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Abstract. Wireless sensor networks (WSNs) are characterized by high node density and finite energy storage. 
Each node exchanges information with all its neighboring nodes frequently, which makes it easy for nodes to 
run out of energy, leading to paralysis of the WSNs when facing network malicious code attacks. To address 
this problem, a malicious code propagation model based on sleep-monitoring technology for WSNs is pro-
posed. As a Multi-compartment propagation, sleep nodes and monitoring nodes are introduced to the conven-
tional SIR model. Sleep nodes can turn the infected node into a dormant state and stop the dissemination of 
information to save energy. Monitoring nodes can contain malicious codes spread in wireless sensor networks 
by sharing prevention information in real time. Additionally, by calculating the equilibrium point and propa-
gation threshold of the new feedback model, the corresponding Lyapunov function is constructed to prove the 
local stability and global stability of the equilibrium point. Finally, the results of numerical simulation exper-
iments show that when the sleep rate is 0.3 and feedback rate is 0.0000005, the number of infected nodes in 
the wireless sensor network decreases by 43.45%. Therefore, adding sleep-monitoring technology can effec-
tively control the spread of malicious code in the networks.
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1   Introduction

Wireless sensor networks (WSNs) are widely utilized in industrial automation and the intelligent Internet of 
Things (IOT). They play a crucial role in perceiving the working status, monitoring equipment information, op-
timizing automation control, and improving industrial production efficiency. WSNs consist of numerous small, 
low-power, wireless communication, and self-organizing sensor nodes. Each sensor node in this system possess-
es data transmission, processing, and storage capabilities [1]. In comparison to the Internet, WSNs exhibit com-
plex network topology, high node density, low energy storage, and limited communication range. Consequently, 
the efficient utilization of node energy has become a fundamental distinction between the two [2].

With the increasing adoption of wireless sensor networks in the Internet of Things, network security concerns 
have gained significant attention. Among various network attacks, malicious code has emerged as a critical issue 
in WSNs [3-4]. Malicious code refers to a program that leverages wireless transmission technology to autono-
mously propagate itself, without requiring manual infection. It possesses the ability to self-replicate and propa-
gate, thereby presenting a serious threat. Therefore, it is imperative to employ effective measures to control the 
dissemination of malicious code within the network [3]. 

Firstly, in terms of the physical vulnerability of communication methods, Wireless Sensor Networks (WSNs) 
are prone to wireless attacks and abnormal signal interference because of their heavy reliance on wireless com-
munication for linking a multitude of devices in the Internet of Things [4]. Incidentally, WSNs terminals often 
utilize resource-constrained devices due to cost considerations. These devices lack adequate protection and pos-
sess weak defense capabilities against attacks. Consequently, malicious code can exploit these vulnerabilities to 
carry out large-scale network attacks. Secondly, in terms of network characteristics, WSNs consist of densely 
deployed nodes that engage in frequent exchanges. This characteristic accelerates the spread of malicious codes 
within the network. Simultaneously, each node in the network has extremely finite storage capacity and energy 
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resources. As nodes deplete their energy and memory, the entire network becomes paralyzed.
In light of these challenges, it is crucial to develop robust security mechanisms and strategies to mitigate the 

risks associated with malicious code in WSNs.
In previous research on virus transmission in wireless sensor networks, two primary research directions 

emerged. In the initial stages, researchers integrated the network topology of WSNs and studied network virus 
transmission based on biological infectious disease models (SIR, SI) [6-8]. However, as the research progressed, 
scholars increasingly recognized that while the dynamics of biological epidemics bear some resemblance to the 
propagation of network viruses, the unique configurability of network virus transmission and the transferability 
between nodes cannot be reflected by these typical models. Therefore, on this basis, they proposed some infec-
tious disease models that conform to the characteristics of network virus transmission [9-10].

To sum up, the previous research does not take into account the node characteristics of the WSN network, and 
ignores the characteristics of node state transitions. In order to solve this problem, this paper proposes a model 
using WSNs sleep-monitoring technology. In this model, after the susceptible nodes are infected, some of them 
enter the sleep state to reduce the energy loss, nodes in sleep state are unable to receive and transform any infor-
mation. At the same time, the infected nodes can also be transformed into a monitoring state to monitor the status 
of virus transmission in the network, and then generate prevention and control information feedback and back to 
the network to enhance the prevention and control capabilities of the entire network. 

Algorithm 1. The process of worm attack and propagation 

Major contributions of this paper are summarized as follows:
(1) Based on the node dormancy characteristics of the WSN networks, add sleep-monitoring technology, and 

add two new cabins on the basis of the SIR model: sleep (S2) and monitoring (M). the infected node can enter the 
monitoring state, monitor malicious codes, generate virus prevention files, and send them to surrounding nodes. 
It makes the whole network system After the infected nodes have reached the threshold, it will trigger events and 
enter the sleep state.

(2) Carry out dynamic analysis on the S1S2IMR model, and calculate the existence and uniqueness of its dis-
ease-free equilibrium point and endemic equilibrium point, as well as the transmission threshold, and perform 
stability analysis on the equilibrium point.

(3) Verify the correctness of the theoretical results through numerical simulation, and simulate the influence of 
each parameter in the model on the change of the number of infected nodes.

This paper is organized as follows: presents a novel epidemic model with latent by using the theory of epi-
demic models; analyzes the dynamical features of this model; by performing numerical simulations to verifies 
theoretic analysis. Finally, we end our investigations with brief conclusions.

