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Abstract. This paper introduces a secure and robust zero-watermarking framework that leverages the advan-
tages of zero-watermarking, ensuring non-destructive modification of original images and unlimited capacity. 
The proposed method enables robust watermark embedding while preserving the original image. It employs 
a novel feature extraction approach using circular areas based on image radius, enhancing feature resilience. 
Additionally, applying one-dimensional non-recursive discrete periodized wavelet transform (1-D NRDPWT) 
converts feature values into phi, contributing to enhanced stability and robustness. Enhanced security is 
achieved through the use of Shuffle and Pseudo-Random Number Generator (PRNG). Experimental results, 
evaluated using metrics such as Bit Error Rate (BER) and Normalized Correlation (NC), validate the excep-
tional performance of this watermarking technique. These findings underscore the framework’s robustness, 
security, reliability, and integrity against both general and geometric noise attacks, making it a secure and 
robust solution for modern digital image copyright protection. In summary, our method offers an effective 
defense against various noise attacks while ensuring the highest watermark quality without compromising the 
original image. It is a significant advancement in copyright protection applications.

Keywords: zero-watermarking, one-dimensional non-recursive discrete periodized wavelet transform (1-D 
NRDPWT), phi, shuffle, Pseudo-Random Number Generator (PRNG), Bit Error Rate (BER), Normalized 
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1   Introduction

In light of the ever-advancing landscape of information technology and the evolving applications of digital me-
dia, several pertinent issues emerge. These issues encompass concerns related to distribution, replication, and 
plagiarism, underscoring the pressing demand for copyright protection, content verification, and data integrity 
assurance [1, 2]. To address these challenges effectively, watermarking technology emerges as a highly regarded 
solution. Watermarks can be categorized into two primary types based on their visual distinctiveness: visible and 
invisible [3, 4]. Visible watermarks are primarily employed to incorporate trademarks or distinctive logos for 
purposes of identification and advertising [5]. Conversely, invisible watermarks, recognized for their resilience, 
can be seamlessly integrated into digital content to facilitate content identification, tracking, and verification. 
Within the domain of invisible watermarking technology, zero-watermarking stands as a widely discussed appli-
cation, drawing significant attention due to its unique advantages [6]. Notably, zero-watermarking has the poten-
tial to preserve the original image and circumvent traditional embedding capacity constraints [7].

The concept and methods of implementing zero-watermarking were initially introduced by Wen et al., [8]. 
Since then, several embedding algorithms have emerged. For instance, in early research, Liao et al. [9] proposed 
a neural network-based zero-watermarking technique, discussing two different approaches: one based on spatial 
domain using variance measurement, and another employing backpropagation neural networks. Additionally, 
Leng et al. [10] introduced a zero-watermark construction method using techniques like block cutting, PCA 
decorrelation, chaotic sequence generation, and wavelet transform. Lin et al. [11] proposed an image zero-wa-
termarking scheme based on Generalized Arnold Transform (GAT) with spread spectrum and inverse spread 
techniques for feature extraction. The above solution was proposed as an early framework for zero-watermark-
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ing. However, at this stage of watermark embedding/extraction, the quality of the extracted watermark remains 
similar to that of other watermarking frameworks, without significant improvement in watermark quality. 
Nevertheless, it still retains the fundamental advantages of the zero-watermarking framework, preserving the in-
tegrity of the original image.

In recent years, zero-watermarking methods have seen continuous advancements and widespread applications. 
For instance, Xing et al. [12] proposed a method that utilizes Discrete Fourier Transform (DFT) to obtain a trans-
formation coefficient matrix. This matrix is then used in a SIFT-DCT transformation applied to a grayscale host 
image to select a 32-bit feature sequence. This sequence is employed to distinguish the zero-watermark from the 
feature sequence of the encrypted watermark image. Huang et al. [13] employs a pre-trained DO-VGG model to 
extract deep abstract features from medical images and generates the zero-watermark using a perceptual hashing 
algorithm. Additionally, Liu et al. [14] introduced a method that combines Local Binary Patterns (LBP) with 
Discrete Cosine Transform (DCT). It extracts low-frequency feature vectors from digital images, performs hash 
sequence transformation, and binarization to embed the watermark. While these three zero-watermarking meth-
ods have improved watermark quality compared to earlier approaches, they share a common limitation. Both 
early and recent zero-watermarking frameworks have struggled to simultaneously address general noise attacks 
(such as gaussian or salt & pepper noise) and geometric noise attacks (such as translation or rotation) [15]. When 
subjected to significant noise attacks, they tend to exhibit noticeable resistance margin effects, reducing their sta-
bility and robustness against certain types of noise attacks.

Building upon the literature review in the previous section, we have observed the evolution of both past and 
recent zero-watermarking technologies. This study introduces a concise and secure watermark embedding frame-
work leveraging the advantages of zero-watermark structures. In this work, we employ circular blocks for feature 
extraction. These extracted features are transformed into phi using a one-dimensional non-recursive discrete 
periodized wavelet transform (1-D NRDPWT) to enhance feature stability, robustness, and resistance to noise in-
terference in binary mode. For security, we utilize generated pseudo-random keys and perform multiple shuffling 
rounds on different images. Experimental data confirms our method’s resistance to both general noise attacks 
and geometric noise attacks, ensuring watermark quality across various attack intensities without compromising 
integrity. The most significant contribution lies in maintaining watermark quality as attack intensity increases, a 
crucial advantage for copyright protection.

