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Abstract. In order to address the challenges of low accuracy and weak generalization capabilities in solving 
the traveling salesman problem (TSP) using end-to-end deep reinforcement learning (DRL) algorithms, this 
paper introduced a novel solution. This solution consisted of a feature enhanced attention model (FEAM) 
and a rotation expanded inference method. The FEAM combined a feature filtering layer, a graph embedding 
layer, and Transformer architecture in the encoder to better capture the complex relationships between cities, 
obtain richer and more accurate node representations, and thereby improved the model’s solving accuracy 
and generalization ability. The rotation expanded inference method generated new problem instances through 
coordinate rotation, enabling the model to consider path planning strategies from multiple perspectives, thus 
further enhancing solution accuracy. Numerous experiments on randomly generated benchmark datasets and 
public benchmark datasets show that the proposed end-to-end DRL algorithm performed better than other 
DRL algorithms in terms of solution quality and generalization ability.

Keywords: traveling salesman problem, deep reinforcement learning, feature enhanced attention model, rota-
tion expanded inference method, combinatorial optimization problem

1   Introduction

The traveling salesman problem (TSP) is a well-known combinatorial optimization problem with wide applica-
tions in real-life scenarios such as transportation [1], scheduling [2], warehouse order picking [3], etc. The prob-
lem can be formulated as follows: given n cities and the distance dij between each pair of cities i and j, starting 
from an initial city, each city is visited exactly once, and the tour concludes by returning to the initial city. The 
objective is to find the shortest possible path.

With the rapid development of computing capabilities, deep learning techniques have been widely applied 
in various domains, including image processing [4], natural language processing, and more. Following the in-
troduction of pointer networks [5], researchers have recognized the potential of neural networks in solving the 
TSP, leading to an increasing number of studies using both supervised learning [6, 7] and reinforcement learning 
[8-11] methods for the TSP. Supervised learning requires optimal solutions as labels, but constructing optimal 
solutions for TSP incurs high computational costs. In contrast, reinforcement learning does not rely on labels, of-
fering a more computationally efficient approach. Therefore, recent research has shown a preference for utilizing 
deep reinforcement learning (DRL) algorithms to address the TSP.

DRL algorithms for solving TSP can be roughly categorized into two types based on the approach used to 
construct solutions: end-to-end DRL algorithms and search-based DRL algorithms. End-to-end DRL algorithms 
create paths from scratch, while search-based DRL algorithms typically start from existing solutions and contin-
uously learn how to improve them. The solutions obtained from search-based methods usually outperform those 
from end-to-end methods. However, the performance of such methods heavily depends on the number of itera-
tions or searches, which can increase time costs, making them unsuitable for time-sensitive tasks.

This paper focuses on end-to-end DRL algorithms because they are more suitable for real-world TSP applica-
tions, such as ride-sharing dispatch [12]. Such real-world applications often require high efficiency, necessitating 
the nearly real-time generation of solutions. However, most existing end-to-end DRL algorithms perform poorly 
in terms of solving performance and are not easily scalable to larger instances. The main reasons for this are: (1) 
Insufficient feature extraction of node characteristics in TSP instances, leading to the inability to select the opti-



216

A Travel Salesman Problem Solving Algorithm Based on Feature Enhanced Attention Model

mal nodes subsequently. (2) The inference methods used by well-trained models in solving problem instances do 
not effectively leverage the model’s performance, resulting in a failure to explore some better solutions.

To tackle the aforementioned issues, this paper proposes an end-to-end DRL method based on a Feature 
Enhanced Attention Model (FEAM). The method in this paper adopts the classical encoder-decoder architecture 
[13]. In the encoder part, a feature selection layer is designed to enable the model to learn crucial features, en-
hancing the model’s expressiveness, robustness, and generalization capability. Additionally, a graph embedding 
layer is incorporated to facilitate the model in learning the neighbor relationships between nodes and the graph’s 
topological structure, extracting and learning richer and more informative node representations from input fea-
tures. Furthermore, this paper introduces a rotation-based expansion inference method to enlarge problem in-
stances, thereby broadening the model’s perspectives on the problem and consequently enhancing the quality of 
solutions.

To demonstrate the effectiveness of our proposed algorithm, we conducted experiments on two types of data-
sets: one consists of randomly generated TSP instances commonly used in previous DRL algorithm research, 
and the other comprises well-known TSP public datasets. The experimental results indicate that our algorithm 
achieves competitive results compared to existing deep reinforcement learning algorithms. Although the model 
was trained using randomly generated instances, it demonstrated excellent performance on various public data-
sets with different distributions. This indicates that our algorithm exhibits superior generalization capabilities.

The main contributions of this paper are as follows:
(1) We proposed FEAM. Expanded the Transformer style encoder decoder architecture by incorporating fea-

ture selection module and graph neural networks into the encoder to obtain more accurate and rich node repre-
sentations, improving the model’s expressive and generalization capabilities.

(2) We proposed a novel model inference method that enhances the problem-solving performance by flipping 
and rotating to expand the problem instance. This allows the model to approach problem-solving from multiple 
perspectives, thereby improving its overall performance.