This paper is organized as follows. Section 2 introduces the related work in the malicious model in WSNs. 
Section 3 presents the S1S2IMR models. The basic reproduction number and the global stability of the worm-
free equilibrium are investigated in Section 3. In Section 4, numerical simulations and suggestions are presented. 
Finally, Section 5 concludes the paper.
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2   Related Work

Sleep technology in wireless sensor networks is an energy-saving technology, which can prolong the service life 
of nodes and reduce network energy consumption. The implementation of this technology is to set the nodes in 
the wireless sensor network to sleep when they do not need to send or receive data, so as to save energy. After 
the node enters the sleep state, its energy consumption will be greatly reduced. Additionally, incorporating moni-
toring technology can further enhance the network’s security. This technology involves storing information about 
infected viruses and generating preventive measures to be added to the network feedback. This approach helps to 
enhance the network’s resilience against malicious code and improve overall security.

By combining sleep technology for saving nodes energy and monitoring technology for enhancing security 
of systems, it can effectively extend the life of the node, reduce energy consumption, and improve the stability 
and reliability of the wireless sensor network in which a large number of nodes are randomly deployed. The 
Schematic diagram of Wireless Sensor Networks structure is shown in Fig. 1.

In recent years, researchers have been primarily focused on two research directions pertaining to the propaga-
tion of viruses in wireless sensor networks (WSNs). One is to incorporate computer network architecture to an-
alyze the effects of various network environments and protocol parameters on the propagation of worm viruses, 
the other is to model based on biological infectious disease models. The relevant studies are shown in the Table 
1.

Table 1. Research on network viruses in wireless sensor networks

Author Characteristics of the paper Shortcomings of the paper
Shakya [6], 
Song [12]

Capturing the dynamic conditions of time and 
space.  

Constrained to conventional biological models 
(SI, SIR), the proposed model has yet to sub-
stantiate its stability.

Luo [7] Considering the communication radius of 
nodes.

Failing to take into account the node entry and 
removal rates d.

Wang [8] Considering time delay factors in model de-
sign.

The model’s feasibility remains unverified due 
to the absence of a comprehensive simulation.

Dong [18] Proposing a fuzzy fractional SIQR model to 
describe dynamics of virus propagation with 
quarantine in the network.

Failure to consider the limitation and recovery 
mechanism of node energy.

Singh [9], 
Feng [19]

Considering the impact of network communi-
cation radius and node distribution density.

Constrained by a finite number of state inter-
vals, resulting in a coarse representation of the 
virus propagation path that fails to capture the 
nuances inherent to WSNs.

Zhang [10] Introducing an e-epidemic SITR mathematical 
model and analyzed node changes under vary-
ing noise intensities.

Confined to the influence of remote sensing 
network noise levels and does not reflect the 
applicability to WSNs.

Khayam [11] Proposing a novel topology aware worm prop-
agation model (TWPM).

Not discussing the impact of different parame-
ters in the model on virus transmission.

Mishra [13], 
Ojha [14]

Proposing the two Exposure (E) and vaccine 
(V) cabins.

Not considering the finite energy of WSN net-
works nodes.

Song [15] Considering the Multi-state antivirus measures 
and proposing an e-SEIR model in.

Insufficient simulation experiments to demon-
strate the trend of transitions between different 
states.

Wang [16] Established the corresponding sleep compart-
ments for the S, I, and R, with node communi-
cation radius and node communication density 
as two parameters added to the model design.

Lack of model stability validation; data sim-
ulation is restricted to the discussion of node 
communication radius with insufficient investi-
gation into the sleep node characteristics intro-
duced by the model.

Jiang [17] Introducing the MAC layer sleep/listening 
mechanism.

It does not directly utilize the sleep listening 
mechanism.

Hu [20] Proposing the utilization of directional antenna 
technology to establish an SEIRS model incor-
porating rotating directional antennas.

Lack of proof of system stability in dis-
ease-free equilibrium and no discussion of 
sleep techniques.
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There are still many deficiencies in the virus propagation in wireless sensor networks studied in the above lit-
erature. For example, the energy management countermeasures of wireless sensor network nodes are not consid-
ered enough, and corresponding energy-saving measures cannot be taken according to the energy consumption of 
nodes in the network; Viruses, the corresponding virus prevention and control information cannot be generated in 
a targeted manner. In view of the above problems, this paper combines the characteristics of small energy storage 
and frequent communication of wireless sensor network nodes, uses sleep and monitoring technology, sets up 
two separate cabins, and proposes an improved S1S2IMR model. It further describes the propagation dynamics of 
the virus spreading from a single node to the entire network, studies the virus propagation path between different 
node states, and introduces the impact of sleep-monitoring nodes on virus infection in the network.

In this paper, we propose a worm suppression strategy based on sleep-monitoring techniques to limit worm 
propagation in WSNs. We set the sensors in WSNs are divided into subsets, infected nodes in each subset enter 
the sleep state according to a set ratio. The rest of the infected nodes enter the monitoring state. For the nodes in 
the sleeping state, the virus cannot spread around, thus effectively restricting the spread of the virus; at the same 
time, the monitoring node collects the characteristics of the infected nodes and generates virus prevention and 
control information to be fed back to the susceptible nodes. In order to further improve the security of the model 
and verify the effectiveness of the model, we conducted a series of experiments. The experimental results show 
that the model can effectively detect malicious code in the process of information dissemination prevention and 
control. This will improve the network’s prevention and control ability. By analyzing the experimental results, it 
can be seen that the model has superior performance under different network sizes and structures. It resists virus 
attacks and has strong scalability and practicality.

Fig. 1. Schematic diagram of wireless sensor networks structure 

3   Modeling

Inspired by the classic SIR model, this paper proposes a new malicious code infection model: S1S2IMR model 
according to event-driven sleep technology in wireless sensor networks. Inspired by the classic SIR model, this 
paper proposes a new malicious code infection model: S1S2IMR model according to event-driven sleep technol-
ogy in wireless sensor networks. There are five states in all nodes of the model, and these five states are suscep-
tible states (Susceptible, S1), infected states (Infected, I), sleep states (Sleep, S2), monitoring states (Monitoring, 
M), recovered states (Recovered, R).

