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Abstract. This study utilizes data obtained from vehicle positioning, speed, and engine status through satellite 
positioning system monitoring terminals. The data is processed using spherical interpolation of latitude and 
longitude to handle missing values. The study establishes indicators for identifying bad driving behaviors, 
including speeding, rapid acceleration and deceleration, prolonged vehicle idling, and fatigue driving. The tra-
ditional DBSCAN algorithm is improved by incorporating both temporal and spatial search ranges into the al-
gorithm, enabling cluster analysis of bad driving behaviors from both temporal and geographical perspectives. 
Finally, the Graham algorithm is utilized to calculate cluster boundaries, determining the specific locations 
and boundaries of high incidence areas of bad driving behaviors. This research aids regulatory authorities in 
more precisely supervising risk areas during transportation processes in terms of time and location.
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1   Introduction

With the development of information technology, various data such as vehicle data, video data, and driving 
trajectories recorded by devices such as in-vehicle satellite positioning systems, CAN bus, and cameras have 
become available. These data are used for identifying drivers’ bad driving behaviors [1] and evaluating the 
classification and severity of driver behaviors [2-3]. Bad driving behaviors not only reduce the safety of opera-
tional vehicle transportation but also are a major cause of increased fuel consumption and vehicle wear and tear. 
Therefore, monitoring drivers based on bad driving behaviors helps reduce the risks of vehicle operation on roads 
[4] and also aids in reducing vehicle emissions, contributing to achieving national carbon neutrality goals.

The human-vehicle-road system is a complex coupled system. From a road perspective, identifying high inci-
dence areas of bad driving behaviors is beneficial for regulatory authorities to take targeted measures and focus 
on supervising risk areas and time periods. Several domestic studies have addressed this issue. Some studies 
have analyzed the impact of urban prosperity and travel times on speeding by calculating the speeding rate on 
each road segment [5]. Jiang analyzed the association between road observation section data and speeding behav-
ior, finding that the probability of speeding on steep slopes with longitudinal slopes exceeding 5% and 3% was 
significantly higher than other types of slope sections [6]. Gao [7] utilized the DSBCAN method to divide the 
two-dimensional data plane into grids and cluster based on the grids. These studies have been proven effective 
in specific road sections and specific time periods. However, there is currently limited research and application 
related to identifying high incidence areas and time periods of bad driving behaviors using widely available sat-
ellite positioning data.

To address this issue, this paper proposes a method for identifying high incidence areas of bad driving behav-
iors based on DBSCAN-Graham. The method automatically selects the number of clusters using the characteris-
tics of the DBSCAN algorithm, avoiding errors caused by subjective parameter settings. Additionally, to address 
the shortcomings of the classical DBSCAN algorithm, a low-cost DBSCAN clustering method considering the 
spatial and temporal attributes of bad driving behavior points is introduced, and the region range is optimized 
using the Graham algorithm. The results obtained from this algorithm provide an effective technical means for 
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road transportation enterprises and traffic safety management departments to strengthen operational safety man-
agement.

The technical route of this paper is shown in Fig. 1.

Fig. 1. Technical route

2   Preprocessing Methods for Clustering

In the current road transportation industry, operating vehicles have largely achieved the installation of satellite 
positioning system monitoring terminals in accordance with relevant regulations and standards. Through these 
terminals, partial information such as the direction angle, longitude, latitude, and engine ignition status of the 
vehicles during the driving process can be obtained. However, these raw data suffer from issues such as missing 
values, inconsistencies, noise, and similar duplicate records, which can impact further data analysis. Therefore, 
it is necessary to preprocess the raw data to ensure accuracy and completeness. For noisy data and duplicate 
records, given the relatively clean nature of the data under study, these can be simply addressed using methods 
such as boxplot and search-delete. As for the issue of missing values, this study employs a method of latitude and 
longitude interpolation based on spherical coordinates.

Upon completion of data preprocessing, it is essential to extract indicators related to driving safety and envi-
ronmental protection from the data fields themselves. Based on the extracted indicators, the data is processed to 
identify points of bad driving behavior that affect driving safety and the environment. This study has designed a 
set of bad driving behavior indicators related to safe and environmentally friendly driving behavior using exist-
ing information such as direction angle, longitude, latitude, and engine ignition status.