(3) Extensive experiments demonstrate that our algorithm achieves competitive results in solving TSP instanc-
es of different scales. Additionally, our algorithm exhibits good generalization performance on public datasets 
with diverse distributions.

The structure of this paper is arranged as follows. Section 2 introduces related work on DRL algorithms. 
Section 3 presents the proposed method, providing specific details on problem formulation, model architecture, 
training methodology, and inference approach. In Section 4, we evaluate the proposed method using random TSP 
datasets and public TSP datasets, followed by a discussion of the experimental results. Finally, Section 5 summa-
rizes the findings of this paper.

2   Related Work

This section introduces the relevant research on DRL algorithms for solving vehicle routing problems, which can 
be divided into two categories: improved local search DRL algorithms and end-to-end DRL algorithms.

2.1   Improved Local Search DRL Algorithms

The improved local search DRL algorithms primarily leverage DRL algorithms to automatically learn heuristic 
rules for local search, integrating DRL with local search algorithms.

Chen et al. [14] chose to train the strategy of local search using deep reinforcement learning algorithms, 
replacing manually designed heuristic rules with learned policies. They proposed a search model called 
NeuRewriter, which combines deep reinforcement learning. Initially, a random initial solution was constructed, 
and then the learned policy was used to select the way of local search. Through local search, the initial solution 
was optimized continuously, improving the quality of the solution. 

Gao et al. [15] combined deep reinforcement learning with large neighborhood search algorithms, using deep 
reinforcement learning methods to learn the destruction and repair operators in large neighborhood search. The 
destruction operator removed nodes from the solution, and the repair operator added nodes to the solution. Both 
operators have multiple types for different forms of search. This method encoded the problem using graph atten-
tion neural networks and decoded the selection strategies of the destruction and repair operators.
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Xin et al. [16] proposed NeuroLKH, an improved heuristic model using deep learning methods based on 
the LKH algorithm. The network model was a sparse graph network, trained with supervised and unsupervised 
learning to learn edge scores and node penalties. Based on the output of this network, an “edge candidate set” 
was created to guide the LKH search. Experimental results showed a significant improvement in performance.

2.2   End-to-end DRL Algorithms

Although the improved local search DRL algorithm can achieve good results, it requires a longer solution time. 
Many scholars have conducted research on more efficient end-to-end DRL algorithms.

Vinyals et al. [5] proposed the pointer network model for solving combinatorial optimization problems such 
as TSP in 2015, which initiated a series of studies on using deep neural networks to solve combinatorial opti-
mization problems. Inspired by the Seq2Seq model in machine translation, this model used a deep neural net-
work-based encoder to encode the input sequence (city coordinates) of TSP and then calculated the node selec-
tion probabilities through the decoder and attention mechanism. It progressively selected nodes in an autoregres-
sive manner until a complete solution was obtained.

However, Vinyals et al. [5] trained the model in a supervised manner, requiring a large number of TSP instanc-
es and their corresponding optimal solutions. The difficulty in creating labels and constructing training samples 
consumed a significant amount of time. Moreover, this approach may result in the model’s solution quality not 
surpassing that of the sample solutions. To address this issue, Bello et al. [17] chose to train the pointer network 
model using reinforcement learning algorithms and proposed the Neural Combinatorial Optimization (NCO) 
model. Specifically, each TSP instance was treated as a training sample, and the REINFORCE reinforcement 
learning algorithm was used for training. They introduced a Critic network to compute Baseline to reduce train-
ing variance. During the training process, the sequences output by the model can be improved continuously by 
adjusting the parameters of the value network trained by deep neural networks and introducing reward mecha-
nisms. This method could solve larger-scale TSP instances, outperforming previous research [5] in solving TSP 
instances with 50 cities and approaching the optimal solution of Concorde in solving TSP instances with 100 
cities.

After the introduction of the Transformer model [13], it quickly became a research hotspot in the field of nat-
ural language processing. The multi-head attention mechanism in the Transformer allowed for the extraction of 
deep features from different perspectives and dimensions, enabling nodes to propagate information through dif-
ferent channels. As a result, some scholars have begun to draw inspiration from the Transformer model for solv-
ing vehicle routing problems.

Deudon et al. [18] improved the pointer network model using the Transformer architecture. The encoder em-
ployed a structure similar to the Transformer model, utilizing the multi-head attention mechanism to obtain fea-
ture vectors for nodes. In the decoder, unlike the LSTM used in the pointer network model, the authors linearly 
mapped the selections of the last three steps to obtain a reference vector, thus reducing complexity. The model 
was trained using the classic REINFORCE reinforcement learning algorithm. Additionally, the authors employed 
a 2-opt local search strategy to optimize the output solutions of the network model, finding that this effectively 
improved the quality of solutions. The authors solved TSP problems with 20, 50, and 100 cities, yielding slightly 
better results than previous research [17].