The key mechanism of the S1S2IMR model is to use sleep technology to perform forced dormancy on infect-
ed nodes, and to use monitoring technology to learn and share information about viruses in infected nodes, so 
as to cut off the virus transmission path and improve the system’s ability to learn malicious code. To achieve 
the suppression of the spread of computer viruses. In order to achieve this effect, the key part can be realized by 
sleep-monitoring algorithm. For each infection node I in the set N(I), the specific process is as follows:
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Algorithm 2.  Sleep Monitoring mechanisms in WSNs

Combing the sleep-monitoring algorithm above helps to further study the state transition.
The S1S2IMR model divides nodes into one of five different stages, and any node may be in any of these stag-

es at any time. The state of nodes in our model is defined as follows:
(1) Susceptible (S1): including nodes that are vulnerable to worm attack. After being attacked by the worm, 

nodes S have β probability of being infected, becoming node I. Node S can reach node R both through 
autoimmunity and immunization through virus prevention and control information generated by node M.

(2) Infected (I): including nodes actively scanning for and spreading viral information. Nodes I are trans-
formed into two states M and S2 based on the code transportation rate of α. According to the sleep rate θ, 
some of the nodes I are transformed into nodes S2, and the remainder into nodes M.

(3) Sleep (S2): including nodes that can receive information, but cannot process them. Nodes S in state S2 
have a probability γ of obtaining autoimmunity to reach the recovery state.

(4) Monitoring (M): including nodes that monitor signals of virus infection and generate prevention and treat-
ment information. Node M has δ probability to feed back to the node R.

(5) Recovered (R): including nodes that have patched and thus immune to a worm attack temporarily. 
The transformation between the states of the S1S2IMR model is shown schematically in Fig. 2. 

Fig. 2.  The state-transition rules of the S1S2IMR model
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According to the state transition in Fig. 2, the parameter of the S1S2IMR model in this paper can be written as 
Table 2:

Table 2. Notation and explanation for proposed models 

Notation Explanation
S1(t) Number of susceptible nodes at time t
I(t) Number of infected nodes at time t

M(t) Number of monitoring nodes at time t
S2(t) Number of sleep nodes at time t
R(t) Number of recovered nodes at time t

β Infection coefficient 
α Code delivery rate 
θ Sleep rate
δ Feedback rate
φ Acquired immunity rate
γ Self-immunization rate, including S1→R and S2→R
d Natural decay rate
N Total number of nodes

The set of differential equations for the S1S2IMR model is the following system:

1
1 1 1
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1

2
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1 2 1

( )  ( )
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In particular, the first four equations in (1) do not depend on the fifth equation, so the system equations in (1) 
are the same as the following kinetic equations:
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In a dynamical system, the set of all possible points is a feasible region. In the dynamical system (2) of the 

S1S2IMR model, the feasible region Ω is: ( ){ }4
1 2 1 2, , ,S I M S R S I M S N+Ω = ∈ + + + ≤： .

This set is the positive invariant set of the system (2).
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4   Stability Analysis

In the model construction of Chapter 3, the dynamic equation of the S1S2IMR model can be used to determine the 
equilibrium point of the S1S2IMR model.

The equilibrium point of the S1S2IMR model is determined by the following equation system:

( )

( )

( )

( )

( )

1

2

0

0

0

0

0

  

dS t
dt

dI t
dt

dM t
dt

dS t
dt

dR t
dt


=




=


 =


 =


 =



.                                                                        (3) 

The only worm-free equilibrium E0 of model (2) can be easily obtained

( )0 1,0 0 2,0 0, , , ,0,0,0 .dNE S I S M
dγ

 
= =  + 

The only endemic equilibrium E* of model (2) can be easily obtained
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( ) ( )( )
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1 2
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d d d
α θα αθ

β δ δ γ

 −+ = =
 + + + 

( ) ( )( )
( ) ( ) ( )

( ) ( )( )
( ) ( ) ( )

( )( )
( )( ) ( ) ( )

[ 1 [ [
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β α β δ αϕ θ α β δ αϕ θ α δ β δ αϕ θ
 + − + + − − + + − + ++

=   + + + − + + + − + + + + − 
According to Theorem 2 in [20], we compute the basic reproduction number through the spectral radius of a 

matrix [21-22].
Let x = (I, S1, M, S2)

T, the dynamic system (2) of model S1S2IMR can be presented:

( ) ( )dx F x V x
dt

= −

( ) ( )

( )
( )
( )
( )

1

1 1 1

1

2 2

0
,  .

0
0

d IS
S I d S S M dN

F x V x
d M a I

d S I

αβ
β γ ϕ

δ
γ α

 + 
   + + + −  = =    + −
    + −   

Then

0 0

1
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1

2
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Then, we have the basic reproduction number [23] of model (3) is

1
0 .

( ) ( )( )
S dNR

d d d
β β
α α γ

= =
+ + +

                                                         (4)
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4.1   Worm-free Equilibrium Stability 

Lemma1. The worm-free equilibrium E0 is locally asymptotically stable in Ω if ℜ0 < 1 and unstable if ℜ0 > 1.

Proof. According to 0 1|0 0 0 2|0( , , , ) ( ,0,0,0)dNE S I M S
dγ

= =
+

, the Jacobian matrix at the worm-free equilibri-

um E0 is

( )

( )
( )

( )
( )

1 1

1
0

1

2

0
0 0 0

.
0 0
0 0

d S S
S d

J E
a d

d

γ β ϕ
β α

δ
α γ

 − + − −
 

− + =  − +
  − + 

                                   (5)

The corresponding eigenvalues of J(E0) are

( )
( )
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1

2

3

4 1

      
      

.
      