2.1   Spherical Latitude and Longitude Interpolation

The existing research methods for interpolating satellite positioning data mostly start from the perspective of 
plane geometry, without considering the characteristics of the Earth’s own sphere, which leads to errors in the 
position of interpolation points compared to reality. In this context, the spherical latitude and longitude interpo-
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lation method is crucial in processing vehicle satellite positioning data, especially when facing the missing data. 
It is necessary to accurately fill in the position information of blank data points based on the vehicle’s driving di-
rection, speed, and known latitude and longitude information. The core of this method is to consider the spherical 
geometric characteristics of the Earth’s surface, rather than simple plane coordinate system interpolation.

Firstly, we need to recognize that the latitude and longitude coordinate system is a projection representation 
on a spherical surface. Therefore, when a vehicle moves on the surface of the Earth, the changes in latitude and 
longitude are not uniform, especially in the longitude direction. With different latitudes, the actual length of the 
ground represented by each longitude will also change. Specifically, the closer to the equator, the longer the arc 
length corresponding to longitude, while near the pole, all longitude lines converge at one point.

When performing spherical latitude and longitude interpolation, we adopted the following steps:
(1) Coordinate Forward Calculation Formula
This involves calculating the coordinates of the desired point based on the coordinates of known points, the 

azimuth from the known points to the desired point, and the side length. This type of calculation is referred to as 
coordinate forward calculation in measurements (Fig. 2).
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Fig. 2. Coordinate forward calculation

As depicted in the diagram, given the coordinates of point A as (xA, yA), and the length and polar angle of the 
edge from A to B as SAB and αAB, respectively, the coordinates of the point B can be determined as
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In the given equation, the value of ΔxAB, ΔyAB represents the increment in coordinates. Based on the illustra-
tion, it can be inferred that
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In the given equation, SAB represents the horizontal side length, and αAB denotes the coordinate increment. 
Substituting the second equation into the first yields the following result.
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Given the coordinates of point A as (xA, yA), the length of the side from A to B, and the polar angle in the coor-
dinate system SAB, αAB, the coordinates of point B can be calculated using the aforementioned formula.

(2) Coordinate System Conversion and Spherical Distance Calculation
If the longitude and latitude changes of a set of data are not significant, the characteristics of the Earth’s ellipse 

can be ignored, and the Earth can be regarded as a perfect sphere, and the spherical coordinates of this set of data 
can be calculated based on this perfect sphere. Here we use the average radius of the Earth to construct three-di-
mensional coordinate points.

In a spherical coordinate system, the position of a point is defined by three parameters: radius r, inclination an-
gle (or zenith angle) θ, and azimuth angle ϕ. Inclination angle θ) is the angle between the straight line measured 
from the positive z-axis downwards to the point and the z-axis, while the azimuth angle ϕ is the angle of a line 
projected on the xy plane from the positive x-axis to a point. In a coordinate system with the Earth as the sphere, 
azimuth and tilt angles can be converted through latitude and longitude coordinates.
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=
                                                                  (4)

For a point A (long, lat), its representation in the spherical coordinate system is as follows:
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Through the above formula, we can convert the longitude and latitude coordinates of the vehicle into spheri-
cal spatial coordinates, and calculate the spherical coordinates of the new position of the vehicle after moving a 
certain distance through spherical trigonometry. In the actual calculation process, in order to simplify the calcula-
tion and take into account the characteristics of the Earth’s sphere, we consider a simplified situation: taking the 
spherical coordinates of point A as an example, its change in 1km in the longitude and latitude direction can be 
expressed by the following formula:

eq
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1= 1 km conversion factor.
R cos( )

meanR
φ

φ

λ
φ

∆ × ×

∆ × ×

                                              (6)

Req refers to standard Earth radius, Rmean refers to average Earth radius, ϕ refers to dimensions, λ refers to lon-
gitude;

The conversion factor depends on the proportion of the Earth’s circumference at that latitude, which is a rough 
reference parameter in this step;

Due to the fact that the Earth is not a perfect sphere, but rather presents an elliptical shape, it is necessary to 
introduce the flattening of the Earth in the actual calculation process, and use the ellipsoidal model in the WGS-
84 coordinate system to improve the accuracy of interpolation positions. 

Considering that the Earth is a sphere, we can hypothetically extend the geographic coordinates to a flat plane, 
with longitude corresponding to the Y-axis and latitude to the X-axis. If the latitude and longitude of the initial 
point, azimuth, and distance are known, the coordinates of the target location can be calculated using the direct 
calculation formula. However, as the divisions of latitude and longitude are not evenly spaced like those on a flat 
coordinate axis, the formula must be first transformed.