Kool et al. [19] further improved on the basis of previous studies and proposed a new method that can solve 
multiple vehicle routing problems. While the encoder part remained unchanged, adopting the same structure as 
the Transformer model, the attention calculation method in the decoder part differed. Whereas previous research 
[18] utilized a calculation method similar to the classical pointer network model, the authors incorporated self-at-
tention mechanisms, adding computational layers to enhance the model’s performance. Additionally, improve-
ments were made in the model training algorithm. Unlike the Critic baseline commonly used in previous studies, 
the authors utilized solutions obtained from a greedy policy as the baseline, referred to as the Rollout Baseline. 
The Rollout Baseline was generated by selecting the best-performing model from all policy models obtained 
during the previous training process. The Rollout Baseline was generated by selecting the best-performing model 
from all policy models obtained during the training process. Using a greedy policy for action selection, the target 
function value b(s) obtained by solving state s with this baseline policy was defined as the Rollout Baseline. This 
eliminated the need for separately adding a Critic network to calculate b(s). Experimental results demonstrated 
that this method outperforms all previous end-to-end models in solving TSP.

Additionally, some researchers have pursued solving the problem using graph neural networks. Nowak et al. 
[20] utilized a graph neural network (GNN) to estimate the probability of selecting each “edge,” resulting in an 
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adjacency matrix. This matrix was then transformed into the final path scheme using beam search. The model is 
trained using supervised learning, generating a large amount of training data with solvers like LKH3. The loss 
function is computed based on the true adjacency matrix of the labels and the model’s output adjacency matrix. 
Khalil et al. [21] proposed a framework that combines reinforcement learning with graph embedding neural 
networks. They utilized the Structure2vec network to model the graph structure of the problem, computing the 
Q-values of the optional nodes and selecting them based on a greedy policy until a complete solution was ob-
tained. The model is trained using the deep Q-learning algorithm.

To address the insufficient node feature extraction in existing end-to-end DRL algorithms, this paper improves 
the encoder based on previous studies [19]. Inspired by the channel attention mechanism [22], a feature selection 
layer is introduced into the encoder to enhance the learning ability of crucial features. Moreover, the graph neural 
network model, a powerful tool for handling graph data, has been applied to path optimization problems in prior 
research [23]. This paper further enhances the model’s feature extraction capability by adding a graph embedding 
layer to the encoder. In terms of model inference methods, this paper draws inspiration from commonly used data 
augmentation techniques in computer vision. Building upon the 8x instance expansion proposed by Kwon et al. 
[24], the paper incorporates rotation operations to expand the instances to 16x, thus further enhancing the solu-
tion quality.

3   Method

3.1   Problem Formulation

This article primarily focuses on the classical TSP. Let G(V, E) represent an undirected complete graph, where 
V = {vi | 1 ≤ i ≤ N} denotes all cities, N is the number of cities, and E = {eij| 1 ≤ i, j ≤ N} represents the set of all 
edges. Let C(i, j) denote the cost of moving from city vi to vj, representing the Euclidean distance between the 
two cities. The solution to the TSP is a feasible path that starts from one city, passes through all other cities ex-
actly once, and eventually returns to the starting city. For a given path τ, its total cost L(τ) can be represented by 
Formula (1), where τi represents the i-th city on the path τ.
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The construction method of the path τ is as follows: continuously select the next city from all cities yet to 
be visited until all cities have been visited, and then return to the starting city. This process can be viewed as a 
Markov Decision Process (MDP), where the decision at each step can be modeled using a neural network param-
eterized by θ. For a TSP instance s, the reward at each step is defined as the negative of the cost from the current 
city to the next city. Our goal is to maximize the cumulative reward, and the formula is as follows:

~ ( )( ) ( ).p sJ s Rτ τθ τ= Ε                                                                 (2)

( ) ( ).R Lτ τ= −                                                                        (3)

1: 1
1

( ) ( , ).
N

i i
i

p s p sθ θτ τ τ −
=

=∏                                                             (4)

Here, τ1:i−1 represents the path to the i-1 city.
The gradient of the objective function can be calculated using the policy gradient theorem. The specific for-

mula is as follows:

( )( ) [ log ( ) ( )].p sJ s E p s R
θθ θ θτθ τ τ∇ = ∇                                                (5)
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In practice, Monte Carlo method is commonly used to estimate the expectation value. This involves sampling 
trajectories and calculating the expected value of gradients to approximate the true policy gradient. The formula 
is as follows:

1

1( ) log ( [ ] ) ( [ ]).
N

i

J s p i s R i
Nθ θ θθ τ τ

=

∇ ≈ ∇∑                                                 (6)

Here, N is the number of sampled trajectories, and τ[i] represents the i-th sampled trajectory.

3.2   FEAM Architecture

The structure of the proposed FEAM in this paper is depicted in Fig. 1.

Fig. 1. FEAM structure

FEAM utilizes multiple attention layers consisting of multi-head attention layers, feedforward layers, and 
feature selection layers to encode input nodes. Subsequently, a graph aggregation layer is employed to aggregate 
node information, obtaining embedding for each node. Then, based on queries formed by context embedding, a 
single-head attention calculates the selection probability for each node. Using the probability distribution output 
by the decoder, a node with the highest probability is selected at each step to be added to the solution. Nodes that 
have already been selected are blocked, and their probabilities are set to 0 to prevent duplicate selections. Finally, 
the model is trained using an improved reinforce algorithm, which incorporates a variance normalization mecha-
nism. This section will provide a detailed description of the key components of FEAM.
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Encoder.  Due to the relatively weak feature extraction capability of the encoder in previous studies [19], we 
have improved the encoder by introducing feature selection modules and graph aggregation layers to obtain rich-
er node information. The structure of the encoder is illustrated in the left half of Fig. 1.