 

d
d
d

S d

λ δ
λ γ
λ γ
λ β α
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 = − +
 = − +

                                                                 (6)

According to stability theory [24], for the four-dimensional model to be asymptotically stable, only when λi < 
0, (i = 1, 2, 3, 4). Assuming all model parameters are positive, when ℜ0 < 1, βS1 − (α + d) < 0, it can be obtained 
that λ4 < 0.  So, when ℜ0 < 1, the worm-free equilibrium E0 is locally asymptotically stable in Ω, on the contrary, 
when ℜ0 > 1, λ4 > 0. Therefore, the worm-free equilibrium E0 is an unstable saddle point.

Lemma2. The worm-free equilibrium E0 is global asymptotically stable in Ω if ℜ0 < 1 
Proof. From the first equation of Model 2, it can be obtained as follows

( ) ( ) ( )'
1 1 ,S t dN d S tγ≤ − +

Thus ( ) ( ) ( )1 1 0 exp .dN dNS t S d t
d d

γ
γ γ

 
 ≤ − − − +   + + 

 

When t − > ∞, We can obtain ( )1   
dNS t

dγ
≤

+
 .

Consider a Lyapunov function: 

1 .V I=                                                                              (7)

The derivative of the model (3) with respect to the solutions along its trajectories is given by
( )'

1 1V I S I d Iβ α= = +′ −

( )
( ) ( )1

d
S I d I

d
β α

α
+

= − +
+

( )
( )( ) ( )

d dN
I d I

d d
α

β α
α γ

+
≤ − +

+ +

( )( )0 1 .d R Iα= + −

When ℜ0 < 1, thus βS1 − (α + d) < 0, it can obtain that 1V ′  < 0. Therefore, according to the Lasalle invariance 
principle [26], when ℜ0 < 1, the disease-free equilibrium point E0 of model (2) is globally asymptotically stable 
in the feasible region Ω.

This article verifies the stability of the disease-free equilibrium point E0 in the S1S2IMR model in Section 4.1. 
Through Theorem 1 and Theorem 2, it can be found that when ℜ0 < 1, the S1S2IMR model will ultimately stabi-
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lize at the disease-free equilibrium point E0. This indicates that in Model (2), if ℜ0 < 1, the malicious code in the 
network will be gradually eliminated until it is completely eliminated.

4.2   Endemic Equilibrium Stability

Lemma3. The endemic equilibrium E* is locally asymptotically stable in Ω if ℜ0 > 1.
Proof. According to ** * * *

1 2( , , , )E S I M S= , the Jacobian matrix at the endemic equilibrium E* is 

( )
( )

( )
( )

( )

* * * *
1 1

* *
* 1

1

2

0

0 0 .
0 0
0 0

I d M S S

I S dJ E
a d

d

β γ ϕ β ϕ

β β α
δ

α γ

 − − + − − −
 
 − +=  − + 
 − + 

                        (8)

Thus, the corresponding characteristic equation can be denoted as

4 3 2
3 2 1 0 0.C C C Cλ λ λ λ+ + + + =                                                        (9)

Where,  
( )3 14 2 0,C d M I Sα δ γ ϕ β= + + + + + − >
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According to the calculation, it can be concluded that
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Therefore, according to the Lasalle invariance principle [26], when ℜ0 < 1, the endemic equilibrium point E* 
of model (2) is locally asymptotically stable in the feasible region Ω.

Lemma4. The endemic equilibrium E* is globally asymptotically stable in Ω if ℜ0 > 1.
Proof.  Firstly,

 g(x) = x − 1 − lnx .                                                                  (10)

It’s easy to know that g(x) > 0 is constant established
Consider a Lyapunov function: [25]
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* 1
2 1 *

1
.S IV S g wg
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   = +       
                                                            (11)
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dN d d
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In Section 4 Stability Analysis, we have ℜ0 in Equation (4). When ℜ0  > 0, βdN > (α + d + 𝜀) (𝛾 + d), w > 0.
By submitting (10) to (11), we can get:
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The total derivative along model (2) is:
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SS
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Thus, when ℜ0 > 1, the endemic equilibrium point E* of model (2) is globally asymptotically stable in the fea-

sible region Ω.
This article verifies the stability of the endemic equilibrium point E* in the S1S2IMR model in Section 4.2. 

Through Theorem 3 and Theorem 4, it can be found that when ℜ0 > 1, the S1S2IMR model will ultimately sta-
bilize at the endemic equilibrium point E*. This indicates that in Model (2), if ℜ0 > 1, the malicious code in the 
network will not disappear, but will continue to exist.

When ℜ0 > 1, the endemic equilibrium point E* of model (2) is globally asymptotically stable in the feasible 
region Ω.

4.3   Sensitive Evaluation

In order to maintain the worm within a certain number, it is necessary to analyze the causes of the basic repro-
duction number ℜ0. As a next step, we perform a sensitivity evaluation of ℜ0. 

From equation (4), the basic reproduction number of system (1) depends on the following parameters: α, β, γ, 
d, Using a normalized sensitivity index (NSI), one may estimate the rate of change of ℜ0 given a change in the 
parameter value. NSI [parm] is defined as:

[ ] [ ]
0

0
.parmNSI parm

parm
∂ℜ

= ⋅
ℜ ∂                                                        (13)

Thus, The NSI of ℜ0 with respect to α, β, γ and d is:
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From the above, we can see that ℜ0 decreases as β decreases or α, d, γ increase. To illustrate, we calculated the 
parameter values listed in Table 3 for the NSI for special cases. The NSI and corresponding % values in Table 4 
indicate the change in parameter values required for a 1% decrease in ℜ0.