The remaining sections of this paper are organized as follows: Section 2 presents Preliminaries, providing an 
explanation of the technical background used in this paper. Section 3 introduces the proposed method, detailing 
the embedding/extraction algorithms for zero-watermarking, with a focus on the integration of circular block fea-
ture extraction and 1-D NRDPWT transformation to achieve zero-watermark embedding and extraction. Section 
4 provides experimental results and discussions. Finally, Section 5 summarizes the conclusions drawn from the 
application of the method proposed in this paper.

2   Preliminaries

2.1   Traditional Wavelet Transform 

Wavelet transform is a signal processing technique with the primary purpose of decomposing a signal into mul-
tiple wavelet basis functions [16]. Each basis function corresponds to different frequencies and time intervals. 
These wavelet basis functions possess a localized nature, meaning they have limited duration and varying fre-
quency and amplitude characteristics [17]. They can be irregular or asymmetric, allowing wavelet transform to 
efficiently capture the local features of non-stationary signals.

Traditional wavelet transform theory is rooted in the multi-scale decomposition theory [18]. The fundamen-
tal idea is to recursively partition and smooth the signal to obtain approximate and detailed signals at different 
scales. Wavelet basis functions are employed for signal analysis at each scale. Traditional wavelet transforms 
typically utilize orthogonal wavelet basis functions, satisfying orthogonality and completeness criteria, ensuring 
that the results of wavelet analysis can accurately reconstruct the original signal [19]. These basis functions are 
generated through recursive division and smoothing operations using low-pass and high-pass filters [20].

In recent years, many new wavelet transform methods have emerged in various signal processing applications, 
such as image processing, audio processing, and biomedical engineering [21-23]. These methods include non-or-
thogonal wavelet transforms and continuous wavelet transforms. They have addressed some issues associated 
with traditional methods, further enhancing the flexibility and efficiency of wavelet analysis in practical applica-
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tions. The original signal is decomposed using high-pass and low-pass filters to obtain low-frequency coefficients 
containing essential information and high-frequency coefficients representing subtle signal variations. By contin-
uously decomposing the low-frequency signal, valuable information can be integrated into the low-frequency co-
efficients. Simultaneously, less important signals in the high-frequency domain can be identified and represented 
with fewer data bits. These characteristics make wavelet transform a powerful tool widely used in watermarking 
and information hiding applications. It allows embedding hidden information into the wavelet coefficients of a 
signal and enables information retrieval.

2.2   Daubechies’ Wavelet Transform

Daubechies’ wavelet transform is a widely utilized method in wavelet analysis, initially introduced by the 
Belgian mathematician Ingrid Daubechies in 1988 [24]. This method enables the decomposition of signals into 
multiple wavelet bands, each possessing distinct frequency and time resolutions. This capability makes it a fun-
damental tool in signal processing.

The fundamental theory behind Daubechies’ wavelet transform involves the recursive decomposition of a 
signal into a sequence of detail and approximate signals [25]. This process entails convolving and downsampling 
the signal through a series of low-pass and high-pass filters. The low-pass filter is responsible for capturing the 
low-frequency components of the signal, while the high-pass filter captures the high-frequency components. As 
a result, the sampling rate of the signal is reduced during this process, leading to reduced time resolution in each 
band.

Using Daubechies’ wavelet transform, a signal can be effectively decomposed into multiple bands with vary-
ing time and frequency resolutions [26]. Typically, detail bands are employed to capture the high-frequency 
components of the signal, while approximate bands are used to represent the low-frequency components. This 
decomposition allows for independent processing of each band, facilitating signal analysis and manipulation.

One of the primary advantages of Daubechies’ wavelet transform is its adaptability in terms of time and fre-
quency resolution, making it suitable for handling non-stationary signals. This method has found widespread ap-
plications in digital signal processing, particularly in tasks such as image compression and noise reduction. It has 
become a standard algorithm in various industrial and commercial domains.

In wavelet transformation, Daubechies wavelets, including D4 and D6, are commonly employed for signal 
processing [27]. The primary distinction between using D4 and D6 lies in their filter coefficients, which result 
in different frequency responses and reconstruction performance. D4 is a wavelet basis function of length 4 (n 
= 4), with both its low-pass and high-pass filters having a length of 4. On the other hand, D6 is a wavelet basis 
function of length 6 (n = 6). These differing filter lengths lead to variations in frequency responses and recon-
struction performance between D4 and D6. D6 exhibits a flatter frequency response and better preservation of 
low-frequency signals, making it more suitable for processing low-frequency signals when compared to D4. The 
coefficients of the low-pass filter vector h and high-pass filter vector g can be determined using the definitions in 
formulas (1). Table 1 presents the coefficients of the D6 filter.

( ) ( )1 2 4( ) 1 3 1 2cos 3+ 3 1+2cos
6 64 2

k kh k π π       = + + +       
       

, ( ) ( )1 k
kg n k a− = −                (1)

Table 1. The coefficients of the D6 filter

Coiflet filter k h(k) g(k)
0 0.3326705529 0.0352262918
1 0.8068915093 0.0854412738
2 0.4598775021 -0.1350110200
3 -0.1350110200 -0.4598775021
4 -0.0854412738 0.8068915093
5 0.0352262918 -0.3326705529
6 0 0
7 0 0

(ignore)
N-1 0 0
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2.3   1-Dimensional Non-Recursive Discrete Periodized Wavelet Transform (1-D NRDPWT)

Daubechies wavelet transform in wavelet analysis is regarded as a polynomial encoder, where wavelet functions 
are represented by polynomial coefficients. Each Daubechies wavelet is represented as a polynomial, and these 
polynomial coefficients remain constant across different signals. This characteristic has led to the widespread ap-
plication of Daubechies wavelets in signal processing.