Latitudes are parallel, so the distance between each degree remains almost constant. However, longitudes, 
which are farthest apart at the equator and converge at the poles, vary significantly in their distances. Each de-
gree of latitude equates to approximately 111 kilometers. In fact, due to the Earth’s elliptical shape, with Req  
being 6,378.137 km and Rmean being 6,371 km, each degree of latitude ranges from 110.567 km at the equator to 
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111.699 km at the poles. Even with extreme errors, these remain within 1%. Hence, we take the average value for 
the unit latitude distance, approximating one degree of latitude to 111km.

The distance corresponding to a 1° longitude difference in the East-West direction is closely related to its lati-
tude. While a 1° difference in longitude equates to approximately 111 km over the equator, the distance varies per 
degree in different regions.

Therefore, a change of one kilometer on the Earth’s surface corresponds to a change in latitude and longitude. 
Depending on the direction of the “one kilometer” extension, three scenarios can be distinguished: 

1. A change of 1 kilometer along a meridian corresponds to a change of 1
111

 degrees in latitude.

2. A change of 1 kilometer along a parallel does not change the latitude. Let the latitude value at this point be 

lat, then the change in longitude is ( )
1

111*cos lat  degrees.

3. A change of 1 kilometer in a direction with an angle of θ degrees from true north, let the latitude value at 

this point be lat, then the change in longitude is 
( )
( )111*

sin
cos lat
θ

 degrees and the change in latitude is ( )
111

cos θ  

degrees.
Based on the aforementioned steps, the latitude and longitude of the interpolation point B, denoted as (lngB, 

latB), can be calculated using the following steps:
Given the latitude and longitude of point A, denoted as (lngA, latA), bearing θ, and distance distance, the cal-

culation can be performed using the known speed. Since the data collection frequency for satellite positioning is 

once per second, the speed of point A can be used to infer 
3600
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(3) Evaluation of Interpolation Results
Five points are randomly selected from the dataset as known points. The point following the known points is 

designated as the reference points. The interpolation method described above is applied to interpolate between 
the preceding and following points. Subsequently, the interpolation results are compared with the reference point. 
The process is shown in Table 1 and Table 2:

Table 1. Known points

id Velocity Longitude Latitude Azimuth angle
1392 62.0 115.602541 24.910296 223
7274 25.0 115.645428 24.952875 13
8150 51.0 115.625121 24.929896 225
10350 30.0 115.454318 24.702125 100
11527 0.0 115.649593 24.960056 27

Table 2. Reference points

id Velocity Longitude Latitude Azimuth angle
1393 61.0 115.602435 24.910178 219
7275 24.0 115.645443 24.952933 11
8151 51.0 115.625015 24.929811 228
10351 29.0 115.454393 24.702111 98
11528 0.0 115.649593 24.960056 27
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The results point is calculated by using known points as examples, as shown in Table 3.

Table 3. Interpolation results

Longitude Latitude
115.602424 24.910183
115.645443 24.952936
115.625022 24.929806
115.454399 24.702112
115.649593 24.960056

Comparing the resulting points and reference points for comparison, as shown in Table 4.

Table 4. Result comparison

Reference points Interpolation results Error (in meters)Longitude Latitude Longitude Latitude
115.602435 24.910178 115.602424 24.910183 1.189469
115.645443 24.952933 115.645443 24.952936 0.337372
115.625015 24.929811 115.625022 24.929806 0.874021
115.454393 24.702111 115.454399 24.702112 0.656020
115.649593 24.960056 115.649593 24.960056 0.000000

After conducting multiple comparative experiments, the calculated position error of the results remains within 
a range of 3 meters from the actual position.

Through this approach, we have successfully solved the problem of missing values in satellite positioning 
data, achieved continuous tracking of the vehicle’s driving path on a spherical coordinate system, and provided 
accurate positional information for the identification of subsequent bad driving behaviors.

2.2   Extraction and Identification of Indicators for Bad Driving Behavior 

In recent years, numerous studies have been conducted to analyze the impact of unsafe driving behavior on traffic 
accidents and exhaust emissions. For instance, Peng [8] utilized parameter learning and Bayesian network model-
ing to discover a significant correlation between fatigue driving, frequent speeding, and accident rates. Similarly, 
Cheng [9] collected data on instantaneous fuel consumption of trucks and identified prolonged idling and abrupt 
deceleration as significant factors contributing to increased fuel consumption. Building on these studies [10], this 
paper proposes a set of typical impact indicators covering hazardous driving behavior and energy-saving emis-
sions reduction. These indicators include abrupt acceleration/deceleration, speeding, duration of fatigue driving, 
and prolonged idling. The specific indicators and identification criteria are presented in Table 5.

