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Abstract. Reinforcement learning is a machine learning paradigm that focuses on how an agent can perform 
actions in an environment to achieve a certain goal. The agent learns through interaction with the environ-
ment, observing the state and making decisions to maximize its reward. Reinforcement learning has wide 
applications in intelligent control systems. However, one limitation of reinforcement learning is the uncertain-
ty in handling the environment model. Usually, reinforcement learning is performed without a clear model, 
which requires estimating environmental uncertainty and state transitions. Bayesian Networks are effective 
in modeling uncertainty, which can aid in establishing a probabilistic model of environmental dynamics. This 
allows for the integration of uncertainty information into the environmental model, leading to a more accurate 
understanding of the dynamic characteristics of the environment. In this study, we propose a reinforcement 
learning algorithm based on Bayesian Networks. We utilize optimal generalized residual differentiation, paral-
lel integration causal directional reasoning, and other modeling techniques to address reinforcement learning 
tasks. The main idea is to utilize the prior distribution to estimate the uncertainty of unknown parameters. 
Then, the obtained observation information is used to calculate the posterior distribution in order to acquire 
knowledge. Experiments demonstrate that this approach is feasible in intelligent control systems operating in 
uncertain environments.
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1   Introduction

Reinforcement learning methods are widely used in various fields, including autonomous driving, gaming, ro-
bot control, financial trading, resource management, healthcare, network optimization, intelligent recommen-
dation systems, industrial automation, natural language processing, the Internet of Things, and smart homes. 
Reinforcement learning aims to learn feedback signals from the environment through interactions with the envi-
ronment [1-3]. Reinforcement learning methods can be divided into value-based methods, policy-based methods, 
and Actor-Critic (AC) methods, which combine the two [4]. When the environment model is deterministic, rein-
forcement learning methods demonstrate good performance and applicability in the aforementioned application 
areas. Uncertainty refers to situations where information is incomplete or results cannot be accurately predicted. 
Uncertain intelligent control involves the processing and management of uncertainty in control systems. In the 
field of autonomous driving, the intelligent control system of a vehicle must be capable of making decisions un-
der constantly changing road conditions, traffic conditions, and environmental factors. In the field of smart homes 
and the Internet of Things, intelligent control systems need to adapt to user behavior patterns, environmental 
changes, and equipment failures. When confronted with an uncertain environment, intelligent control systems 
that integrate deep learning into reinforcement learning demonstrate their effectiveness and feasibility, as long as 
computational resources can meet the necessary demands. However, for intelligent control systems with limited 
computational power, deep reinforcement learning suffers from low sample utilization and slow learning speed. 
This directly leads to a reduction in computational output efficiency when dealing with uncertain environments. 
Therefore, when intelligently controlling an uncertain environment, it is necessary to have a method that can re-
duce the dimensionality of the state representation space in reinforcement learning. This method should achieve 
algorithmic effectiveness while satisfying computational resource constraints.
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At present, common reinforcement learning algorithms can be divided into the following three types: val-
ue-based algorithms, policy-based algorithms, and Actor-Critic framework-based algorithms. Value-based 
algorithms and policy-based algorithms are commonly used to calculate the optimal policy and determine the 
behavior that maximizes the reward value in different states. The most common value-based algorithm is the 
Q-learning algorithm. It obtains the current state of the environment, selects the reward value that can be ob-
tained by taking the corresponding action, and gradually builds a Q-table (Q(s, a)) to update. The current Q value 
and the specific process are shown in Fig. 1:
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Fig. 1. Flow chart of Q-learning algorithm

Compared to other value-based algorithms, the Q-learning algorithm has the advantage of using the time dif-
ference method for offline learning [5]. Additionally, it utilizes the Bellman equation (Bellman) can be used to 
solve the state value function V *(s) of the current states. Finally, the cumulative expectation is used to obtain the 
result V π(s). The specific calculation methods are as follows,
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∗ = .                                                                   (1)

( )0 0( ) , , ,H
t t t t tV s E r R s a s s sπ π′
=

 = = 
 
∑ ∣ .                                                  (2)

At the same time, the state of the Q-learning algorithm is discontinuous in the action space. Therefore, when 
the dimension is low, the Q-Table table can easily establish the correspondence between any state value and ac-
tion value. However, when the action space has high dimensional continuous states, the Q-Table method does not 
work effectively. The neural network structure proposed by the DQN algorithm is shown in Fig. 2: 
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Fig. 2. DQN structure