In Discrete Wavelet Transform (DWT), signals are decomposed into wavelet functions of various scales. 
These wavelet basis functions are obtained by scaling and shifting Daubechies wavelets, using a recursive pro-
cess for signal decomposition. However, when dealing with periodic signals, simplifications can be achieved 
by exploiting their periodic nature, eliminating the need for recursive processing. This approach is known as 
NRDPWT, which is based on Daubechies wavelet transform and is particularly suitable for analyzing periodic 
signals [28].

A key advantage of NRDPWT is its ability to simultaneously compute all frequency band coefficients with-
out the need for iterative signal decomposition. This addresses some of the limitations of traditional recursive 
wavelet transforms while maintaining the efficiency and accuracy of wavelet transformation. This feature makes 
NRDPWT a powerful tool, especially when dealing with periodic signals. Fig. 1 illustrates the schematic dia-
gram of the coefficient decomposition obtained when the length of the original signal is assumed to be Nj =8, j = 
3.
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Fig. 1. Decomposition process of filter coefficients in non-recursive wavelet transform



113

Journal of Computers Vol. 35 No. 1, February 2024

The d_
2
  level is obtained by applying the high-pass filter coefficient matrix G to the original signal, while d_

1 
 

is obtained by applying both the low-pass filter coefficient matrix H and the high-pass filter coefficient matrix G. 
This process continues recursively. Let Aj be an N × 2 − j matrix, which is composed of filter coefficient combi-
nations from a set of 2 − j row vectors in H −j−J−1 G. Then, the row vector coefficients of H − j are used to represent 
B0, and finally, all the coefficients are combined to form a 1-D NRDPWT, which is transformed into matrix A 
[29], as shown in the following formula (3):

0 0 1 2 3 1[ , , , , ,..., ]JA B A A A A A− − − += .                                                        (3)

Then, Let Pj  = [pj0, …, pj(N−1)]
T denotes an N × 1 normalized column vector with each element pjn of Aj . Vectors  

Pj  for J < j ≤ 0 are inherent with the following properties.

2.4   Fisher-Yates Algorithm

When the need arises to perform a random shuffle of an array or list, one of the go-to shuffling algorithms is the 
Fisher-Yates algorithm [30]. It finds widespread application in various domains, including random shuffling, en-
cryption, and simulations. What sets the Fisher-Yates algorithm apart from other random permutation algorithms 
is its remarkable time complexity and randomness performance, ensuring that each permutation has an equal 
probability. It stands as a straightforward yet highly effective algorithm for generating random permutations.

In essence, the Fisher-Yates shuffle algorithm operates as a highly efficient and equitable method for random 
sorting. The fundamental concept behind the Fisher-Yates algorithm involves traversing the array from the end 
to the beginning. For the current element under consideration during traversal, a random number j is generated, 
where 0 <= j <= i represents the current position being traversed. Subsequently, the current element is swapped 
with the element at index j. This process continues by advancing the current processing position by one step until 
the first element of the array is processed. After n swaps, a randomized array permutation is achieved. The algo-
rithm is presented below:

program FYShuffle (NumberArray) 
    {Assuming n is a Length of NumberArray } 
    for i from n-1 down to 1 do 
        j = random integer with 0 <=j <=i 
        swap NumberArray[i] with NumberArray[j]  
    end 
end.

3   Proposed Method

Our proposed method introduces an innovative watermark embedding scheme that capitalizes on the architectur-
al characteristics of zero-watermarking. In this approach, circular blocks within the host image are employed for 
extracting the image’s feature code. Subsequently, we apply the 1-D NRDPWT technique to enhance the stability 
of feature code extraction.

Additionally, this paper incorporates Fisher-Yates shuffling technology and a pseudo-random number gener-
ator (PRNG) enhancement method to bolster the security of the scheme. Under the zero-watermarking architec-
ture, both the embedding and extraction of the watermark entail similar steps in the implementation process, as 
illustrated in Fig. 2. Notably, the flowchart demonstrates that no inverse transformation is required for embedding 
and extraction within the zero-watermarking architecture. The experimental data presented in this paper high-
lights the method’s commendable performance in terms of security and stability.



114

Robust Zero-Watermarking by Circular Features and 1-D NRDPWT Transformation

                                    (a) Embedding watermark architecture                         (b) Extracting watermark architecture

Fig. 2. Propose the architecture for embedding/extracting watermark
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3.1   Embedding Watermark 

Extract Image Features.   The host image is defined as a square image of size M × M, with its center located at 
( 2

M , 2
M ). Starting from this central position, a circular region with radius ris extracted from the image in an out-

ward direction. For each pixel position (i, j) in the image, the distance di, j from the pixel to the center of the circle 
is calculated. The average pixel value F[r]of the circular region within the extracted range is then calculated us-
ing the following formula. This formula is used to extract a range of rfeatures from 0 to 2

M , as illustrated in Fig. 
3.

