 66.51
NMTree [40] ResNet-101 76.41 81.21 70.09 66.46 72.02 57.52 64.62 65.87 66.44
Ref-NMS [27] ResNet-101 80.70 84.00 76.04 68.25 73.68 59.42 - 70.55 70.62
Transformer-based methods
TransVG [19] ResNet-50 80.32 82.67 78.12 63.50 68.15 55.63 66.56 67.66 67.44
TransVG [19] ResNet-101 81.02 82.72 78.35 64.82 70.70 56.94 67.02 68.67 67.73
VLTVG [20] ResNet-50 84.53 87.69 79.22 73.60 78.37 64.53 72.53 74.90 73.88
VLTVG [20] ResNet-101 84.77 87.24 80.49 74.19 78.93 65.17 72.98 76.04 74.18
QRNet [21] Swin-S 84.01 85.85 82.34 72.94 76.17 63.81 71.89 73.03 72.52
This study Swin-S 86.91 88.73 84.57 76.26 79.93 67.68 75.88 76.88 75.64

Note: The symbol “-” indicates that the respective indicator was not reported in the original literature. The symbol “_” represents the maxi-
mum value of the indicator in the existing one-stage, two-stage and transformer-based methods.

Compared with the best-performing two-stage model Ref-NMS [27] and the mainstream transformer-based 
models VLTVG [20] and QRNet [21], the proposed model also showed a significant improvement in terms of 
accuracy. As shown in Table 3, compared with VLTVG with the best overall performance among reference mod-
els, the proposed model showed improvements of 2.14%, 2.23%, and 2.07%, 2.51% on Val and TestB of the 
RefCOCO and RefCOCO+ datasets, respectively, and offered a rise of 1.04% and 1.00% on TestA. For the lon-
ger query text dataset RefCOCOg, the QMVG model also achieved the best performance, verifying its effective-
ness in processing complex queries.

Table 4 shows the performance of QMVG compared with other state-of-the-art models on the testing sets of 
ReferItGame and Flickr30k Entities. Compared with the one-stage and two-stage methods, the proposed model 
achieves a significant improvement. However, being applied to the Flickr30k Entities dataset, the proposed mod-
el outperformed the best-performing QRNet model among the transformer-based methods only by 0.83%. Such a 
slight improvement may be related to the fact that the query text in the dataset is mainly short noun phrases, and 
short query text expresses limited contextual information, inhibiting the interactive learning between visual fea-
tures and textual features, thus deteriorating the processing of phrase queries.



92

End-to-end Visual Grounding Based on Query Text Guidance and Multi-stage Reasoning 

Table 4. Comparison of QMVG with other state-of-the-art models on the ReferItGame and Flickr30k Entities test sets in 
terms of top-1 accuracy (%)

Models Backbone ReferItGame test Flickr30K test
One-stage methods
SSG [9] DarkNet-53 54.24 -
FAOA [13] DarkNet-53 60.67 68.71
ReSC [10] DarkNet-53 64.60 69.28
LBYL_Net [25] DarkNet-53 67.47 -
SAFF [11] DarkNet-53 66.01 70.71
Two-stage methods
MAttNet [12] ResNet-101 29.04 -
DIGN [16] VGG16 65.15 78.73
Transformer-based methods
TransVG [19] ResNet-50 69.76 78.47
TransVG [19] ResNet-101 70.73 79.10
VLTVG [20] ResNet-50 71.60 79.18
VLTVG [20] ResNet-101 71.98 79.84
QRNet [21] Swin-S 74.61 81.95
This study Swin-S 75.83 82.78

4.3   Ablation Study

In this section, the RefCOCOg (Val-g) dataset is used to study the ablation of the QMVG model. The long refer-
ring expressions in the dataset pose more challenges to the understanding and reasoning capabilities of the pro-
posed model.