The coordinates of each point in the TSP can be represented as (x, y), indicating that the initial input point fea-
ture xi is two-dimensional. The initial point embedding layer linearly projects the two-dimensional input feature 
xi onto node embedding (0)

ih  with dimension dh. Subsequently, n attention layers are used to update the point em-
bedding. Each attention layer consists of three components: multi-head attention (MHA), feed-forward (FF), and 
feature selection layer. Let ( )l

ih  represent the point embedding for the i-th node after the l-th layer in the attention 

layer, and ( 1) ( 1) ( 1)
1 2{ , ,..., }l l l

Nh h h− − −  be the output of the (l-1)-th layer, serving as the input for the l-th layer. Multi-
head attention (MHA) has demonstrated excellent performance in previous work [25] and is used here to extract 
information from different nodes. The number of heads is denoted as M. 

The MHA can be expressed as:
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Here, {1,2,..., }m M∈ , , {1,2,..., }i j N∈ . Formula (7) represents the calculation method for the query vector 
( )l
imq , key vector ( )l

imk , and value vector ( )l
imv  of node i. The dimensions of the query and key vectors are dk, and 

the dimension of the value vector is dv. Q
mW , k

mW , and v
mW  are trainable parameters. Formula (8) represents the 

calculation of attention scores, and it includes scaling [13] to enhance the stability of attention computation. 
Formula (9) represents the use of the softmax function to calculate attention weights. Formula (10) represents the 
calculation of the node vector for node i in a single attention head. Formula (11) represents the calculation of the 
node vector for node i when using multiple attention heads, where O

mW  is a trainable parameter.
After the MHA, the node vectors computed through multi-head attention enter the feedforward layer. 

Following this, skip connections [26] and regularization operations are applied, and the calculation formula is:
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1 2
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Here, Norm( )⋅  represents regularization, and 1
FW , 0

FW , 0
Fb , and 1

Fb  are trainable parameters.
Unlike previous work, we do not directly output node embedding after passing through the feedforward layer. 

Instead, we pass the node embedding into the feature selection layer. The role of the feature selection layer is to 
enhance the representation capability of input features by dynamically adjusting the weights between different 
features. This allows the network to better focus on important features. It helps the model better understand the 
importance of each node, leading to more accurate path selection. The feature selection layer is illustrated in Fig. 
2.

Fig. 2. Illustration of the feature selection layer

Given the node feature map F E S×∈  as input, where E is the node embedding and S is the number of 
nodes. First, aggregate spatial information from the feature map by applying average pooling and max pool-
ing operations. Then, pass the result into a shared perceptron, outputting two spatial descriptors, max 1F E×∈  
and avg 1F E×∈ . Next, add these two descriptors, pass them through a sigmoid function, and generate feature 

weights 1
FT E×∈ . Finally, multiply the input node feature map by the feature weights to obtain the weighted 

node feature map. From the weighted node feature map, point embedding ( )'' l
ih  for each point can be extracted.

After the entire attention layer processing, to better capture the relationships between nodes and the graph’s 
topological structure for richer node embedding, we utilize a graph aggregation layer for node feature propa-
gation. The graph aggregation layer employs graph convolution, which is a convenient and effective approach. 
Following the graph aggregation layer, the encoder outputs the final node embedding, denoted as ( )n

ih .

Decoder.  The decoder is a self-regressive process that sequentially selects visiting nodes for the TSP instance, 
ultimately forming a feasible route.

The contextual node embedding are used to represent the current state and interact with candidate nodes as 
queries. As information about the starting and last visited nodes is crucial for selecting the next node, these de-
tails are included in the contextual node embedding. This is akin to previous research [19]. The contextual node 
embedding ( )n

ch , along with embedding of unselected nodes, are input into the MHA. This calculates a new, 

more enriched and comprehensive contextual node embedding ( 1)n
ch + . Here, the MHA is the same as described 

in the encoder section. Finally, the single-head attention layer and softmax layer are utilized to obtain the final 
probability distribution, expressed by the following formula:

( 1) ( ), .Q n K n
c c i iq W h k W h+= =                                                           (15)
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Where, Formula (16) utilizes the tanh function and masks all previously visited nodes [17]. This ensures that the 
model only selects nodes that have not been visited. C is a coefficient controlling the range of values. Formula 
(17) uses the softmax function to calculate the selection probability of the node.

3.3   Model Training

The REINFORCE algorithm [27] is a classic reinforcement learning algorithm, and many existing models use 
this algorithm to train policy parameters, demonstrating good performance. Therefore, we use this algorithm to 
train the FEAM.