                                                        
2 2

, 2 2i j
M Md i j   = − + −   

   
,                     

[ ] ( ),2 0 0

1 ( , ),     0,1, 2,...,
2

r r
i ji j

MF r Img i j if d r and r
rπ = =

 = ≤ ∈ 
 

∑ ∑ .        (4)

Fig. 3 provides illustrative examples of circular regions selected using different radii, denoted as (a) to (d). 
Each corresponds to a distinct radius  defining the circular regions. To extract features from the host image, we 
employ a straightforward yet highly effective method that utilizes circular regions with different radii. By com-
puting the mean pixel value within these regions, we can capture valuable information about the image content 
across various scales. This approach has demonstrated its efficacy in numerous image processing applications. 

(a) Let r = 5                            (b) Let r = 55                           (c) Let r = 105                         (d) Let r = 155

Fig. 3. Average pixel coverage within circular area of radius r

Image Features to 1-D NRDPWT Transform.  In accordance with different digital images, distinct random 
keys, denoted as 1

Imgkey , are assigned. Utilizing PRNG techniques, key1 generates 64 random numerical sets, 

RNk1, ranging between 0 and 2
M  (the value domain of r). Based on the random RNk1 values for each image, a 

collection of random feature values, F[RN1
k1] to F[RN64

k1], is extracted from the feature set F[RNk1], forming set 
S[n]. This extraction process iterates Formula (5) 64 times, where n in S[n] ranges from 1 to 64. For instance, 
S[1] consists of 64 random F[RNk1], values. With each iteration, a new set of RNk1 values is generated to produce 
the corresponding S[n] values.
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1
1 0,

2
,  k Img MRN key random  =     

,

1 1 1 1 1 1 1 1
1 2 3 4 5 6 64 , , , , , , ., ., .,k k k k k k k kRN RN RN RN RN RN RN RN = … … …  ,

where, 11 Imgk key= ,

[ ] 1 1 1 1 1 1 1
1 2 3 4 3 5 6 64, , , , , , , , ,k k k k k k kS n F RN F RN F RN F RN F RN F RN F RN              = … … …               ,

where  { } 1, 2,3, 4, ,64n∈ … .                                                                                                            (5)

To enhance the security and strengthen the robustness of the acquired signal S[n], we employ a 1-D NRDPWT 
transformation on the signal S[n]. Using the Fisher-Yates shuffle algorithm, we shuffle the values of S[n] L times 
to extract L of ϕ values for each S[n]. Here, L represents the a-th iteration of the Fisher-Yates algorithm used for 
shuffling S[n], assuming a equals 64.

Each S’
L[n] value set undergoes inner product operations, denoted as Pj | j = 0, with the 64 vectors generated by 

the dot Pj | j = 0. Subsequently, we obtain phi (ϕ) values, denoted as ϕ, using the inverse cosine transform, as illus-
trated in (6).

[ ] ( [ ])L LS n FYShuffle S n′ = ,

[ ] [ ]( )1 '
0cos |L j jn L S n P−

=∅ × = ⋅ ,

where {1,2,3,4,...,64}L∈ , {1,2,3,4,...,64}n∈                                                                               (6)

This formula is applied to each S[n] sequentially, ranging from n = 1 to 64, resulting in 64 iterations of com-
putations as per (6). For instance, after  iterations of the Fisher-Yates shuffle algorithm for S[1], the formula 
yields  a of ϕ values. In the case where n = 64 and L = 64, this process generates n × L = 64 × 64 = 4096 of ϕ[n 
× L]values. These 64 values represent the dimensions of the binary watermark, interrelated and coordinated with 
one another.

Convert To Binarization Pattern.  Building upon the previous steps, the 1-D NRDPWT transformation is ap-
plied to the signal S[n] based on its feature values. This transformation yields n × L of ϕ elements, referred to as 
ϕ[n × L]. Subsequently, a different random k2, 2

Imgkey , is used for each image. A PRNG is employed to generate 
pairs of two random numbers, such as RN1

k2 [1] and RN1
k2 [2], resulting in n × L sets of random numbers RNnL

k2, 
with values ranging from 1 to n × L. If (ϕ[RN1

k2 [1]] > ϕ[RN1
k2 [2]]), the binary pattern value is set to 1; otherwise, 

it is set to 0. Finally, a binary pattern b with a length of n × L is generated using the following formula:

[ ] ( )
[ ] ( )

2
2

2
2

1 ,  1,

2 ,  1,

k Img
nL

k Img
nL

RN key random n L

RN key random n L

  = ×  


 = ×  
,

where 22 Imgk key= , { }1,2,3,4, , , , 4096nL∈    ,

[ ] [ ]( )2 21,  1 2

0,                                   

k k
nL nLif RN RN

b
otherwise

    ∅ > ∅    = 


.                                                                                      (7)

Generate Golden Key.  In the final step, the embedding of the binary watermark logo is completed. An XOR 
operation is performed between the binary pattern b with a length of n × L, and the target binary watermark logo 
W, as indicated in (8). This operation generates the watermark embedding key GK, marking the completion of 
the entire watermark embedding process.