The DQN algorithm [6] is similar to the Q-learning algorithm in that it employs different strategies for updat-
ing the action value and selecting the action. This method is generally referred to as the off-policy feature [7]. 
It is easy for the parameters to fail to converge. Based on this problem, the improvement of the DQN algorithm 
involves utilizing a neural network to approximate the value function for behavior. Additionally, the target value 
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network and the experience replay unit are used to update the target Q function [8, 9]. The specific algorithm 
flowchart is shown in Fig. 3:

environment Current value 
network

Target value 
network

DQN error function

Experience playback unit

Gradient value of error 
function θ∇

timing
Parameter 

copy

( ), :t tQ s a θ

( ), :t tQ s a θ

( ),t ts a
ts tr

( ),, , ,t t t ts a r s

( )arg max, , :t tQ o a θ

Fig. 3. DQN algorithm flow chart

Although the policy-based method has certain advantages in terms of convergence efficiency and the discov-
ery of stochastic policies, it also has the ability to process high-dimensional action space and continuous action 
space. However, the neural network formed by this method is prone to being limited to local optima and has a 
large variance in the evaluation strategy. In recent years, with the increasing computing power of computer com-
puting power, it has gradually become less prominent in the field of study [10]. The reinforcement learning algo-
rithm based on the Actor-Critic framework has become the most popular approach in recent years. The algorithm 
evolved from the control and behavior training of the intelligent robot [11]. The essence of it is to use the neural 
network as the value function estimator. The structure is shown in Fig. 4:
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Fig. 4. Basic structure of Actor critical framework
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As can be seen from the above figure, the main components of the Actor-Critic framework are the Actor net-
work and the Critic network [12, 13]. Actor networks are developed from gradient policies, which address the 
inefficiency of Q-learning in selecting action values by determining the most appropriate action based on succes-
sive action values. The critic is the predecessor of the equivalent learning algorithm to Q-learning. The network 
is used for efficient single-step updates. Compared to the traditional gradient strategy algorithm’s turn-based up-
date strategy, this approach can effectively enhance the algorithm’s learning efficiency.

This paper presents research on intelligent control systems in uncertain environments and highlights sever-
al research achievements. By combining Bayesian Networks (BN) with the Actor-Critic framework, the paper 
demonstrates the ability to provide accurate uncertainty estimates and optimize policies efficiently for intelligent 
decision-making. This integration can leverage the probability inference and uncertainty information provided 
by BN as one of the inputs to the Actor-Critic framework, allowing the agent to develop a more comprehensive 
understanding of the environment and make informed decisions.

The research content mainly consists of four parts. The first part provides an overview of the research status 
of Reinforcement Learning in Intelligent Control Systems both domestically and internationally. In the second 
part, an Uncertain Environments decision-making method based on a Bayesian Network model is proposed. In 
the third part, we propose a region enhancement method for intelligent control systems in uncertain environ-
ments. This method is based on Bayesian Networks and Reinforcement Learning. In the fourth part, the method 
proposed in the study is tested and analyzed. The results show that the method based on Bayesian Networks and 
Reinforcement Learning has a positive impact on intelligent control systems in uncertain environments.

2   Related Work

2.1   Bayesian Network Model

BN [14], also known as a credibility network, is an uncertain probability inference model based on the Bayesian 
rule proposed by the founder of the causal inference method in 1988. It is currently the most effective theoretical 
model for solving problems of uncertainty. The probabilistic reasoning process of the network relies on a rigor-
ous mathematical theory - the Bayesian formula. This formula, also known as the posterior probability formula, 
is a mathematical method used to solve conditional probability. This method assumes that event A has m states 
and event B has n states. Aj and Bi represent the states of event A and event B, respectively. Currently, when an 
event Aj occurs, the probability of event Bi occurring is,
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Among them, P(Bi) is referred to as the prior probability of event Bi, P(Aj) is the prior probability of the event, 
and the conditional probability P(Bi | Aj) obtained through the Bayesian formula is known as the posterior proba-
bility [15]. The BN model is a directed acyclic graph, which is a type of probabilistic graphical model that intu-
itively describes the causal relationships between random variables. It represents these relationships in the form 
of nodes and conducts probabilistic inference by calculating the conditional probability of each variable. The 
specific form is as follows,

,B G P= .                                                                          (4)

Among them, G represents a directed acyclic graph, which consists of nodes and unidirectional arcs connect-
ing each node. This can be represented by the following two-tuple,