Inspired by previous research [24], we adopt a “multi-start” approach for training. “Multi-start” means that 
during the decoding process, each point in the TSP instance is considered as a starting point. In other words, for a 
TSP instance si with N nodes, we can sample N feasible paths, denoted as 1 2{ , ,..., }N

i i i iτ τ τ τ= .
These paths can be trained using the REINFORCE algorithm, but due to significant differences in rewards 

between different instances, applying it directly may lead to convergence challenges. Therefore, we introduce a 
variance-normalized mechanism for stability in training. The gradient update can be expressed as:

1 1

( ) ( )1( ) ( ) log ( ).
( )

B N j
ji i

i i
ii j

R a
J p s

BN vθ θ θ
τ τ

θ τ
τ= =

−
∇ ≈ ∇∑∑                                      (18)

Here, B represents the batch size, a(τi) and v(τi) respectively denote the mean and variance of N different start-
ing point paths for the instance si.

The model training process is outlined in Table 1.

Table 1. FEAM training algorithm

Algorithm 1. FEAM training algorithm
Input: training set S, number of starting nodes N for each instance, training steps T, iteration count E, 
batch size B.
Output: policy network parameters θ .

1: Initialize policy network parameters θ
2: for iter = 1 to E do

3:   for step = 1 to T do

4:     Retrieve instance si from S, {1,2,..., }i B∀ ∈

5:     Select the starting node 1 2{ , ,..., }N
i i ia a a  for si, {1,2,..., }i B∀ ∈

6:     Compute solution j
iτ  using FEAM, {1,2,..., }i B∀ ∈ , {1,2,..., }j N∀ ∈

7:     Compute solution ( )Jθ θ∇  using Formula (16)

8:     Update parameters θ , ( )Jθθ θ α θ← + ∇
9:   end for
10: end for
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3.4   Inference Method

In existing DRL methods for solving the TSP, various reasoning techniques are often combined to improve the 
quality of solutions, such as greedy search, beam search, sampling search, and more. Literature [24] introduces a 
more effective 8-fold augmentation inference method by applying symmetry transformations to the coordinates 
of points in a single TSP instance, resulting in 8 distinct TSP instances. The proposed specific transformation 
method is shown in Table 2, considering that the coordinates of points in the training and testing datasets fall 
within the range of [0, 1].

Table 2. Transformation of point coordinates

Before transformation After transformation

(x, y)

(x, y) (y, x)

(1-x, y) (1-y, x)

(x, 1-y) (y, 1-x)

(1-x, 1-y) (1-y, 1-x)

Although the coordinates of points in these 8 instances are different, the relative positions of each point re-
main unchanged. Therefore, the optimal solution is consistent across these instances. The model is used to solve 
these 8 instances, and the best solution is selected for output. These transformations are similar to data augmenta-
tion methods in the field of computer vision, with commonly used data augmentation techniques such as flipping 
and rotating. Inspired by this, we propose the rotation augmentation inference method, which further enlarges 
the TSP instances to 16 times by introducing rotation operations. This allows the model to consider the problem 
from more perspectives, aiming to enhance the quality of solutions.

We rotate the nodes in the TSP instance counterclockwise by an angle of γ around the origin, forming a new 
TSP instance, as illustrated in Fig. 3.

Fig. 3. Obtain a new instance s′ through rotation
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The figure illustrates the rotation method with an example of 5 nodes. After counterclockwise rotation by an 
angle of γ, the 5 nodes in instance s transform into a new instance s’. Suppose point A in instance s has coordi-
nates (x, y), the coordinate calculation formula for the rotated point A’ is as follows:

' cos( ) sin( )
.

' sin( ) cos( )
x x y
y x y

γ γ
γ γ

= −
 = +

                                                             (19)

Although the positions of the points have changed, the relative positions between the points have not changed. 
The optimal solution for instances s and s’ is identical. Additionally, while some points may go beyond the range 
of the training data after rotation, we believe that the impact on the model’s performance is limited, as the model 
inherently possesses a certain degree of generalization capability. The rotation augmentation inference method 
allows us to increase the augmentation from the original 8 times to 16 times. The inference steps of the model are 
outlined in Table 3. We validated the effectiveness of this method through ablation experiments and identified the 
optimal value for γ. Details can be found in Section 4.4.

Table 3. FEAM inference algorithm

Algorithm 2. FEAM inference algorithm

Input: test instance s, the number of starting nodes N, and the augmentation factor K.

Output: optimal path.

1: Extend one instance s into K instances, denoted as 1 2{ , ,..., }Ks s s

2: Select the starting node 1 2{ , ,..., }N
k k ka a a  for instance sk, {1,2,..., }k K∀ ∈

3: Calculate the solution i
kτ  using the trained FEAM, {1,2,..., }i N∀ ∈ , {1,2,..., }k K∀ ∈

4: Find a pair (k, i) that maximizes the reward value ( )i
kR τ , denoted as kmax and imax

5: Return max

max

i
kτ

4   Experiment

To evaluate the performance of the proposed method in this paper, we compared it with other DRL methods. 
Firstly, we implemented the algorithm based on PyTorch [28], and trained and tested the model on a single Tesla 
V100 GPU under the Windows 10 operating system. Then, we trained the model on randomly generated instanc-
es, and in testing, in addition to a randomly generated test set, we also used public datasets to test the generaliza-
tion of the model.