  GK b W= ⊕ .                                                                       (8)



117

Journal of Computers Vol. 35 No. 1, February 2024

3.2   Extracting Watermark

In the zero-watermarking framework, the process of extracting the watermark does not employ a reversible 
extraction method. Instead, the extraction of the zero-watermark closely resembles the embedding process, as 
described in the algorithmic formulas (5) to (7). The architecture depicting the watermark embedding and ex-
traction processes is illustrated in Fig. 2, with repeated steps marked. This illustrates the identical computational 
steps during watermark extraction. Therefore, we omit the repetition of the same algorithmic process during 
watermark extraction. However, in the final step of watermark extraction, it is necessary to perform the XOR 
(⨁) operation between the watermark key GK generated by (8) and the extracted binary pattern b’  to obtain the 
extracted watermark W’, as shown in (9):

W b GK′ ′= ⊕ .                                                                      (9)

It is important to note that in this formula. During the watermark extraction process, the binary pattern is 
referred to as b’, which is distinct from the binary pattern b used in the watermark embedding process. This dis-
tinction arises because, during watermark extraction, the image used for extracting the watermark may have been 
tampered with or subjected to noise attacks. Therefore, the extracted binary pattern may be influenced and may 
differ from the original b.

4   Experimental Analysis and Results

This paper’s experiment utilizes common grayscale images that are widely used as benchmarks. These imag-
es are of size 512512 and include Airplane, Baboon, Barbara, Cameraman, Fishing boat, Gold hill, Lena, and 
Peppers, as depicted in Fig. 4(a) to Fig. 4(h). Additionally, a binary image of size 6464 is employed as the binary 
watermark logo, which is illustrated in Fig. 5.

In the following, we will design 12 different attacks with varying intensities for the zero-watermark frame-
work proposed in this paper, as listed in Table 2. We selected eight images for experimentation, as shown in 
Fig. 4, and individually subjected each image to all 12 attacks for watermark embedding and extraction tests. 
The Peak Signal-to-Noise Ratio (PSNR) values in Table 2 represent the average PSNR after applying each noise 
attack to the eight images. Subsequently, we will organize and compare the experimental and analytical results 
obtained for each image under different attack types and intensities.

                          (a) Airplane                         (b) Baboon                          (c) Barbara                      (d) Cameraman

                       (e) Fishing boat                    (f) Gold hill                            (g) Lena                          (h) Peppers

Fig. 4. Our host images
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Fig. 5. Binary watermark logo

Table 2. Description symbol of the original ant it’s 12 types of noise attacks

Types of noise attacks Symbol PSNR(db)
Original Image N0 -

Gaussian noise (σ = 0.01) N1 28.16742
Salt & pepper  (σ = 0.15) N2 11.07210
Poisson noise  (σ = 0.01) N3 28.86735
JPEG compress (Q=90%) N4 38.06961
JPEG compress (Q=50%) N5 32.17544
JPEG compress (Q=10%) N6 27.62172

Left rotate  (angle=1° ) N7 19.35058
Left rotate  (angle=50°) N8 9.46347
Left rotate  (angle=90°) N9 10.73379
Right rotate (angle=1°) N10 19.32716
Right rotate (angle=50°) N11 9.458048
Right rotate (angle=90°) N12 10.73379

In this section, we will not only conduct a comprehensive analysis and comparison of the experiments con-
ducted with our designed framework but also extend our analysis to compare the results with other recent meth-
ods that utilize zero-watermarking, such as Xing et al. [12], Huang et al. [13], and Liu et al. [14]. This compar-
ative analysis aims to provide a more objective and impartial perspective on the effectiveness of our proposed 
method in the context of the latest approaches in the field of zero-watermarking.

4.1   Experimental Analysis 

In the watermark embedding method proposed in this paper, there is a crucial relationship between the extraction 
of image feature codes and digital images. Furthermore, signal transformation plays a vital role in the strong em-
bedding/extraction of watermarks within this process. To ensure the watermark’s effectiveness, reliability, integ-
rity, and robustness against various types of noise attacks, we will analyze these two closely related sets of data 
in this section. Through this analysis, we can verify and confirm the method’s stability against different types of 
noise interferences.

Based on Fig. 4, we conducted experiments with 12 different types of noise attacks on each original image. 
The types of noise attacks employed and the corresponding average PSNR evaluation data can be found in Table 
2. The PSNR evaluation method is detailed in Formula (10). In this section, our focus is on analyzing the extract-
ed features from eight experimental images and comparing the presentation of these features between the original 
images and the 12 attack images with noise interference. Through this analysis, our primary goal is to assess the 
stability of the features obtained from the original images and various noise-affected attack images under differ-
ent conditions. 

( )2

, ,1 1

1
 

M N
x y x yx y

MSE I I
M N = =

′= −
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MSE is used to measure the difference between two images, typically an original image (I) and a processed 
image (I’). Here, M and N represent the width and height of the images, respectively. Ix,y denotes the pixel value 
in the original reference image, while I’x,y represents the pixel value in the processed test image. A smaller MSE 
value indicates that the processed image is closer to the reference image, indicating less difference.

PSNR serves as an indicator of image quality and is often used to assess the information loss during processes 
like image compression or watermark embedding. In the formula, Max represents the maximum pixel value in 
the image, typically 255 (for 8-bit grayscale images). MSE is the mean squared error value. PSNR is measured in 
decibels (dB), and a higher PSNR value corresponds to better image quality [31].