,G V E= .                                                                         (5)

In the given context, V represents the set of nodes that includes all nodes in Bayesian Network (BN), which 
are used to represent the variables X1, X2, ... , XN in the universe of discourse. V represents the set of directed 
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arcs, and its unit variable is the directed e = (X1, X2), where X1, X2 ∈ V. The ordered pair e describes the caus-
al relationship or conditional probability relationship between variables X1 and X2. The network parameter P 
consists of the probability distribution of all nodes in G, which describes the conditional probability of each 
node given its parent node. Each node corresponds to a conditional probability table, which can be expressed in 
the form of P(Xm | PA(Xm)), where PA(Xm) represents the set of parent nodes for variable Xm . When the network 
structure and conditional probability table of a BN are determined, the construction of the BN is completed. 
Subsequently, the network can be used for probabilistic reasoning. The process of BN probabilistic reasoning is 
to estimate the probability distribution of the variable set to be calculated in the current state, given the evidence 
variable set E = e. The calculation process is as follows,

( ) ( )
, 1, ,
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i
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p X q E e i n

p E e
= =

= = = =
=



∣
∣ .                                             (6)

2.2   Multi-agent Reinforcement Learning Algorithm

The Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm [16] is an extension of the deter-
ministic policy gradient algorithm in a multi-agent environment. Due to the non-stationarity of the environment, 
MADDPG adopts a centralized critic and decentralized execution approach for learning and training. The algo-
rithm utilizes a centralized critic network within the AC framework, known as a centralized training-decentral-
ized execution framework. The specific network framework is shown in Fig. 5:

Fig. 5. MADDPG network structure

As can be seen from Fig. 5, each agent maintains a local centralized value network. This network receives the 
observations and actions of all agents as a joint state-action pair for learning. It can be considered as a centralized 
brain coordinating all actions of the agent [17]. At the actor, each agent seeks a policy only through its own local 
observation state. Like the single-agent deterministic policy gradient, the multi-agent policy gradient can also be 
directly derived using the chain rule. Its gradient is given by,

( ) ( ) ( ) ( ), 1, , , , ,
i i i i

a ui s aD a i i n i i si
J E Q s a a a u sθ θ θθ = ∇ = ∇ ∇   ∣ .                                 (7)

Among them, θi = [θ1, θ2, ..., θn ] are parameters of n agent policies, si = [s1, s2, ..., sn ] represents the observa-
tion vector represents the state., and Qi = (s, a1, ..., ai, ..., an) represents the agent centralized state action function. 
It can be observed from the policy gradient that even though the local policies of all agents are decentralized and 
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executed independently, the gradient boosting direction of the agents’ local policies aims to optimize the global 
goal. This effectively mitigates the non-stationary nature of the environment. This is also the most significant dis-
tinction between the centralized training-decentralized execution framework of MADDPG and the single-agent 
reinforcement learning algorithm. The algorithm under this framework considers the actions of other agents 
during training and the environmental non-stationarity caused by the actions of other agents. However, it can 
also be weakened by this. Therefore, the gradient ascent algorithm can be directly used for learning the policy 
network. The value network of the MADDPG algorithm is essentially the same as that of other value-based al-
gorithms, such as the DQN update method [18]. It utilizes a dual network structure for updating, specifically em-
ploying the following formula,
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These target networks are similar to the target networks used in other algorithms. They are not updated using 
gradients, but instead, a smoother moving average method is employed, rather than the periodic update method 
used in DQN. The MADDPG algorithm [19] is a significant milestone in multi-agent reinforcement learning 
algorithms. The centralized training-decentralized execution framework proposed by MADDPG greatly im-
proves the effectiveness of the original single-agent reinforcement learning algorithm [20]. This framework has 
also emerged as the leading multi-agent reinforcement learning algorithm. A Paradigm for Agent Reinforcement 
Learning Algorithms. However, this framework has the disadvantage of not being able to scale with the number 
of agents. Since the strategy of the centralized network in this method is determined by the current number of 
agent strategies, when the number of agents in the environment changes, the action value function learned by the 
strategy network can no longer accurately represent the joint behavior after the environment changes. The value 
function of the strategy, therefore, its decentralized execution strategy, cannot be used directly in most cases [21]. 
In a multi-agent cooperative environment, there is a problem of distributing beliefs among agents. The problem 
of reliability assignment can be described as follows: in a collaborative environment, the reward received by an 
agent at each moment is based on the joint action, and the agent cannot accurately assess the impact of its current 
action on the reward provided by the environment. Therefore, determining the significance of the actions taken 
by the agent in relation to the joint reward provided by the environment is also a prominent area of research. The 
existing algorithm primarily utilizes the concept of the COMA algorithm. It calculates a baseline state-action val-
ue for the agent’s action and determines the action’s contribution through the advantage function [22].