Table 5 shows the results of the ablation experiments on the two modules proposed in the QMVG model to 
verify their effectiveness. The first row of Table 5 shows the baseline, i.e., no query text was introduced in the 
visual module for guidance. Only a single-stage decoder was used for reasoning localization, achieving 73.11% 
accuracy. Based on this baseline, query text was introduced in the visual module to guide the generation of visual 
features, as shown in the second row of Table 5, with an accuracy improvement of 1.29%. Then, no query text 
was introduced in the visual module to verify the multi-stage reasoning module. The result is shown in the third 
row of Table 5, with an accuracy improvement of 1.90% compared to the baseline. The last row of Table 5 shows 
the performance of the entire model, implying accuracy improvements of 2.77%, 1.48%, and 0.87%, compared 
to the baseline and the two modules alone, respectively. This verifies the proposed model feasibility.

Table 5. Evaluation of the top-1 accuracy (%) of visual grounding in the ablation experiments on modules in the proposed 
framework

Import query-text 
in the visual module

Multi-stage reasoning 
module Acc (%)

73.11
√ 74.40

√ 75.01
√ √ 75.88

4.4   Qualitative Results

Fig. 4 shows the visualized heat attention maps of QMVG at different stages of the localization process. (A) rep-
resents the input of QMVG, (B) and (C) represent the heat attention maps in the visual module, where (B) is the 
heat attention map without the guidance of query text and (C) is the heat attention map with the guidance of que-
ry text, (D) represents the visualized localization heat attention maps of some stages in the multi-stage reasoning 
process, and (E) represents the localization result of the final target object of QMVG. In the visual module, many 
visual features extracted by the feature extractor without the guidance of query text are irrelevant to the query 
text.



93

Journal of Computers Vol. 35 No. 1, February 2024

Fig. 4. Visualized heat attention maps of the QMVG at different stages of the localization process

Visual attention is also focused on irrelevant visual object features. In contrast, under the guidance of query 
text, visual attention pays more attention to visual object features related to the query text, which reduces the 
interference of irrelevant features. Then, the visual attention map is derived from multi-stage reasoning, and 
multi-stage interactive reasoning is performed between the relevant visual features obtained in the previous stage 
and the query text features, which can gradually shift the focus of the visual attention to the target object, thus 
achieving the localization of the target object.

For instance, in the first row of Fig. 4, given the query text “the dog by the man’s feet” and the images, under 
the guidance of the query text, the visual attention is focused on the object area related to the query text, with 
a particular bias, focusing more attention on the dog. However, in the absence of guidance of query text, visual 
attention is focused on more objects, including some objects irrelevant to the query text, which is less biased. 
Additionally, the heat attention maps obtained after the multi-stage reasoning show that after the interactive rea-
soning between the query text features and the visual object features, the visual attention is gradually focused on 
the dog at the bottom left of the image to locate the target object.

5   Conclusions

In this study, a combined network model QMVG based on the Swin-transformer architecture was designed. This 
model mainly comprised (i) the visual feature generation module based on the guidance of query text and (ii) 
the multi-stage fused reasoning module. The former introduced the query text information in the visual feature 
extractor. It used the attention mechanism to guide the learning of visual features. In contrast, the latter used the 
visual features related to the query text information obtained from the former and the query text information for 
multiple interactive learnings to locate the target object. The effectiveness of QMVG was experimentally evaluat-
ed on five public datasets, outperforming that of twenty-three state-of-the-art methods, including eight one-stage, 
twelve two-stage, and three transformer-based ones. Additionally, the effectiveness of the query text-guided vi-
sual feature generation module and the multi-stage fused reasoning module in QMVG and the process feasibility 
were verified through an ablation study and qualitative analysis. 

In practice, abstract object expressions exist in linguistic expressions, and abstract expressions are confusing 
for object localization in visual grounding, which may lead to inaccurate object localization. However, the pro-
posed model was trained on a general corpus containing a few abstract language expressions, and the abstract 
expressions were not processed separately. This might deteriorate the proposed model’s performance for abstract 
language expressions. The follow-up study envisages building datasets containing more abstract language ex-
pressions and making the proposed model more adaptive by designing specialized modules to process abstract 
language expressions.
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