4.1   Datasets

This paper utilized two datasets, namely the random TSP dataset and the public TSPLIB dataset.
(1) Random TSP dataset
This type of dataset is widely used in existing DRL research. It involves uniformly selecting a certain number 

of nodes from a [0,1] [0,1]×  unit square to generate random TSP instances. This paper uses four datasets with dif-
ferent sizes, namely 20, 50, 100, and 200 nodes, denoted as TSP20, TSP50, TSP100, and TSP200, respectively. 
Following previous research, for TSP instances with 100 nodes or fewer, 10,000 instances are generated as the 
test set, and for TSP instances with 200 nodes, 128 instances are generated as the test set.

(2) TSPLIB dataset
This is a well-known TSP instance library, and the instances in it come from the real world. Consistent with 

literature [29], we selected 33 instances from it as the test set to evaluate the performance of the proposed meth-
od on real-world problems.
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4.2   Hyperparameter Settings

In the experiments, only the random TSP dataset was used for model training. In each training batch, 100,000 
instances were generated as the training set. For training the TSP200 model, the batch size was set to 32, while 
for other smaller instances, the batch size was set to 64. The Adam optimizer was used, with the learning rate η = 
1×10−4 and weight decay ω = 1×10−6. In the encoder, the dimension of node embedding dh = 128, the number of 
layers in the attention layer is 6, the number of attention heads in the MHA is 8, and both dk and dv are set to 16.

4.3   Comparison of Experimental Results

Random TSP Dataset Experiment.  To validate the effectiveness of our proposed method, we trained models 
for different sizes of TSP and tested them using corresponding random TSP test sets. 

Our baseline algorithms fall into three categories: traditional algorithms, end-to-end DRL algorithms, and 
search-based DRL algorithms. Traditional algorithms include the exact algorithm solver Concorde and the heuris-
tic algorithm LKH-3 [30]. End-to-end DRL algorithms include AM [19], POMO [24], AM-LCP [29], and CNN-
Transformer [31]. Search-based DRL algorithms include DRL-2opt [32] and Att-GCRN+MCTS [33]. As our 
inference method is an improvement on top of the 8x expansion of POMO, for a fair comparison, we reproduced 
POMO and used our proposed inference method (which enhances the performance of POMO). Additionally, 
we presented results from traditional algorithms and AM as reported in the literature [33], while the remaining 
results are from the original papers. The experimental results on the random TSP dataset are shown in Table 4, 
where “Len” denotes the average length of all test instances, “Gap” represents the gap with respect to the optimal 
solution, and “T” indicates the time to solve the entire test set. “-” denotes cases where the corresponding results 
were not provided in the original literature.

Table 4. Comparison of results from different methods on random TSP test dataset 

Algorithm TSP20 TSP50 TSP100 TSP200
Len Gap T Len Gap T Len Gap T Len Gap T

Concorde 3.83 0.00% 2.31m 5.69 0.00% 13.68m 7.76 0.00% 1.04h 10.72 0.00% 3.44m
LKH-3 3.83 0.00% 20.96m 5.69 0.00% 26.65m 7.76 0.00% 49.96m 10.72 0.00% 2.01m

DRL-2opt 3.84 0.26% 15.00m 5.70 0.18% 29.00m 7.87 1.39% 41.00m - - -
Att-

GCRN+MCTS 3.83 0.00% 1.64m 5.69 0.01% 7.92m 7.76 0.03% 14.56m 10.81 0.88% 2.49m

AM 3.83 0.05% 16.47m 5.72 0.49% 22.85m 7.97 2.73% 1.23h 11.44 6.82% 4.49m
POMO 3.83 0.14% 7.92s 5.69 0.02% 33.24s 7.77 0.16% 2.18m 11.03 2.91% 11.70s

AM-LCP 3.84 0.26% 30.00m 5.70 0.18% 6.89h 7.81 0.64% 11.94h - - -
CNN-

Transformer - - - 5.70 0.10% - 7.85 1.11% 1.43h - - -

FEAM (ours) 3.83 0.00% 6.65s 5.69 0.01% 29.89s 7.77 0.12% 2.20m 10.80 0.73% 11.51s

From Table 4, it is evident that our approach has yielded competitive results. Comparing with traditional al-
gorithms, the gaps between FEAM and traditional algorithms are 0.00%, 0.01%, 0.12%, and 0.73% for TSP20, 
TSP50, TSP100, and TSP200, respectively. While there is some difference in results, FEAM requires significant-
ly less time in terms of runtime compared to traditional algorithms.

In comparison with DRL algorithms, FEAM achieved optimal results in the TSP20, TSP50, and TSP200 tests. 
In TSP20 and TSP50 tests, Att-GCRN+MCTS also demonstrated favorable results, but the required runtime was 
noticeably higher than FEAM. In larger-scale tests like TSP100 and TSP200, FEAM and Att-GCRN+MCTS had 
comparable results, but FEAM consumed less time. Compared to other DRL algorithms, FEAM strikes a better 
balance between efficiency and optimality.