3   Methodology

3.1   Bayesian Network Structure Generation Based on Reinforcement Learning

Bayesian network learning is first transformed into its corresponding directed graph learning problem, and the 
directed graph is represented by a symmetric graph adjacency matrix [23]. In terms of implementation ideas, this 
section utilizes policy gradients and stochastic optimization methods to train the weights of the neural network. 
The final output is the graph that achieves the highest return among all the graphs generated during the training 
process, specifically, the directed Bayesian structure. In the specific operation process, the data is first input into 
the Actor network. The matrix is then converted into the next transformation behavior by re-encoding in the 
Actor network. After that, it is input into the Critical network and the decoder. The decoder establishes a relation-
ship between variables and generates a graph adjacency matrix. It then passes the matrix into the scoring function 
to calculate the score of the behavior. The score is then fed back to the Critic network, which predicts the next 
behavior based on the behavior and score [24]. The specific process is shown in Fig. 6 below:
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Fig. 6. Actor critical reinforcement learning framework for causal discovery of functions

As shown in Fig. 6, to apply reinforcement learning to causal discovery, we utilize an encoder-decoder neural 
network model. This model generates directed graphs based on observed data. These directed graphs are subse-
quently used to compute a reward, which includes a penalty term to ensure acyclicity. We believe that using it 
with causal independence constraints will be more beneficial for mining causal relationships between variables. 
The decoder network generates the graph adjacency matrix element-wise by establishing the relationship be-
tween two encoders for outputting semantic and network features. First, a single-layer decoder can be represent-
ed by the following function,

( ) )1 2 1 2, , tan(hT
ij i jg W W u u W enc W enc= + .                                                 (9)

Bayesian Information Criterion (BIC) scoring is used in this section because it is not only consistent through-
out, but also exhibits specific characteristics in the decomposed local area. The BIC score for a given directed 
graph G is as follows,

ˆ( ) 2 log ( ; , ) logBIC mS g p X g dθθ= − + .                                                    (10)

In the formula, θˆ is the maximum likelihood estimator, and dθ represents the dimension of the parameter. 
This paper assumes independent and identically distributed (IID) Gaussian additive noise between the variables. 
Therefore, if we apply a linear model to each causal relationship and let be an estimate of kix, where kix rep-
resents the i entry in the kth observation sample, then the final BIC score is,

( )( )( ) log / #(  ) log
1

d
S g m GRSS m edges mBIC ii

= +∑
=

.                                      (11)

where ( )21
1 1 ˆ /m n i i

i k l k kGRSS x x ni= == −∑ ∑  represents the generalization residual sum of squares for the 

I-th variable is calculated using the generalization base of the residual sum of squares, and l represents the gen-
eralization group number being calculated. This calculation is done while using the log-likelihood objective in 
the generalization scoring method of the sample. During each training, the training set is divided into n parts, 
with each part randomly selecting (n-1)/n of the sample size from the original training set. The pair of #(edges)
log m represents the penalty term for the number of edges in graph g. In the training process of real data, the re-
ward value calculated by the scoring function is greatly affected by the insufficient sample size, abnormal data, 
and missing data in the sample set. The issue can be effectively resolved by expanding the sample set through 
the generalization idea. After completing the graph scoring, it is necessary to address the issue of loops in the 
Bayesian network, as loops are not allowed. Since the algorithm described in this paper aims to learn a directed 
graph, it is possible for a cycle to exist in the Bayesian network when three or more variables have a cyclic rela-
tionship. In such cases, we can determine the presence of a cycle by examining the variable relationships in the 
adjacency matrix. Therefore, when a loop occurs, the evaluation and termination of the loop is performed by es-
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tablishing the causal relationship among the relevant variables [25]. The specific measures in this section are di-
vided into two parts. First, after each edge addition behavior occurs, if it is determined that a loop appears in the 
network, the corresponding arc will be assigned a direction, and the acyclicity will be checked through the GES 
display. Second, to prevent the occurrence of the next cycle, a large penalty term is added to the case where the 
cycle is generated. This implicitly enforces the acyclicity of the scoring function and allows the generated graph 
to change by one at each iteration above the edge. This section of the content utilizes the research findings of et 
al., who argue that if and only if,