Data Analysis of Image Features.  Using the algorithm proposed in this paper for extracting image features, we 
conducted a comprehensive experimentation involving a set of eight distinct graphs. Each graph was subjected 
to various attacks by introducing twelve different types of noise. By extracting the eigenvalues and employing 
a shuffling technique, we using PRNG randomly selected 64 features from the resulting dataset. We conducted 
a comprehensive analysis using the first set of 64 randomly selected values extracted from these eight images, 
as illustrated in Fig. 6. Each symbol in the figure, from N0 to N12, corresponds to different noise attack identi-
fiers specified in Table 2. Our objective was to assess the resistance of these images to various noise attacks and 
whether there were deviations from their original feature values.

By comparing the N0 data of these eight images with the corresponding feature values of the original host im-
age, we observed subtle variations in the impact of different attacks, as evident in the chart. What’s remarkable is 
that these variations persist even under the influence of 12 different attacks (N1 to N12).

However, it is worth noting the stability in the waveform shape of the image features presented in our anal-
ysis. Despite noise interference, the numerical ranges within the images still closely approximate those of the 
original image. The contrast variation refers to a situation where one value falls within an extremely high range, 
while another value falls within an extremely low range. This remarkable consistency underscores the robustness 
of the extracted features, indicating their resilience even in the face of various noise attacks.

(a) Airplane

(b) Baboon
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(c) Barbara

(d) Cameraman

(e) Fishing boat
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(f) Gold hill

(g) Lena

(h) Peppers

Fig. 6. Analysis and comparison of the first Fisher-Yates shuffle features for each host image 
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The results in Fig. 6 how that fluctuations are minimally impacted, whether subjected to general noise attacks 
or geometric noise attacks.  Achieving stability under both types of attacks simultaneously has posed a challenge 
in many previous research approaches. In this phase, we effectively mitigated geometric noise attacks through 
circular block extraction. Additionally, we bolstered stability against general noise attacks through extensive val-
ue sampling.

Data Analysis of Phi (ϕ).  Building upon the previous phase focused on stability, we applied formula (6), a trans-
formation formula introduced in this study, to convert the extracted feature values into phi values. To conduct a 
more comprehensive and precise analysis, we expanded our examination. In the earlier stage, we extracted 64 
feature values, but now we have extended our analysis to encompass ten sets of 64 randomly chosen feature val-
ues, all subject to transformation into phi values. This comprehensive approach entails analyzing a total of 640 
phi values, ensuring a more effective, comprehensive, and representative evaluation.

Fig. 7 illustrates the analysis and comparison of these 640 phi values across the eight images. The symbols N0 
to N12 used in this analysis phi correspond to the specified noise attack identifiers detailed in Table 2.

The analysis results presented in Fig. 7 unmistakably indicate minimal variations between the attacked images 
(N1 to N12) and the host image (N0) data. A straightforward observation of the color distribution in Fig. 6 and 
Fig. 7 underscores the remarkable stability exhibited in this analysis phase. In particular, we enlarged the image 
in Fig. 7(h) to compare it with Fig. 6(h). This is because Fig. 6(h) is the most affected by noise attacks among all 
the analyses, showing more significant variations. However, in Fig. 7(h), we can observe that the analysis results 
exhibit a level of stability almost identical to Fig. 7(a) to Fig. 7(g). In essence, compared to the feature values in 
Fig. 6, this performance, achieved through the transformation into phi values via 1-D NRDPWT, showcases even 
stronger robustness, thereby underscoring its potential to enhance watermark embedding quality.

 

(a) Airplane

(b) Baboon
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(c) Barbara

(d) Cameraman

(e) Fishing boat

(f) Gold hill
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(g) Lena

(h) Peppers

Fig. 7. Analysis and comparison of the first transform to phi for each host image

In Fig. 7, we can clearly observe the stability under both general and geometric attacks. These stable and 
straightforward waveforms demonstrate a significant improvement over the instability observed in Fig. 6. This 
also showcases the excellent data performance and handling of zero-watermark feature values.

4.2   Experimental Results

In this section, we employed objective evaluation criteria, namely the Bit Error Rate (BER) and Normalized 
Correlation (NC) to assess the effectiveness and feasibility of watermark embedding and extraction within the 
proposed zero-watermarking framework. The evaluation formulas for BER and NC are represented by formula 
(11) and (12), respectively. To validate the efficacy of our approach, a series of experiments were conducted us-
ing a set of eight 512×512 images obtained from Fig. 4. Each image underwent the embedding a size of 64×64 of 
watermark logo as illustrated in Fig. 5. 



125

Journal of Computers Vol. 35 No. 1, February 2024

First, let’s introduce the formula for BER as follows:

,1 1

M N
x yx y

e
BER

MxN
= ==

∑ ∑ .                                                              (11)

Where W and W’ represent the values of the original watermark data and the extracted watermark data, respec-
tively, at the position (x, y). The calculation involves the length of the binary watermark data, denoted as M×N.  
ex, y represents an error occurring at position (x, y) in the watermark W and W’, summing up ex, y and dividing it by 
the size of the watermark gives the measured watermark bit error rate. The BER value is used to measure the dis-
similarity between the extracted and original watermark data, ranging from 0 to 1. A smaller BER value indicates 
a closer resemblance between the extracted watermark data and the original watermark data.

We will compare NC with other recent zero-watermarking methods. The evaluation method for NC is de-
scribed by the following formula [32]:
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.                                           (12)

Where W and W’  denote the values of the original watermark data and the extracted watermark data respective-
ly, at the specific position (x, y). To evaluate the similarity, we compute the ratio of the total number of matching 
bits. The resulting NC value falls within the range of 0 to 1, with a higher value indicating a stronger resemblance 
between the two datasets.