Table 3. Parameter values

Parameter Value Unit
β 0.0000001 Second-1

α 0.06 Second-1

γ 0.004 Second-1

d 0.00004 Second-1

From Table 3, to get a 1% decrease in the value of ℜ0, it is necessary to decrease the values of β and d by 1% 
and 1.0007%. Besides, a 1.01% increase in the values of γ and a 1.0007% increase in the values of α are required 
to achieve a 1% reduction in the value of ℜ0. Consequently, from the NSI, the optimum approaches of reducing 
the value of ℜ0 are to decrease the connection rate between susceptible and connected nodes (β), decrease the 
Natural decay rate from all nodes (d), and increase the delivery rate from infected nodes (α), increase the Self-
immunization rate from susceptible and monitoring nodes to recovered nodes (γ), respectively.

Table 4. NSI of ℜ0 and change in parameter for 1% change in ℜ0

Parameter NSI [parm] Corresponding % changes
β 1 1
α -0.99933 -1.0007
γ -0.9901 -1.01
d 0.98943 1.0007

5   Numerical Simulations

Evaluate the effectiveness of the S1S2IMR model through numerical simulation and simulation related experi-
ments. This experiment was conducted using the MATLAB R2023a platform under the Intel Core i5-8265U CPU 
with a main frequency of 1.60 GHz, 8GB of memory, and Windows 11 operating system environment. In order 
to study the propagation pattern of malicious code in the Internet of Things, the initial number of nodes was set 
to 100000 in all numerical simulations and related experiments.

5.1   Changes of Each Node in the System Over Time

The S1S2IMR model proposed in this paper is based on the classic SIR model. If the sleep and monitoring state 
after the infection node is not considered, the S1S2IMR model will degenerate into the SIR model. Adding the 
sleep mechanism, the infected nodes are forcibly transformed into sleep nodes, cutting off the virus transmission 
path; at the same time, the monitoring technology is used to collect the information after the virus infection of the 
infected nodes, and feedback the generated virus prevention information. The sleep -monitoring mechanism can 
be divided into two parts: sleep and monitoring feedback, so it needs to be analyzed and demonstrated separately.
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The first and second numerical simulation experiments were conducted to validate the SIRC proposed in the 
paper model’s disease-free equilibrium point E0 and viral equilibrium point E* of the SIRC model, that is, to veri-
fy the theorem in the stability analysis in Section 4.

    

Fig. 3. Number of nodes in each state changes over time 
when ℜ0 < 1

Fig. 4. Number of nodes in each state changes over time 
when ℜ0 > 1

In the first experiment, the number of initial nodes of susceptible nodes, infected nodes, monitoring nodes, 
sleep nodes and immune nodes were set as S1(0) = 80000, I(0) = 20000, M(0) = 0, S2(0) = 0, R(0) = 0. The se-
lection of each parameter is as follows β = 0.0000001, α = 0.06, θ = 0.3, δ = 0.0001, γ = 0.004, φ = 0.00001, d = 
0.00004. According to the formula (4) obtained above, the basic reproduction number ℜ0 = 0.0016491 < 1 can 
be calculated. At this time, according to the relevant theories of Theorem 1 and Theorem 2, it can be known that 
the malicious code in the network will eventually disappear. Fig. 3 shows the change process of the number of 
nodes in each state with time, Fig. 3 shows that since the infected nodes infected the susceptible nodes through 
direct contact at the initial stage of the system, the number of infected nodes increased slightly in a short period, 
but then gradually decreased and approached at 0. Therefore, in the long run, the entire network is in an immune 
state, which is consistent with Theorem 1 and Theorem 2.

In the second experiment, while keeping the total number of 100000 nodes unchanged, unlike the first experi-
ment, the initial number of nodes in each state was set to S1(0) = 99950, I(0) = 50, M(0) = 0, S2(0) = 0, and R(0) 
= 0. The selection of each parameter is as follows β = 0.0000001, α = 0.0006, θ =0.3, δ = 0.0001, γ = 0.0001, φ = 
0.00001, d = 0.0004. According to formula (4) above, it can be obtained that ℜ0 = 8 > 1 at this time. By Theorem 
3 and Theorem 4, it can be known that the infected nodes do not disappear with time; instead, the infected nodes 
grow and reach asymptotic stabilization at a later stage. From Fig. 4. In the early stage, the number of susceptible 
nodes decreases drastically, while the number of recovered nodes increases at a similar rate, and the number of 
infected nodes increases gradually, reaches a peak and then steadily stabilizes. It is due to the propagation of ma-
licious information from the surrounding infected nodes that makes a sharp increase in the number of susceptible 
nodes, while the infected code enters the sleep state after reaching the set value, acquires immunity and arrives 
at the recovery state, the increase levels off and eventually stabilizes. Compared to Fig. 3, this scenario in Fig. 4 
is closer to reality. In the WSN networks, adding sleep-monitoring technique can significantly reduce the size of 
the infected nodes in the short term, but also can learn and monitor the worm attack information in the WSN net-
works, feedback to the nodes, keep the infected nodes within the controllable range, and enhance the robustness 
of the WSN networks.

5.2   Comparison of the S1S2IMR Model with Other Models

The third and fourth experiments were conducted to demonstrate that in WSN networks, the newly proposed 
S1S2IMR model with sleep-monitoring technique is more effective than Kermack-Mckendrick’s classical SIR 
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model (Model II), and the SIFR model (Model III) which considers the virus information prevention and control 
feedback, but does not take into account the infected node dormancy, the WSNs’ sleep-monitoring technique 
model has better results in malicious code containment.