( )( ) : trace 0Ah A e d= − = .                                                            (12)

If only h(A) were used, we would need very large penalty weights to ensure acyclicity. To this end, we add 
a second penalty term, the indicator function, which is acyclic to induce precise causality in local regions. 
Therefore, the final reward function includes two parts: the scoring function and the acyclic constraint reward. 
The specific function is expressed as follows,

[ ]1 2 reward : ( ) I( DAGs) ( )S g g h Aλ λ= − + ∉ + .                                           (13)

where I( DAGs)g ∉  represents the indicator function, and λ1 ≥ 0, λ2 ≥ 0 are two non-negative penalty parameters. 
It can be seen from the above formula that the larger λ1 and λ2 are, the more likely it is for the generated graph 
with higher reward to be acyclic. To maximize returns, the equation above can be transformed equivalently into,

[ ]1 2
min ( ) I( DAGs) ( )S g g h A

g
λ λ+ ∉ + .                                                   (14)

On the initial penalty weight setting, we found that if it is set too large, the reward fed back to the Critic net-
work has little effect on it, thus limiting the learning effect of the Actor-Critic framework. So, in practice. We use 
the update rule on the LaGrange multiplier adopted in NOTEARS to start the penalty weight from a small value, 
and then gradually increase it to obtain the optimal directed graph network as much as possible while ensuring 
the learning effect.

3.2   Bayesian Network Structure Optimization Based on Causal Direction Judgment

However, further processing is required since it may lead to the appearance of false edges during the reinforce-
ment learning process. After obtaining the initial Bayesian network with the highest score, this section will per-
form a secondary optimization of its structure using the following methods. The specific process is shown in Fig. 
7:
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Fig. 7. Bayesian network structure optimization process
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As shown in the Fig. 7 above, arc splitting and pruning are performed on the graph. In the arc processing step, 
each arc in the DAG needs to be split and input into the parallel integrated causal direction judgment framework 
for arc scoring. The orientation method of a single arc is the same as binary causal inference, which can be di-
rectly determined using the method described in Chapter 2 of this paper. The pruning process involves using a 
greedy method to remove estimated edges based on regression performance or a score function. Secondly, after 
completing the arc scoring operation, the number of weak relationship arcs and inverse relationship arcs to be 
deleted is determined based on the obtained score, in proportion to the total number of arcs. The weak relation-
ship arcs and inverse relationship arcs are identified by considering the absolute value and minimum value of 
the score. Relationship Arc. Finally, the final Directed Acyclic Graph (DAG) is obtained by performing pruning 
based on the weak relationship arcs, inverse relationship arcs identified using the above method, and arcs with 
high penalty values determined through the greedy algorithm. Compared to the traditional pruning method based 
on regression performance or scoring function, this method has the following advantages. First, this method con-
siders the Bayesian network from a different perspective, including the specific scoring function utilized in this 
section. It is a scoring method based on the BIC score. The essence of its thinking is to achieve the appropriate 
relationship between all nodes in a greedy manner. Theoretically, there is no problem with this method. However, 
the essence of the Bayesian network lies in the relationship between variables, which is not as rigid as a mathe-
matical formula. The pruning method proposed in this section not only considers the fitting relationship between 
variables but also takes into account the transfer of information entropy between variables. It identifies the rela-
tionship with the least transfer of information entropy and the arc whose transfer direction of information entropy 
is opposite to the prediction. That is, the weak relation arc and the inverse relation arc. The concept of informa-
tion entropy is analogous to the causal relationship between variables from the very beginning, and many meth-
ods for judging causal direction are derived. Therefore, the pruning method provides assistance in constructing 
Bayesian networks from multiple perspectives. In the specific process of pruning, it is necessary to ensure the in-
tegrity of the graph by preventing the generation of any new subgraphs after pruning. Therefore, after completing 
the entire process of optimizing the Bayesian network structure, it is still necessary to apply the graph traversal 
method. Determine if any unexpected subgraphs appear.