Table 3. Comparison of BER experimental results under 12 types of noise attacks

Attacks Airplane Baboon Barbara Cameraman Fishing 
boat

Gold hill Lena Peppers

N1 PSNR 28.126 28.143 28.171 28.287 28.133 28.134 28.122 28.220
BER 0. 0.0014 0.0019 0.0036 0. 0. 0. 0.

N2 PSNR 10.975 11.438 10.690 10.919 11.376 11.175 11.137 10.861
BER 0.0039 0.0056 0.0046 0.0080 0.0034 0.0083 0.0058 0.0097

N3 PSNR 27.571 30.499 23.377 29.615 29.736 27.750 31.275 31.113
BER 0.0026 0. 0.0043 0.0058 0. 0. 0. 0.

N4 PSNR 37.332 36.517 39.089 36.713 39.016 37.791 41.434 36.660
BER 0. 0. 0.0021 0.0034 0. 0. 0. 0.

N5 PSNR 34.302 26.870 30.943 31.605 33.487 32.718 36.457 31.016
BER 0.0002 0. 0.0021 0.0037 0. 0. 0. 0.

N6 PSNR 29.293 22.525 24.386 29.301 28.133 28.316 30.820 28.197
BER 0. 0.0014 0.0019 0.0053 0. 0. 0. 0.0026

N7 PSNR 8.3186 10.380 8.1641 9.1991 9.6926 10.212 10.955 8.7544
BER 0. 0. 0.0021 0. 0. 0. 0. 0.

N8 PSNR 11.817 12.633 8.0253 9.8846 11.731 10.640 11.336 9.8004
BER 0. 0.0014 0.0034 0.0048 0. 0. 0. 0.0026

N9 PSNR 11.817 12.633 8.0253 9.8846 11.731 10.640 11.336 9.8004
BER 0.0012 0.0029 0.0034 0.0057 0. 0. 0. 0.0034

N10 PSNR 19.083 16.640 16.271 20.622 19.641 20.698 21.626 20.032
BER 0. 0. 0.0021 0. 0. 0. 0. 0.

N11 PSNR 8.3345 10.317 8.1849 9.1752 9.6778 10.202 11.003 8.7685
BER 0.0002 0.0019 0.0024 0.0031 0. 0. 0. 0.

N12 PSNR 11.817 12.633 8.0253 9.8846 11.731 10.640 11.336 9.8004
BER 0.0002 0. 0.0026 0.0031 0.0004 0. 0. 0.
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Our Experimental Result.  Table 3 displays experimental results for the eight images from Fig. 4, each subject-
ed to 12 different noise attacks (N1 to N12). The table includes PSNR values, which indicate the PSNR of each 
image after a specific noise attack compared to its original state. We also assessed the extracted watermarks using 
BER method, comparing the results to the original binary watermark (Fig. 5).

In our experiments, we conducted a total of 8 × 12 = 96 watermark embedding and extraction tests. The high-
est BER measurement, indicating the most significant impact, was observed for the image, Peppers, under the N2 
attack (salt & pepper noise), with a BER measurement of 0.0097. Remarkably, this still represents an influence 
of less than 1%. Notably, when examining the entire set of 96 measurements, more than half of the BER values 
were equal to or very close to 0. Lower BER values, closer to zero, indicate resistance to noise interference and 
the ability to maintain a complete and robust watermark. In this experiment, we observed that our method exhib-
ited consistent robustness under both general attacks (N1 to N6) and geometric attacks (N7 to N12), demonstrat-
ing its resilience across both types of attacks.

Next, our proposed method will be compared to the methods proposed by Xing et al. [12], Huang et al. [13], 
and Liu et al. [14]. All of methods are under the same zero-watermark framework but with different embedding 
algorithms, we will utilize NC as the evaluation metric and comparing. We compare experimental data based on 
average watermark NC values extracted from each image under different noise attacks in our experimental setup. 
This data is used as the benchmark for our analysis.

Comparing [12] on the NC Metric.  Table 4 presents the results of comparisons with the zero-watermarking 
framework proposed by Xing et al. [12]. Our method achieves an NC value close to 1 under Gaussian attacks 
with σ = 0.005. Moreover, under Gaussian attacks with σ = 0.025, there is a significant difference between the 
two methods (0.9948-0.8084=0.1864). Across various noise attack intensities in this experiment, our method 
consistently exhibits superior performance, with NC values consistently surpassing this threshold. Notably, our 
method maintains robustness against both general and geometric attacks without bias.