In both experiments, Model II does not consider the monitoring node feedback role and thus no acquired im-
munity, and also does not use the infected node dormancy technique, so it is not affected by the acquired immu-
nity rate φ, feedback rate δ, and code delivery rate α, i.e., the acquired immunity rate φ = 0, the feedback rate δ = 
0, the code delivery rate α = 0 and the sleep rate θ = 0. Constructing the classical SIR model, which is referred to 
in the text as Model II, its differential dynamics equation can be written as:
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Model III is not affected by the code delivery rate α, sleep rate θ, that is, the malicious code delivery rate α = 
0, and the sleep rate θ = 0. A worm propagation model with feedback is proposed in the literature [27]. In order to 
better compare with the S1S2IMR model construct a model SIFR in line with the above literature, which is called 
Model III in that paper, and its differential dynamics equation can be written as:
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Fig. 5. Changes in the number of infected nodes in different 
systems over time when ℜ0 < 1

Fig. 6. Changes in the number of infected nodes in different 
systems over time when ℜ0 >1

In the third experiment, the number of initial nodes is identical to that in experiment 1. The parameters of 
Model II are the same as Model I except φ = 0, δ = 0, α = 0, θ = 0. The parameters of Model III are the same as 
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Model I except that δ = 0.004, α = 0, θ = 0. For the parameters are adjusted so that the three models satisfy the 
condition that the basic reproduction number ℜ0 < 1 As shown in Fig. 5, the sleep-monitoring technique brings 
the number of infected nodes down to converge to zero earlier and faster compared to the classical SIR model 
and SIFR model. On the other hand, it can make the peak value of the number of infected nodes much smaller 
than that of the two models. Moreover, the S1S2IMR model with sleep-monitoring reduces the peak reached by 
the number of infected nodes in the point WSN networks compared to model III. The number of infected nodes 
at the peak is decreased by 72.02% in the case of the acquired immunity rate φ of the S1S2IMR model taken as 
0.00001. It shows that the S1S2IMR model with sleep technology can reduce the scale of malicious code propa-
gation through dormancy technology, and at the same time disseminate anti-malicious code related prevention 
and control information, thus eliminating the problem of antivirus software not being able to respond in time to 
the new type of malicious code at the early stage of the system. This demonstrates that the S1S2IMR model has 
the potential to effectively minimize malicious code propagation while promoting proactive measures to protect 
against it.

In the fourth experiment, the number of initial nodes is identical to that in experiment 2. The parameters of 
model II are the same as Model I except that φ = 0, δ = 0, α = 0, θ = 0. The parameters of Model III correspond 
to those of Model I. At this time, the basic reproduction number ℜ0 > 1 holds for all three models. As shown in 
Fig. 6, When ℜ0 >1, the infected nodes of the three systems will not disappear in the end, but always exist and 
converge to a stable peak value respectively, but in the WSN networks, the final stable peak value of the infect-
ed nodes of the SIFR model with the added feedback mechanism is also smaller than that of the traditional SIR 
model, and the final stable value of the infected nodes is smaller than that of model two. The S1S2IMR model 
proposed in this paper is able to further reduce the peak value reached by infected nodes compared to model III. 
Taking the edge node feedback rate of 0.0000005 in the S1S2IMR model, the number of infected nodes at the 
peak value is reduced by 43.45%.

5.3   The Effect of Other Parameters on the Model

Infection rate β impact on changes in the number of infected nodes. The next fifth and sixth experiments are 
designed to investigate the effect of different Infection coefficient on the number of infected nodes in the WSN 
networks.

    

Fig. 7. Evolution of infected nodes with time under different 
infection coefficients when ℜ0 <1

Fig. 8. Evolution of infected nodes with time under different 
infection coefficients when ℜ0 >1

The fifth experiment is to compare the influence of different infection rates on the number of infected nodes 
when ℜ0 < 1. The infection coefficients are β = 0.0000001, β = 0.0000002, β = 0.0000003, β = 0.0000005, re-
spectively, and to make the results more observable, we take the code delivery rate to be a = 0.006. Except for β 
and a, the initial number of nodes in each state and other parameters are consistent with Experiment 1. From the 
changing trend of the curve in Fig. 7, it can be seen that at ℜ0 < 1, the infected nodes eventually decrease to 0 and 
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reach the steady state. With an increasing infection rate, the number of infected nodes increases faster, reaching 
a larger peak at a faster rate, and then gradually decreasing to 0 at a faster rate until the infection stabilizes. This 
indicates that in the early stage of malicious code propagation in WSN networks, the effect of controllable size of 
infected nodes can be achieved by controlling the infection coefficient between susceptible and infected nodes.

The sixth experiment is to compare the influence of different infection rates on the number of infected nodes 
when ℜ0 > 1. The infection coefficients are β = 0.0000001, β = 0.0000002, β = 0.0000003, β = 0.0000005, respec-
tively, and to make the results more observable, we take the code delivery rate to be a = 0.0006. Except for β and 
a, the initial number of nodes in each state and other parameters are the same as those of Experiment 2. From the 
curve trend in Fig. 8, it can be seen that the larger the β value is, the faster the number of infected nodes increases 
and the earlier the peak value is reached. The relationship between infection rate, growth rate, and peak value of 
infected nodes is similar to that shown in the fifth experiment. When β = 0.0000001, the peak value of infected 
nodes is only half of β = 0.0000005, while the time to reach the peak value is four times as long. Therefore, by 
using firewalls, intrusion detection and defense techniques and other measures to reduce the worm’s infection 
factor in the WSN networks, to achieve the purpose of suppressing the rapid spread of malicious code.