3.3   Multi-agent Reinforcement Learning Algorithm under Global Observation

In the reinforcement learning algorithm, the critic-actor algorithm framework necessitates the use of a policy 
network and an evaluation network. The policy network takes in the agent’s state information and outputs the 
agent’s current policy, while the evaluation network takes in the agent’s state. Action pair, output the evaluation 
value of the agent’s current action. When there are multiple agents in the environment, the centralized evalua-
tion network needs to input the state and action pairs of all the agents, while the policy network needs to input 
the current observation information of all agents in the environment. Using the method of direct splicing, as de-
scribed above, although this approach is simple, the neural network trained using this method can only be applied 
in an environment with a fixed number of agents.

Furthermore, the information of other agents may not be relevant to local agents. The aggregation method 
is useful, but it increases the convergence cost when the information from other agents has little impact on the 
optimization of the local agent’s decision. The attention mechanism can be adapted for unstructured information 
fusion, making it highly suitable for merging observation information from each agent in a multi-agent environ-
ment. In the evaluation network and the policy network, the input information is different, which results in slight 
differences in the information fusion methods between the two modules, even when the attention mechanism is 
used to replace the traditional information fusion method simultaneously. In this paper, the policy network utiliz-
es the attention mechanism’s aggregation method. The local information oi of the agent in the environment is rep-
resented by nodes in the time series. By considering all agents locally as the entire input sequence, the attention 
mechanism can efficiently aggregate environmental information. Specifically, each agent can use their own in-
formation oi to aggregate the local information oj of other agents, forming a new feature vector representation of 
agent information. This vector can then be used to represent the agent’s observation information on the environ-
ment at every moment in the substitute environment. In the multi-agent environment, the attention mechanism is 
used as follows: at each moment, a weight value wij is calculated for other agents based on the local information 
of the agent. The calculation method is as follows,
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Among them, Q and K are the feature transformation matrix of weight sharing between different agents, which 
will perform feature transformation on the state information of the agent, and κ  is a normalization factor to 
ensure that even in the case of multi-layer attention, There is no problem that the data is too large or too small 
after calculation. Finally, the weight value is transformed through SoftMax transformation, so that the sum of the 
obtained weight values of all agents is 1. After the attention weight value is obtained, the environmental informa-
tion i aggregated by the agent i is obtained by weighting the weight value hi ,

i ij jh w v= ∑ .                                                                       (16)

Where vj is the feature representation vector of agent j’s local information oj after the feature transformation 
using the shared parameter transformation matrix V namely,

j jv V o= ⋅ .                                                                         (17)

In the calculation of attention, this paper does not use the form of position encoding, because in the multi-
agent collaborative environment, the considered agents are homogeneous agents, and it is hoped that the ag-
gregated information of each agent does not follow the agent’s change according to the input order. That is, the 
input order of the agent is expected to be ignored, and therefore, the positional encoding trick is not used for 
the agent’s attention mechanism. The use of this attention mechanism not only changes the traditional method 
of integrating the information of other agents, but also can use the local information of the agent to filter the lo-
cal information of other agents in the environment, so that the agent will be the focus of attention at the current 
moment. The information of other agents is assigned a larger attention value, and a smaller attention value is 
assigned to the agent that has little influence on the agent at the current moment, which can intelligently learn the 
attention relationship between the agents. Finally, the feature representation obtained after screening the local in-
formation of other agents in the environment through the attention mechanism is fused with the local information 
of the agent itself. This fusion process can be performed using a neural network. In this case, the final agent’s 
environmental observation mi at each moment is,

( ),i i im f o h= .                                                                     (18)

In this way, agents in the environment can still retain the local information of other agents. Fig. 8 shows the 
fusion of feature information in the agent using the attention mechanism.

Fig. 8. Attention mechanism model
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3.4   Multi-agent Intelligent Control System in Uncertain Environments

Bayesian reinforcement learning methods are used as optimization decision methods for multi-agent intelligent 
control systems facing uncertain environments. The unknown environmental parameters are modeled using a 
priori probability distribution, and the posterior distribution is solved using Bayesian technology and observed 
data to estimate the uncertainty of the parameter vector. Prior distributions can model environmental model pa-
rameters, value functions, strategies, and their gradients. They ensure that the Bayesian reinforcement learning 
method maintains a probability distribution and converges to the optimal strategy. The main steps are as follows:

Step 1: Build the Bayesian network structure among multiple agents, define variables and dependencies, iden-
tify the relevant variables for multi-agent problems, and infer the conditional probability relationships between 
them.

Step 2: Encode the state of the multi-agent Bayesian network as the state representation for reinforcement 
learning. Apply reinforcement learning to causal discovery using the encoder-decoder neural network model. 
This model generates a directed graph based on observation data and defines the action space to adjust the net-
work structure.