TSPLIB Dataset Experiment.  To evaluate the generalization capability of our method, we selected 33 instanc-
es from TSPLIB, where the node distributions differ from the training set. Similar to previous research [29], all 
algorithms were tested using models trained on a fixed scale (100 nodes). In contrast to experiments with the 
random TSP dataset, we did not compare with Att-GCRN+MCTS and CNN-Transformer here because there are 
currently no identified methods using these two algorithms to solve non-random TSP instances. The final experi-
mental results are shown in Table 5.
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Table 5. Comparison of results from different methods on TSPLIB 

Instance
AM DRL-2opt POMO AM+LCP FEAM (ours)

Len Gap T Len Gap T Len Gap T Len Gap T Len Gap T

eil51 435 2.11% 13s 427 0.23% 460s 432 1.41% 0.03s 429 0.73% 13s 429 0.73% 0.03s

berlin52 8663 14.86% 14s 7974 5.73% 460s 7572 0.40% 0.05s 7550 0.10% 13s 7544 0.02% 0.04s

st70 690 2.18% 23s 680 0.74% 540s 677 0.30% 0.06s 680 0.74% 13s 677 0.30% 0.05s

eil76 555 3.18% 27s 552 2.60% 540s 544 1.12% 0.07s 547 1.64% 18s 544 1.12% 0.06s

pr76 110956 2.59% 27s 111085 2.60% 540s 108159 0.00% 0.06s 108633 0.44% 18s 108159 0.00% 0.05s

rat99 1309 8.09% 44s 1388 14.62% 680s 1252 3.36% 0.07s 1292 6.67% 24s 1237 2.15% 0.06s

rd100 8137 2.87% 46s 7944 0.43% 680s 7910 0.00% 0.07s 7920 0.13% 26s 7910 0.00% 0.07s

kroA100 23227 9.14% 46s 23751 11.60% 680s 21539 1.21% 0.09s 21910 2.95% 26s 21456 0.82% 0.07s

KroB100 23227 8.23% 46s 23790 7.45% 680s 22254 0.51% 0.08s 22476 1.51% 26s 22374 1.05% 0.07s

KroC100 21868 5.40% 46s 22672 9.27% 680s 20829 0.38% 0.08s 21337 2.84% 26s 20764 0.07% 0.07s

KroD100 22984 7.94% 46s 23334 9.58% 680s 21998 3.31% 0.08s 21714 1.97% 26s 21669 1.76% 0.07s

KroE100 22686 2.80% 46s 23253 5.37% 680s 22296 1.03% 0.07s 22488 1.90% 26s 22294 1.02% 0.07s

eil101 654 4.03% 46s 635 0.95% 680s 651 3.50% 0.07s 645 2.59% 26s 641 1.91% 0.07s

lin105 16516 14.87% 49s 16156 12.36% 680s 14505 0.88% 0.08s 14934 3.86% 26s 14558 1.24% 0.08s

pr124 63931 8.30% 68s 59516 0.82% 700s 59247 0.37% 0.10s 61294 3.84% 37s 59350 0.54% 0.09s

bier127 125256 5.90% 72s 121122 2.40% 720s 125472 6.07% 0.11s 128832 8.92% 37s 122280 3.38% 0.09s

ch130 6279 2.76% 77s 6175 1.06% 790s 6123 0.21% 0.11s 6145 0.57% 38s 6117 0.11% 0.10s

pr136 101927 5.33% 84s 98453 1.74% 820s 97774 1.04% 0.11s 98285 1.56% 38s 97823 1.09% 0.10s

pr144 63778 8.95% 93s 61207 4.56% 720s 58826 0.49% 0.11s 60571 3.47% 43s 58802 0.45% 0.11s

KroA150 28658 8.05% 102s 30078 13.40% 900s 27254 2.75% 0.12s 27501 3.68% 44s 26959 1.64% 0.11s

KroB150 27565 5.49% 102s 28169 7.80% 900s 26814 2.62% 0.12s 26962 3.18% 44s 26746 2.36% 0.11s

pr152 79442 7.82% 101s 75301 2.20% 720s 74447 0.79% 0.13s 75539 2.52% 44s 74040 0.49% 0.12s

u159 50656 20.38% 111s 42716 1.51% 840s 42543 1.10% 0.13s 46640 10.84% 45s 42920 1.20% 0.13s

rat195 2518 8.14% 168s 2955 27.21% 1080s 2552 9.86% 0.19s 2574 10.81% 57s 2545 9.56% 0.18s