Table 5. Indicators and identification criteria for bad driving behavior

Bad driving behavior indicators Identification criteria

Rapid acceleration 
and deceleration Acceleration, a |a| > am, am represents the threshold for acceleration.

Overspeed Velocity, v

The velocity of three consecutive points satisfies the 
following conditions
vi − 1 and vi and vi + 1 > vm

where vm represents the velocity threshold.

Fatigue driving Cumulative duration of fatigue driving, t
Daytime fatigue driving:
Fatigue driving within one day:
Night fatigue driving:

t > 4h
t > 8h
t > 2h

Prolonged idle Cumulative idling time of vehicles, t Prolonged idle: t > 2min
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(1) Rapid acceleration (deceleration) identification.
The main process steps of the rapid acceleration behavior recognition algorithm are explained as follows:
① Input the trajectory data of the vehicle T and initialize time step t = 0.
② The length of the trajectory data is denoted as L. If t = L − 1, the computation ends; otherwise, proceed to 

step 3.

③ Calculate the acceleration 1

3600
t t

t
v v

a + −
=  and compare the magnitudes of |at|, am.

④ If a |at| < am, t = t + 1, return to step 2; if |at| > am, consider T(t) as a point of rapid acceleration (decelera-
tion), increment t by 1, and return to step 2.

(2) Overspeed
To determine when the speeding behavior will be terminated, a threshold for judging the violation of speeding 

behavior will be introduced α, based on industry experience preset: α ≥ 200m.
To determine whether speeding behavior is a violation of speeding regulations, a time limit for defining speed-

ing violations is introduced δ, according to industry experience, the preset time is around 30 seconds.
Define the starting time t1 for speeding violations, the deadline t2 for speeding violations, and the duration ∆t 

for speeding violations, where ∆t = t2 − t1.
A set of one or more consecutive overspeed records, regardless of whether ∆t is greater than δ, all are defined 

as “speeding behavior”. When ∆t > δ, the definition of speeding behavior is “illegal speeding behavior.”. The 
following is the identification process for speeding behavior points:

① Input the vehicle’s trajectory data T, initialize t = 0, and set the sliding window win = [t, t + 1, t + 2].
② The length of the trajectory data is L. If t = t = L − 2, then end the computation; otherwise, proceed to step 

3.
③ Calculate the speeds vt, vt + 1, vt + 2 of the points within the sliding window and compare vt, vt + 1, vt + 2 with vm.
④ If vt, vt + 1, vt + 2 are greater than vm, then the sub-trajectory T't = [Tt, Tt + 1, Tt + 2] is a speeding trajectory, where 

Tt, Tt + 1, Tt + 2 are the speeding points. Increment t by 1 and proceed to step 2.
This article proposes an improved speeding behavior recognition algorithm to address the existing problems 

of the original algorithm. The purpose is to avoid the occurrence of noise in the vehicle mounted satellite posi-
tioning system, which is caused by a single or extremely short period of coordinate drift noise point, resulting in 
intermittent recognition of speeding behavior.

If the time interval between adjacent speeding data is less than the threshold, the improved algorithm will 
merge the two speeding behaviors into one speeding behavior. That is, regardless of whether the speeding be-
havior occurs beyond the threshold or not, the improved algorithm will merge the two speeding behaviors to im-
prove the algorithm’s anti-interference ability against noise points and avoid the following situations: 1) Cut off 
a speeding behavior that exceeds the total time limit of the violation behavior into a speeding behavior that has a 
very short interval between segments a and b, but the duration of a single segment does not exceed the violation 
behavior limit, resulting in the violation behavior not being correctly identified; 2) Cutting off a period of speed-
ing behavior that exceeds the total time limit of the violation behavior into two segments, A and B, with extreme-
ly short intervals, but each segment lasting longer than the violation behavior limit, resulting in the identification 
of two segments of speeding behavior; 3) Cutting off a period of speeding behavior that exceeds the prescribed 
time limit into two extremely short intervals, a and b, with one segment lasting longer than the prescribed time 
limit and the other segment not exceeding the prescribed time limit, resulting in the identification of one segment 
of speeding behavior.