Step 3: Take the Bayesian Information Criterion (BIC) as the reward function to evaluate the quality of the 
Bayesian network structure. Assume that there is independent and identically distributed (IID) Gaussian additive 
noise between variables. Apply a linear model to each causal relationship and prune the edges of the directed 
graph based on the regression performance or scoring function.

Step 4: Strengthen the training of the learning agent by incorporating the index function as a secondary pen-
alty term. This will help prevent local optimization by utilizing scoring functions and acyclic constraint rewards. 
Specifically, calculate the penalty weight starting from a smaller value using the update rules of Lagrange mul-
tipliers mentioned in the notes, and then gradually increase the penalty weight. Under the premise of ensuring 
effective learning, strive to obtain the optimal directed graph network as much as possible.

Step 5: In this step, the cooperation and competition among agents are facilitated by the exchange of local 
information. The local information of agents in the environment corresponds to the nodes in the time series. To 
aggregate the environmental information and provide feedback for the decision-making process of agents, an at-
tention mechanism is employed.

Step 6: The agent interacts with the environment, observes the status, takes actions, and continuously updates 
the structure or parameters of the Bayesian network according to the reward.

Step 7: Using the results of reinforcement learning, the conditional probability table of the Bayesian network 
is optimized to accurately describe the state transition and environmental uncertainty.

Step 8: Utilize the Bayesian network optimized by reinforcement learning as the decision-making strategy for 
multi-agents in an intelligent control system. This approach aims to strike a balance between the cooperation and 
competition among the multi-agents.

To summarize, by utilizing reinforcement learning to optimize Bayesian networks, each agent can achieve the 
global optimal solution when confronted with decisions in uncertain environments.

4   Experiments

4.1   Implementation Details

To prove the effectiveness of the Bayesian network model generation method based on reinforcement learning 
proposed in this paper, a CPU will be used in this chapter is Inter(R) Core (TM) i9-10900K 3.70 GHz, memory 
is 128 GB, operating system It is Windows 10 Enterprise Edition, the graphics card is GeForce RTX 3080, and 
the video memory is 10GB for the experiment. The compiler used is Spider, the language used is python3.6, and 
the neural network construction framework is built through TensorFlow version 1.13.1. Part of the code uses the 
code in the Trustworthy AI toolbox written by Huawei Noah’s Ark Lab and the Causal Discovery Toolbox.

4.2   Bayesian Reinforcement Learning Search Experiment

To better verify the effect of the experiment, this paper uses a Bayesian network with 12 variables to change the 
source. The network has a totally of 2132 different DAG possibilities. It is almost impossible to obtain the DAG 
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with the best score by traversing, and the reinforcement learning-based Bayesian network model generation 
method based on this paper also considers the addition of the variable’s environment to it, and the result is better 
than the result obtained by directly scoring the DAG. At the same time, the DAG used in this paper uses a 12×12 
upper triangular matrix as the binary adjacency matrix of the graph, the cause variable is sampled independently 
from the Bernoulli distribution of N = 1, and the edge weights use a uniform distribution U(-2,0.5) Assign the 
edge weight to U(0.5,2) to obtain the weight matrix ddW R×∈  , and finally obtain 5000 samples from the sam-
pling model Td W N R× = ×+ ∈  through the Gaussian noise model and the non-Gaussian noise generation method 
proposed by ICA-Lingam in the paper, and conduct 5 independent tests. The experiment obtains its maximum 
value, minimum value median, and upper and lower quartiles, and compares it with the traditional method and 
the non-pruning method. The results are shown in Fig. 9 and Fig. 10 below:

Fig. 9. SHD comparison between the method in this chapter and the traditional method under non-Gaussian noise