Sleep rate θ impact on changes in the number of sleep nodes. The next seventh and eighth experiments are 
designed to investigate the effect of different sleep rates on the number of sleep nodes in the WSN networks. In 
this part of the experiment, we also consider the extreme sleep case to study the trend of the number of sleeping 
nodes under the extreme sleep rate.

     

Fig. 9. Evolution of sleep nodes with time under different 
sleep rates when ℜ0 < 1

Fig. 10. Evolution of sleep nodes with time under different 
sleep rates when ℜ0 > 1

The seventh experiment is to compare the influence of different sleep rates on the number of sleep nodes when 
ℜ0 < 1. The sleep rates are θ = 0.1, θ = 0.3, θ = 0.5, θ = 0.7, θ = 0.9, respectively, the initial number of nodes in 
each state and other parameters are consistent with Experiment 1. From the changing trend of the curve in Fig. 9, 
it can be seen that, when the sleep rate θ is 0.1, the sleep nodes account for the infected nodes only 8.24% of the 
number of infected nodes; when the sleep rate is 0.3, the peak number of sleeping nodes accounts for 24.85%, 
when the sleep rate is 0.5, it is 41.70%, when the sleep rate is 0.7, it is associated with 58.94%, and when the 
sleep rate θ is 0.9, it reaches 59.82%. From the values it can be seen that when the sleep rates accounts for less 
than 50% of the code delivery rates, only a small portion of the infected nodes are transferred to the sleep nodes 
to reduce the node energy consumption caused by a large number of malicious code attacks in a short period of 
time, the majority of the infected nodes are transferred to the monitoring state, and the WSN networks will not be 
paralyzed by the large number of dormant nodes.

The eighth experiment is to compare the influence of different sleep rates on the number of sleep nodes when 
ℜ0 > 1. We removed the sleep rates take of 0.9 too large and 0.1 too small and considered three other sleep rates 
takes, so the sleep rates are θ = 0.3, θ = 0.5, θ = 0.7, respectively, the initial number of nodes in each state and 
other parameters are consistent with Experiment 2. From the changing trend of the curve in Fig. 10, it can be 
seen that, when the basic reproduction number ℜ0 > 1, the WSNs is in the steady state of proliferating malicious 
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code. The higher the sleep rate, the larger the number of sleeping nodes will be when the WSNs reaches this 
state. Therefore, when applying sleep technology in WSN networks, the sleep rates of the network can be con-
trolled within a reasonable range by dynamically adjusting the sleep cycle and implementing remote monitoring 
and management of it. As a result, malicious code is less likely to spread to the steady state and the network’s 
energy consumption is reduced.

Code delivery rate α impact on changes in the number of infected nodes. The next ninth and tenth experiments 
are designed to investigate the effect of different feedback rates δ on the number of infected nodes in the WSN 
networks.

     

Fig. 11. Evolution of infected nodes with time under code 
delivery rates when ℜ0 < 1

Fig. 12. Evolution of infected nodes with time under different 
code delivery rates when ℜ0 >1

The ninth experiment is to compare the influence of different code delivery rates on the number of infected 
nodes when ℜ0 < 1. The code delivery rates are α = 0.04, α = 0.06, α = 0.08, respectively, the initial number of 
nodes in each state and other parameters are consistent with Experiment 1. From the changing trend of the curve 
in Fig. 11, it can be seen that, when ℜ0 < 1, There is a negative correlation between the number of infected nodes 
and the code delivery rate α. In the early stages of malicious code infection, the number of infected nodes goes 
straight to zero over time. This means that malicious code can be effectively removed if the code transfer rate is 
high enough. If the code transfer rate is kept at a high level, it can also prevent malicious code from spreading.

The tenth experiment is to compare the influence of different code delivery rates on the number of infected 
nodes when ℜ0 > 1. The code delivery rates are α = 0.04, α = 0.06, α = 0.08, respectively, the initial number of 
nodes in each state and other parameters are consistent with Experiment 2. From the changing trend of the curve 
in Fig. 12, it can be seen that, when the basic reproduction number ℜ0 > 1, as the code delivery rate increases, the 
increase in infected nodes slows down, and when the code delivery rate is 0.0008, the infected nodes can only 
be doubled at most. This strategy can be used to prevent the worm from spreading out of control, but it cannot 
completely prevent the worm from spreading. Therefore, other strategies, such as patching and system hardening, 
must be implemented to prevent worm spreading.

Feedback rate δ impact on changes in the number of infected nodes. The next eleventh and twelfth experi-
ments are designed to investigate the effect of different feedback rates δ on the number of infected nodes in the 
WSN networks.
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Fig. 13. Evolution of infected nodes with time under different 
feedback rates when ℜ0 < 1

Fig. 14. Evolution of infected nodes with time under differ-
ent feedback rates when ℜ0 > 1

Fig. 13 and Fig. 14 show the effect of feedback rates δ on the change of infected nodes when the basic repro-
duction number ℜ0 < 1 and ℜ0 > 1, respectively. Except for the feedback rate, the initial number of nodes and 
other parameters of each state for both models were the same as in Experiments 1 and 2. The feedback rate δ is 
set to 0.1, 0.01, and 0.001. As shown in Fig. 13, when ℜ0 < 1, the number of infected nodes gradually decreases 
to zero and the peak of the number of infected nodes gradually decreases with the increase of the feedback rate; 
and as shown in Fig. 14, the number of infected nodes does not decrease to zero over time when ℜ0 > 1. Instead, 
it gradually increases and reaches equilibrium. Improving the feedback rate can inhibit malicious code propaga-
tion at an early stage. This can be achieved by improving monitoring feedback measures such as enhancing node 
dense deployment to increase network fault tolerance. In addition, it can enhance the rate at which nodes collab-
orate to detect information, and other measures.