To merge two intermittent speeding behaviors caused by noise points, the positioning time interval T between 
adjacent speeding records is introduced, and a threshold for merging the duration of illegal speeding behaviors is 
introduced β, based on industry experience preset: 0 ≤ β ≤ 4s.

① Set the obtained driving record number to i and the violation and speeding behavior record number to j. 
Let i =1 and j = 0. When i < n, take the respective positioning coordinates of the i and i + 1 speeding records, and 
calculate the spherical distance d between the two coordinate points based on the spherical distance calculation 
formula;

② Determine if d is greater than α, if so, then determine if T is greater than β, if so, let t2 be the i record time, 
with the sequence number i = i + 1. If ∆t > δ, the serial number of illegal speeding behaviors is j = j + 1, the 
number of illegal speeding behaviors increases by 1, and the speeding information is recorded; If the starting 
time t1 of this violation of speeding behavior is the same as the starting time of the data in the output violation of 
speeding records, keep the vehicle information, the number of violations of speeding behavior, t1, and the starting 
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latitude and longitude, update and output other speeding information, t1, set Δt = 0, and proceed to step 5. If T ≤ 
T ≤ β, then proceed to step 4; If d ≤ α, then proceed to step 4;

③ Determine if t1 is 0. If so, set t1 to be the location time of the i overspeed data, and proceed to step 5;
④ Check if i is less than n. If so, return to step 1;
(3) Fatigue driving
In the process of identifying fatigue driving, it should be noted that if the vehicle is between a continuous tra-

jectory and the time interval between two points where v ≠ 0 is greater than 20 minutes, it can be considered that 
the driver has stopped to rest, and the cumulative driving time for fatigue driving recognition is initialized to 0. 
The fatigue driving recognition process is as follows

① Input vehicle driving trajectory data: Set the obtained driving record number to i, initialize i = 1, set the 
overspeed record number to j, initialize j = 0. Input vehicle driving data T, which includes the positioning coor-
dinates, speed, and time of each record. Initialize the number of violations and speeding behaviors to 0, set the 
vehicle running time winr = [], and the parking rest time winb = [].

② Determine the speed of the current record: Check the speed vi corresponding to the current record point Ti  
If vi is greater than 0, it indicates that the vehicle is in motion, execute ③ . If vi = 0, it indicates that the vehicle 
may be stopping to rest, execute ④ .

③ Record vehicle travel time: Place the current time point Ti into the vehicle travel time winr, where i = i + 1, 
reset winb = [] to an empty list, return to execution ② , and continue checking the next record.

④ Record the vehicle’s parking rest time: Place the current time point Ti into the parking rest time winb, where 
i = i + 1. Calculate the time interval ∆tb between the first and last points in winb. if ∆tb is less than 20 minutes, it 
is considered a brief stop, and return to execution ② to continue monitoring. if ∆tb is greater than 20 minutes, it 
may be a break time. Execute ⑤ for further judgment.

⑤ Judging fatigue driving behavior: calculating the time interval ∆tb between the first and last points in winr. 
Based on the value of ∆tb, select the processing method:

If the duration of ∆tr during the daytime exceeds 4 hours, it is considered that the trajectory with a part ∆tr  = 
4 + ∆tdr' greater than 4 hours represents a fatigue driving trajectory.

If the duration of ∆tr during the nighttime exceeds 2 hours, it is considered that the trajectory with a part ∆tr  
= 2 + ∆tnr' greater than 2 hours represents a fatigue driving trajectory. Afterwards, reset winr = [] to an empty list 
and execute ② to continue monitoring new driving data.

(4) Prolonged idling
Vehicle idle refers to the state in which the vehicle is still in the starting state, i.e. the engine is in the ignition 

state, even when the vehicle is not in motion, i.e. v = 0. Being in this state for a long time can lead to vehicle 
wear and tear, as well as an increase in fuel consumption and energy waste. At the same time, it emits additional 
vehicle exhaust, which has a negative impact on the environment. The process for identifying excessive idle is as 
follows.

① Input the vehicle driving trajectory data T: initialize t = 0, identify the Prolonged idling idle window
win = [], and prepare to use it to identify the vehicle’s idle behavior.
② Check vehicle speed and ignition status: For each time point Tt, check the vehicle speed vt and ignition sta-

tus ac. If the vehicle speed vt is 0 and the ignition status ac == 1 (i.e., the vehicle is stationary but the engine is 
running), then proceed to step ③ . Otherwise (i.e. when the vehicle is moving or the engine is not running), reset 
the Prolonged idling recognition window win = [], as this indicates an interruption or absence of idle behavior.