Fig. 10. SHD comparison between the method in this chapter and the traditional method under Gaussian noise
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In the above figure, RLSS is a new method proposed in this paper to use reinforcement learning to complete 
Bayesian structure search. The RLSS_P method adds the traditional GES-based pruning method to this method 
and prunes it. The threshold is set to the default value of 0.3 described in the paper, and the RLSS_CP method is 
a Bayesian network generated by using the Bayesian structure optimization method mentioned in Section 4.3.2 
based on this method to perform weak relationship arcs and inverses. The number of arcs for relational arc judg-
ment is 1/20 of the total number of arcs. At the same time, the comparison methods used in the above experiment 
are all common methods in the field of Bayesian structure construction mentioned in Chapter 3, and the selection 
of specific parameters is the same as that in Chapter 3, while the traditional K2 score search strategy Because the 
order of input nodes is different from the maximum number of parent nodes, the final result is different, so in this 
experiment, the maximum number of parent nodes is set as the optimal value, and the final K2 score is obtained 
by averaging 100 times. strategy results. As can be seen from the above figure, the Bayesian structure obtained 
by the method proposed in this paper is closer to the real Bayesian network than the traditional Bayesian struc-
ture generation method, even if some traditional methods have obtained the optimal theoretically impossible. 
After hyperparameters, the structural accuracy is still far lower than the method proposed in this paper. However, 
we can also find that the method proposed in this paper has a large variance. Through observation, it can be 
found that the reason for this problem is that it falls into a local optimum under 20,000 algorithm traversals. The 
problem of rising can be alleviated, but the theoretical optimal solution cannot be obtained in a predictable num-
ber of times, which is also our follow-up research direction.

4.3   Application Analysis of Multi-Agent Reinforcement Learning Algorithm under Global Observation

The experiments compare the overall return convergence curves of the MADDPG algorithm, and the algorithm 
proposed in this paper during the training process.

Fig. 11. Cumulative return in spread environment

The changes in cumulative return of the algorithm during training in the spread environment are shown in Fig. 
11. It can be observed that in the distributed environment, when the number of agents is three, the algorithm pro-
posed in this paper converges faster than the MADDPG algorithm. However, the MADDPG algorithm exhibits 
significant fluctuations in the initial stage and gradually increases the cumulative return of the algorithm until it 
reaches its peak. The algorithm in this paper converges to the maximum value at around 5000 episodes, and there 
may be some fluctuations during the training process. However, despite the large fluctuations in both algorithms, 
our method demonstrates superior convergence compared to MADDPG in this environment.
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Fig. 12. Cumulative return in line environment

The performance of the algorithm in the linear environment is shown in Fig. 12. The convergence process 
of the two algorithms in the linear environment is the same as that in the spread environment. At the beginning, 
due to the random exploration of the environment for a period, the cumulative returns of both parties will exhibit 
lower range volatility. When the exploration of the environment is completed, the convergence speed of the two 
sides is not significantly different. However, the method proposed in this paper can achieve a relatively good re-
sult.

Fig. 13. Cumulative return of formation environment

Fig. 13 shows the convergence of the algorithm in the formation environment. As depicted in the figure, the 
convergence effect of the two algorithms in the formation environment is the closest. Both the MADDPG al-
gorithm and the algorithm proposed in this paper can converge to the peak value in a shorter time step, and the 
convergence effect of both algorithms is similar. In this environment, the algorithm demonstrates more stable 
training compared to the first two environments. The training results of the algorithm in this environment exhibit 
less fluctuation.
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5   Conclusion

5.1   Conclusion

This paper proposes an optimization method for generating Bayesian network models based on reinforcement 
learning. The method utilizes reinforcement learning to search for the optimal generalization residual score, 
thereby improving the efficiency of constructing the optimal Bayesian network structure. Moreover, we designed 
a parallel integrated Bayesian network and achieved higher precision performance compared to the basic struc-
ture. In addition, we apply the reinforcement learning model to research on multi-agent systems. We propose an 
ATMA algorithm in a global observation environment and demonstrate the utilization of the attention mechanism 
for information fusion within the AC framework. Finally, through simulation experiments, the ATMA algorithm 
has been found to have a faster convergence speed than the MADDPG algorithm in three typical multi-agent 
cooperative environments. Additionally, the ATMA algorithm is able to converge to a higher cumulative reward 
value compared to the MADDPG algorithm. The results show that the method based on Bayesian Networks and 
Reinforcement Learning has a positive impact on intelligent control systems in uncertain environments.

5.2   Prospect

Due to the limitations of their own knowledge and ability, this research still has some shortcomings, that need to 
be improved. The specific contents are as follows:

(1) Development of probabilistic models, further research and enhancement of Bayesian networks or other 
probabilistic models to more accurately capture uncertainty and dynamic characteristics within the environment.

(2) Research and application of efficient approximate inference methods to handle large-scale and complex 
Bayesian networks, thus enhancing learning efficiency and speed.

(3) Exploring the use of Bayesian neural networks to handle uncertainty and enhance the generalization capa-
bilities of neural network models, integrating Bayesian concepts with deep learning.
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