Self-immunization rate γ impact on changes in the number of infected nodes. The next thirteenth and four-
teenth experiments are designed to investigate the effect of different Self-immunization rates on the number of 
infected nodes in the WSN networks. 

    

Fig. 15. Evolution of infected nodes with time under different 
Self-immunization rates when ℜ0 < 1

Fig. 16. Evolution of infected nodes with time under differ-
ent Self-immunization rates when ℜ0 > 1
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Figu. 15 and Fig. 16 show the effect of Self-immunization rate γ on the change of infected nodes when the ba-
sic reproduction number ℜ0 < 1 and ℜ0 > 1, respectively. Except for Self-immunization rate, the initial number 
of nodes and other parameters of each state for both models are the same as in Experiments 1 and 2. When ℜ0 < 
1, self-immunization rate γ is set to 0.04, 0.004, and 0.0004, respectively; when ℜ0 > 1, self-immunization rate γ 
is set to 0.001, 0.0001, and 0.00001, respectively. As shown in Fig. 15, As self-immunization rates increase, the 
number of infected nodes gradually decreases to zero, and the peak value of the number of infected nodes grad-
ually decreases; as shown in Fig. 16, when R0 > 1, the number of infected nodes does not decrease to zero over 
time, but gradually increases until equilibrium is reached. Self-immunization rates can be enhanced through mul-
tiple means such as enhanced virus library learning and updating, use of behavioral analysis techniques.

5.4   Discussion and Suggestion

Theoretical proofs and numerical simulations are given above to confirm the role of different parameters in the 
virus propagation model S1S2IMR for WSN networks. From the basic reproduction number ℜ0, it can be seen 
that in order to gradually reduce the number of worms in the network and reach equilibrium, the virus propaga-
tion model should be controlled to have ℜ0 < 1. ℜ0 in the model of this paper is as follows:

( ) ( )( )
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0 .S dNR
d d d

β β
α α γ

= =
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The parameters β, α, d, and γ in the model are all important parameters affecting ℜ0, among which β and ℜ0 
are positively correlated, and α, d, γ are negatively correlated with them. In order to achieve the value of the ba-
sic reproduction number ℜ0 as small as possible, it is necessary to control these parameters. The infection rate β 
can be controlled by installing a firewall and improving the security level of equipment. The improvement of the 
immunity rate γ can be obtained from the inside and outside of the system. Outside the system, measures such as 
timely vulnerability patching and user safety awareness education can improve the immunity rate of the system. 
In this model, the virus detected by the monitoring node M Information is returned to the network through feed-
back to generate malicious code prevention files, thereby enhancing the immunity rate. The determination of the 
sleep rate θ value needs to be based on the number of nodes in the network and the frequency of communication. 
When a large number of malicious code attacks are encountered in a short period of time, a rapid increase in the 
sleep rate can effectively control the number of worms in the system; at the same time, the higher the sleep rate 
is, the lower the network’s working efficiency is.

Therefore, in order to control the spread of malicious code in wireless sensor networks, the following two 
points must be determined:

The first is to determine the dormancy threshold of the system, which is related to the network scale, the den-
sity of network node distribution and the stage of malicious code propagation. The optimization of the dorman-
cy coefficient needs to simulate the network worm propagation algorithm, set the threshold number of infected 
nodes in the system, the duration of dormancy, and the probability of death after the dormancy state transition 
fails, and obtain more accurate parameter values to ensure that more nodes in the network Infected nodes can 
save energy, prolong the lifetime of network, gain immunity after the dormant state ends, and suppress the spread 
of worms in time.

The second is to improve the immunity of the system, including acquired immunity and self-immunization. 
Enhancing the system’s ability to learn from malicious code begins with the establishment of a multilevel moni-
toring mechanism, real-time updating of malware databases, and the sharing and collection of threat intelligence. 
Subsequently, behavioral monitoring and heuristic analysis are implemented to monitor the abnormal behavior 
of applications and systems. This helps to detect unknown viruses and new types of attack. Finally, robust threat 
intelligence is continuously collected and analyzed, with threat analysis and research based on information from 
the security community, vulnerability reports, and threat intelligence agencies. Helps update virus monitoring 
rules and warns of new virus threats.

6   Conclusion and Future Work

In the wireless sensor network, the security defense level between the sensors is low, the average node energy 
storage capacity is small, and the information exchange is frequent. When attacked by large-scale network ma-
licious codes, the system is easy to be paralyzed due to energy exhaustion. Considering the characteristics of 
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wireless sensor network information transmission, using node sleep technology and monitoring technology, the 
nodes in sleep state and monitoring state are introduced on the basis of the classic SIR model, and the S1S2IMR 
model is constructed. Through dynamic analysis, the transmission threshold ℜ0 of the S1S2IMR model is first ob-
tained, and then the stability of the model is analyzed to prove the stability of the disease-free equilibrium point 
E0 and the virus equilibrium point E* respectively. Finally, the simulation proof is carried out. The results of the 
numerical simulation It shows that when the feedback mechanism of the S1S2IMR model is adopted, the number 
of infected nodes is significantly reduced, and as the feedback rate increases, the suppression effect on malicious 
code is better.

Further discussion findings and countermeasures suggest that by reducing the infection rate β, increasing the 
code delivery rate α and self-immunity rate γ, choosing a reasonable sleep rate θ. The spread of network worms 
can be suppressed, and the stability and energy efficiency of the network can be improved.

There are still limitations to the research in this paper. In the next step of research, the effect of sleep rate on 
worm propagation in wireless sensor networks under different node densities can be investigated by introducing 
WSNs topology and taking node densities and communication radius as environmental variables. At the same 
time, considering the propagation laws of different types of viruses, a computer virus propagation dynamics sys-
tem model with virus specificity is established and studied.
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