③ Record idle status: Add the current time point Tt to the Prolonged idling recognition window win. 
Subsequently, check the time interval ∆t between the first and last time points in win. If ∆t exceeds 2 minutes, the 
recorded points during this period are recognized as the vehicle’s idle point, indicating that the vehicle has been 
in an excessively long idle state during this period.

This process identifies Prolonged idling behavior by monitoring the duration of the vehicle’s stationary and 
engine running state, which helps manage the vehicle’s energy consumption and maintenance status.

2.3   Identification Results of Bad Driving Behavior

The data used in this article comes from the driving trajectories of thirty freight vehicles within a natural month, 
and the bad driving behavior recognition method is used to process and identify the driving trajectories of these 
vehicles. The license plate numbers of the top ten vehicles are shown in Table 6.
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Table 6. Test vehicle license plate number

Number License plate number
1 皖 A5C63*
2 皖 A5D03*
3 皖 A6A89*
4 皖 A1928*
5 皖 A2767*
6 皖 A2952*
7 皖 A3217*
8 皖 A3419*
9 皖 A3504*
10 皖 A3689*

Each data interval is the default data transmission interval of the system, which is about 30 to 60 seconds. The 
satellite positioning data size is a total of 6.75GB, and each data record contains fields such as license plate num-
ber, time, longitude and latitude, vehicle speed, and other information.

(1) Fatigue driving behavior recognition
By analyzing the data through fatigue driving behavior recognition algorithms, the recognition results can be 

obtained. The algorithm calculates the effective continuous driving time of the driver and the effective cumula-
tive driving time of the day, and statistically analyzes the fatigue driving behavior that exceeds the time judgment 
threshold. Different types of alarms and the degree of violation are obtained, and relevant parameters such as 
the start and end times of alarms are recorded. As shown in Table 7, after the algorithm is implemented by the 
program, a dedicated algorithm runtime tool is used to calculate the algorithm completion analysis time of 2.612 
seconds. There are a total of 427 identified fatigue driving behaviors.

Table 7. Fatigue driving vehicles

Number License plate number Current continuous 
driving time (hours)

Accumulated driving 
time of the day (hours)

1 皖 A5C63* 7.11
2 皖 A5D03* 5.49
3 皖 A6A89* 9.55

…… …… …… ……
425 皖 A3217* 9.01
426 皖 A3419* 8.23
427 皖 A3504* 9.00

(2) Identification of speeding behavior
This project selects partial driving data of operating vehicles on a certain route from Hefei to Jiangxi on a 

highway section, and the data transmission frequency is pre-set to 1 second. Preliminary screening was con-
ducted on the overspeed data exceeding the speed threshold in the satellite positioning data transmitted by the 
vehicle terminal. An alarm was issued and stored in the real-time overspeed database of the dynamic monitoring 
platform. Some overspeed vehicle information is shown in Table 8, with a total of 87858 instances of overspeed 
behavior.

Table 8. Partial satellite positioning data

Number Positioning time Longitude Latitude Speed (km/h)
…… …… …… …… ……
623 01-1617:53:00 117.11187 32.26702 105.6
…… …… …… …… ……
647 01-1617:53:24 117.11278 32.27349 109
648 01-1617:53:25 117.11284 32.27376 109.4
649 01-1617:53:26 0 0 109.6
650 01-1617:53:27 117.11296 32.2743 109.1
651 01-1617:53:28 117.11302 32.27457 108.8



260

Identification Method of High Incidence Areas of Bad Driving Behaviors Based on DBSCAN-Graham Combination 

…… …… …… …… ……
659 01-1617:53:36 117.11354 32.27668 106.9
…… …… …… …… ……

(3) Recognition of rapid acceleration and deceleration behavior
The recognition of rapid acceleration and deceleration on the driving trajectory resulted in a total of 43001 re-

sults, as shown in Table 9:

Table 9. Results of speeding behavior detection 

Number Longitude Latitude Duration of rapid 
acceleration and 

deceleration

Maximum 
acceleration

Average accel-
eration

1 117.24834 31.785243 1 4.157 4.157
2 117.243853 31.804173 1 -3.056 -3.056

…… …… …… …… …… ……
716 117.271906 31.815153 2 3.170 3.082
717 116.59953 35.027855 1 -4.319 -4.319
…… …… …… …… …… ……