Table 4. Compare [12] the average NC value under different attacks

Attacks intensity Method in [12] Proposed
Gaussian (σ = 0.005) 0.9254 0.9999
Gaussian (σ = 0.015) 0.8492 0.9952
Gaussian (σ = 0.025) 0.8084 0.9948

Salt&Pepper (σ = 0.01) 0.9494 0.9971
Salt&Pepper (σ = 0.05) 0.8614 0.9950
Salt&Pepper (σ = 0.12) 0.8186 0.9930
Median filtering  (3x3) 0.9870 0.9974
Median filtering  (7x7) 0.9750 0.9965
Median filtering  (9x9) 0.9706 0.9957
Average filtering (3x3) 0.9790 0.9996
Average filtering (7x7) 0.9614 0.9995
Average filtering (9x9) 0.9548 0.9995

Rotation Clockwise (angle=5°) 0.8480 0.9998
Rotation Clockwise (angle=10°) 0.8300 0.9996

Rotation Counter Clockwise (angle=5°) 0.8820 0.9993
Rotation Counter Clockwise (angle=10°) 0.8530 0.9988

Comparing [13] on the NC Metric.  Table 5 presents the results of comparisons with the zero-watermarking 
framework proposed by Huang et al. [13]. The compared methods consistently achieve NC values of at least 
0.9657 or higher under various attacks. In contrast, our proposed method consistently achieves NC values of at 
least 0.9957 or higher. The difference between the two methods is most pronounced in the lowest data point, with 
a difference of 0.03 (0.9957-0.9657). Across various noise attack intensities in this experiment, our method main-
tains the stability of NC values starting with 0.99. In contrast, the compared method exhibits instability within 
NC values starting with 0.96, 0.97, 0.98, and 0.99. Overall, our proposed method demonstrates stability and ro-
bustness compared to this method.
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Table 5. Compare [13] the average NC value under different attacks

Attacks intensity Method in [13] Proposed
Gaussian (σ = 0.05) 0.9828 0.9959
Gaussian (σ = 0.25) 0.9657 0.9963
Gaussian (σ = 0.5) 0.9688 0.9963

JPEG Compress (Q = 2%) 0.9812 0.9957
JPEG Compress (Q = 10%) 0.9952 0.9980
JPEG Compress (Q = 30%) 0.9998 0.9999

Median filtering (3x3) 0.9928 0.9974
Median filtering (5x5) 0.9789 0.9959
Median filtering (7x7) 0.9673 0.9965

Rotation Clockwise (angle=5%) 0.9890 0.9990
Rotation Clockwise (angle=20%) 0.9704 0.9979
Rotation Clockwise (angle=35%) 0.9734 0.9975

Comparing [14] on the NC Metric.  Table 6 presents the results of comparisons with the zero-watermarking 
framework proposed by Liu et al. [14]. The compared methods were tested under predominantly geometric at-
tacks. It can be observed in the table that, under the significant Downshift attack (move=20%), our data, while 
not maintaining a performance above 0.99, shows a considerable difference of 0.4814 (0.9786-0.4800) compared 
to the method being compared. Although the compared method achieves excellent NC values of 1 under Scaling 
attack (factor=1.5) and Downshift attack (move=2%), the data for this method is unstable, ranging between 0.4 
and 1.0, for other attack scenarios. In contrast, our proposed method consistently demonstrates stability and ro-
bustness with values ranging from 0.97 to 0.99, all starting with 0.9 or higher.

In our experiments and comparisons with recent zero-watermarking methods. Our proposed watermark ex-
traction framework consistently shows exceptional stability, reliability, and robustness. It performs well under 
both general noise attacks and geometric noise attacks. We assessed its performance using both the BER method 
and the NC method to measure experimental data. These evaluations offer compelling evidence that supports the 
effectiveness and applicability of our advanced zero-watermarking approach. In conclusion, our experimental re-
sults strongly affirm the superiority of our proposed framework.

Table 6. Compare [14] the average NC value under different attacks

Attacks intensity Method in [14] Proposed
Rotation Clockwise (angle=3°) 0.8750 0.9998
Rotation Clockwise (angle=5°) 0.8750 0.9998
Rotation Clockwise (angle=9°) 0.8200 0.9997
Rotation Clockwise (angle=11°) 0.7800 0.9992

Scaling attack (factor=0.5) 0.8050 0.9981
Scaling attack (factor=0.7) 0.9350 0.9971
Scaling attack (factor=1.5) 1. 0.9979
Scaling attack (factor=2) 0.9800 0.9981

Downshift attack (move=2%) 1. 0.9950
Downshift attack (move=6%) 0.9650 0.9897
Downshift attack (move=10%) 0.7450 0.9856
Downshift attack (move=20%) 0.4800 0.9786

5   Conclusion

Our proposed method is built upon recent advances in zero-watermarking frameworks widely used for water-
mark embedding. These frameworks offer the advantage of unrestricted watermark capacity and non-destructive 
effects on the original image.

Building on these foundational advantages, we introduce a novel feature extraction method based on circular 
area extraction. This method leverages radius-related ranges to extract robust features from the original image. 
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Additionally, we employ a 1-D NRDPWT to transform these features into phi, further enhancing their stabili-
ty. Through rigorous experiments involving various levels of noise attacks, encompassing different types and 
strengths of noise, our method consistently demonstrates excellent and robust performance in terms of BER and 
NC measures. This stability is maintained under both general noise and geometric noise attacks. Comparative 
analysis with recent methods reinforces the exceptional stability, reliability, and robustness of our watermark em-
bedding. Addressing security concerns, we employ variations in the Fisher-Yates Shuffle and the use of PRNG, 
enhancing the security of our approach.

In summary, our proposed zero-watermarking method offers (a) unlimited capacity, (b) preservation of origi-
nal image integrity, (c) strong key management and reliability, (d) stability, and (e) security.

Our future research aims to enhance the scheme’s resistance to combined attacks and explore new technolo-
gies to bolster its defense mechanisms. Furthermore, we plan to extend the application of this scheme to the field 
of information hiding, opening up new possibilities for secure data protection.
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