KroA200 33313 13.43% 173s 32522 10.74% 1120s 29971 2.05% 0.20s 31172 6.14% 86s 30209 2.86% 0.19s

ts225 138000 8.97% 223s 127731 0.86% 1110s 127827 0.93% 0.22s 134827 6.46% 113s 127824 0.93% 0.21s

tsp225 4837 23.42% 224s 4354 11.10% 1160s 4145 5.77% 0.22s 4487 14.50% 113s 4138 5.59% 0.21s

pr226 90390 12.47% 228s 91560 13.92% 940s 82654 2.84% 0.24s 85262 6.09% 113s 82733 2.94% 0.22s

gil262 2588 8.81% 306s 2490 4.71% 1380s 2533 6.52% 0.33s 2508 5.49% 134s 2453 3.15% 0.30s

lin318 47288 12.51% 397s 46065 9.60% 1470s 44747 6.47% 0.45s 46540 10.72% 158s 44259 5.31% 0.43s

rd400 17053 11.59% 458s 16159 5.75% 1870s 17085 11.81% 0.72s 16519 8.10% 209s 16402 7.34% 0.70s

pr439 160594 49.78% 744s 143590 33.92% 1760s 122336 14.1% 0.90s 130996 22.18% 228s 123523 15.2% 0.90s

pcb442 58891 15.98% 897s 57114 12.48% 1760s 58197 14.6% 0.94s 57051 12.35% 228s 55479 9.26% 0.91s

Avg Gap 9.90% 7.63% 3.27% 5.14% 2.59%
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From the table, it can be observed that FEAM has a significant advantage compared to other DRL algorithms. 
The average gap between FEAM and the optimal length in the dataset is 2.59%, which is lower than other al-
gorithms. This indicates that the proposed algorithm has better generalization compared to other algorithms. In 
terms of runtime, the time cost of FEAM is close to POMO and lower than other algorithms.

In order to compare the performance of these 5 algorithms on the public dataset more clearly, the number of 
optimal solutions found for each algorithm in 33 instances was statistically analyzed, and the results are shown in 
Fig. 4. From the graph, it can be observed that the AM+LCP algorithm failed to find the optimal solution, while 
the AM and DRL-2opt algorithms found fewer optimal solutions, with 1 and 4 respectively. The POMO algo-
rithm found 12 optimal solutions. Our algorithm found 20 optimal solutions, more than the other algorithms.

These results indicate that compared to the comparative algorithms, our algorithm exhibits stronger solving 
performance, validating the effectiveness of the proposed improvement method.

4.4   Ablation Experiment

To validate the effectiveness of our proposed improvements, we conducted ablation experiments separately on 
the model structure and the inference method.

Fig. 4. The number of optimal solutions obtained by each algorithm

Model Structure Ablation Experiment.  To validate the impact of the introduced feature selection layer and 
graph embedding layer on the model’s performance, we conducted ablation experiments using TSP200, compar-
ing FEAM with its three variants. Variant 1 does not use the graph aggregation layer, variant 2 does not use the 
feature selection layer, and variant 3 does not use both. The experimental results are shown in Table 6.

Table 6. Ablation experiments on key components of the model 

Model Len Gap
Variant 1 10.825 0.98%
Variant 2 10.847 1.19%
Variant 3 11.021 2.81%
FEAM 10.798 0.73%
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From the table, it can be observed that FEAM produces the best results with the smallest gap from the optimal 
solution. Applying the graph embedding layer or the feature selection layer individually also leads to improve-
ments in performance, indicating that both components play a positive role in the algorithm.

Inference Method Ablation Experiment.  To validate the effectiveness of our proposed rotation-based augmen-
tation method and identify an appropriate rotation angle, we conducted ablation experiments using both TSP20 
and TSP200 datasets. The results were compared between 8x augmentation and 16x augmentation. The results 
are shown in Fig. 5, where “8x” represents the 8x augmentation method, and “16xX” represents the 16x augmen-
tation method with a rotation of X degrees.

From the graph, it can be observed that, compared to the 8x augmentation, the 16x augmentation with rotation 
yields results closer to the optimal solution, indicating the effectiveness of our proposed rotation augmentation 
method. Specifically, the best results are achieved when the rotation angle is 30°. However, as the rotation angle 
continues to increase, the results deteriorate. This may be because with a larger rotation angle, more nodes fall 
outside the training range, leading to a decrease in model performance. Additionally, it can be noticed that the 
variation in results for TSP20 is smaller than for TSP200 under different augmentation methods. This is likely 
because TSP20 has fewer nodes, and when rotated at different angles, the difference in the number of nodes ex-
ceeding the training range is not significant, resulting in solutions that are closer to each other.

Fig. 5. Comparison of results from different inference methods

5   Conclusion

In this paper, we proposed a novel end-to-end DRL algorithm for solving the TSP. In terms of the model, we 
introduced the FEAM architecture, which incorporates a feature selection layer, a graph embedding layer, and 
a Transformer to better extract features of the nodes, resulting in richer and more accurate node representations 
and improved solving performance. Regarding the inference, we introduced the rotation augmentation inference 
method, allowing the model to consider the problem from various perspectives and thereby enhancing the quality 
of solutions. Through extensive experiments on both random TSP datasets and the TSPLIB dataset, our approach 
demonstrated superior performance compared to other well-known DRL methods, showing excellent generaliza-
tion capabilities. This work provides new insights into real-time solving of vehicle routing problems. In future 
research, we will explore extending our approach to address more complex routing problems, such as vehicle 
routing problems with split deliveries and vehicle routing problems with time windows.
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