(4) Identification of prolonged idling
The identification of prolonged idling behavior on the driving trajectory resulted in a total of 11951 results, as 

shown in Table 10:

Table 10. Results of prolonged idling detection 

Number Longitude Latitude Engine ignition status Speed Duration
1 117.2531 31.8210 1 0 0:41:11
2 117.2724 30.91978 1 0 0:12:51

…… …… …… …… …… ……
10000 117.2897 31.8635 1 0 1:02:36
10001 117.2578 31.8499 1 0 0:27:10
…… …… …… …… …… ……

3   The Clustering Area Calculation Method of DBSCAN-Graham Combination

In traditional clustering algorithms, once the clustering results are computed, a visualization method is usually 
employed to assign different colors to points of different categories in order to distinguish points between differ-
ent categories. However, this method is difficult to provide accurate ranges when identifying areas of bad driving 
behavior. To address this issue, we introduce the DBSCAN algorithm with the Graham algorithm to process the 
DBSCAN clustering results, thereby accurately delineating the boundaries of areas with frequent occurrences of 
bad driving behavior. This method assists management departments in more precisely monitoring and managing 
bad driving behavior and frequent occurrence areas in terms of time and location. 

Based on the characteristics of satellite positioning data, we optimized the DBSCAN algorithm to balance 
the dual dimensions of time and space. Then, we used the Graham algorithm to delineate the boundaries of ar-
eas with high incidence of bad driving behavior, ultimately forming a complete method for identifying areas 
with high incidence of bad driving behavior based on the DBSCAN Graham combination. This method not only 
reveals the spatial distribution characteristics of bad driving behavior, but also reveals its dynamic evolution 
through time series analysis, greatly promoting the advocacy and implementation of road transportation safety 
management and environmentally friendly driving behavior.
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3.1   Improved DBSCAN Algorithm Considering Spatiotemporal Conditions

Taking speeding behavior as an example, in order to extract the spatial distribution characteristics of this type of 
behavior, a point feature-based spatial clustering algorithm can be used to classify points of speeding behavior in 
order to achieve a similar effect within the same category, while ensuring differences between different catego-
ries. The widely used algorithm for this purpose is the density-based spatial clustering of applications with noise 
(DBSCAN) algorithm. This algorithm separates dense clusters from sparse noise by using a specified distance. 
The DBSCAN algorithm designates regions with a distance less than or equal to the search distance as clustering 
categories, while those with a distance greater than the search distance are considered noise points.

This algorithm has several advantages in the clustering scenario of speeding behavior points:
1. Non-convex shape clustering. DBSCAN is suitable for discovering non-convex shaped clustering struc-

tures. In geographical spatial data, especially points distributed along roads, they are often distributed along the 
direction of the road and may exhibit non-convex distributions, such as at bends, which may not conform to 
regular geometric shapes. The adjustable density parameter of DBSCAN enables it to adaptively find clusters of 
different shapes.

2. Robustness against noise and outliers. DBSCAN is robust against noise and outliers because it defines clus-
ters based on density, unaffected by global averages. In speeding behavior data, there may be some outliers or 
exceptional points, and DBSCAN can effectively handle these cases.

3. Handling non-uniform density. Speeding behavior points exhibit non-uniform distribution characteristics 
in space and time, with density varying with geographical location. Some classic clustering algorithms, such 
as K-Means, may not perform well for clusters with non-uniform density, while DBSCAN divides clusters by 
adapting to the local density of data points, making it more suitable for areas with different densities.

In the process of identifying speeding behavior points, in addition to the latitude and longitude coordinates 
of speeding points, the time at which bad driving behavior occurs is also an attribute. When using the classic 
DBSCAN algorithm for computation, the data for both time and space attributes need to be used for distance 
calculation, i.e., a speeding behavior point includes distance (m) and time difference (min or s). The result-
ing Euclidean distance is influenced by dimensional effects, making it difficult to represent actual meaning. 
Therefore, a proposed improvement method separates the calculation of time and space attributes to address this 
issue. Only when the minimum number of points threshold is met within both the spatial and temporal neighbor-
hoods, will the point be collected in a loop as a directly spatiotemporal density-reachable object.

The algorithm flow is as follows:
1. Given parameter Epstime, Epsspace, Minpts, traverse the dataset ( ), ,iX x time space X∈ ;
2. If xi is not in any cluster, conduct a search on the two neighborhoods of xi, denoted as Eps = Epstime and Eps 

= Epsspace. If both neighborhoods satisfy |Npts(xi)| > Minpts, then xi is a core point, and the corresponding clus-
ter for xi is denoted as clusterk, with the set of points in the neighborhood denoted as , jC c C∈ . If |Npts(xi)| < 
Minpts, then xi is a noise point.

3. For any jc C∈ , calculate the number of points in the neighborhoods Eps = Epstime and Eps = Epsspace, denot-
ed as |Npts(xi)|. If there exists |Npts(xi)| > Minpts, then c is density-reachable from x, and c is a core point belong-
ing to c. Repeat steps 2 and 3 with c as the input.

4. If the calculation result in step 3 yields |Npts(xi)| < Minpts, then cj is a border point. It still belongs to clus-
terk, but it is not considered a core point for subsequent calculations.

3.2   Graham’s Algorithm

In the real vector space V, for a given set H, the intersection S of all convex sets containing X is referred to as the 
convex hull of X. In two-dimensional Euclidean space, the convex hull can be visualized as a rubber band con-
taining all points, as shown in Fig. 3:
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Fig. 3. Convex hull in two-dimensional Euclidean space

The two-dimensional convex hull can address problems such as fencing, urban planning, and cluster analysis. 
In this paper, the Graham’s algorithm is utilized to obtain a more intuitive representation of areas with frequent 
occurrences of speeding behavior. Fig. 4 outlines the process of Graham’s Scan algorithm for computing 

Fig. 4. Procedure of the Graham’s Scan algorithm
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Graham’s Scan algorithm possesses the following characteristics:
(1) It is simple and efficient. The algorithm is relatively straightforward and performs well in most cases, with 

a time complexity of O(nlogn)
(2) It is stable. Through polar angle sorting and stack maintenance, the algorithm ensures the stability of the 

convex hull. Even if the input point set contains duplicate points, the output convex hull is uniquely determined.
(3) It is not dependent on specific distance metrics. The implementation of the algorithm does not rely on spe-

cific distance metrics, but rather on the polar angle relationships of the points, making it applicable to any point 
set for which polar angles can be defined.

4   Experimental Analysis

4.1   Identification of Bad Driving Behaviors

The data utilized in this study was obtained from the driving trajectories of thirty freight vehicles over the course 
of one calendar month. The identification of unsafe driving behaviors was conducted on these vehicle trajectories 
using a specific method. Due to the large amount of data reaching 6.75GB, this article uses random sampling to 
extract some data for identification and clustering at this stage, as shown in Table 11:

Table 11. Identification results of bad driving behavior

Behavior
Car number

Fatigue driving Prolonged idling Overspeed Rapid acceleration 
and deceleration

皖 D81***9 0 5 46 12
皖 D82***6 5 6 50 9
皖 AB***8 2 8 21 5

……
皖 M0***2 4 3 35 8

Total 27 717 5271 2580

Through data analysis, it has been determined that speeding and prolonged idling are the two most prevalent 
bad driving behaviors identified in the data, accounting for over 90% of all such behaviors. Specifically, speeding 
constitutes 61% of all bad driving behaviors. According to existing research findings [11], speeding is a major 
contributing factor to traffic accidents and significantly impacts the severity of such incidents. Additionally, pro-
longed idling is a primary cause of excessive vehicle emissions, leading to environmental pollution. Therefore, in 
order to enhance the safety and environmental standards within the road transportation industry, it is imperative 
to implement effective measures to control both speeding and prolonged idling behaviors.

4.2   Analysis of Clustering Results

1. Clustering of prolonged idling behavior
After multiple experimental analyses and considering social industry management experience, and combin-

ing silhouette coefficient and visual evaluation of clustering results, this study adopts Epstime = 60min; Epsspace = 
500m, Minpts = 5 as the input parameters for the DBSCAN algorithm based on spatiotemporal distance to clus-
ter prolonged idling behavior points. After computation, a total of 38 normal clusters and 2133 individual noise 
points were obtained. Some of the clusters are displayed in descending order of quantity in Table 12.

Table 12. Clustering results for prolonged idling behavior

Group/ Cluster Number of points in cluster Time
Cluster I 105 00:53:41 to 11:58:56
Cluster II 103 00:07:56 to 09:19:56
Cluster III 79 04:47:17 to 10:50:41

……
Noise 1133 -
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The distribution of the first and second clusters is shown in the following Fig. 5.

Fig. 5. The distribution of the first and second types of clusters on the map

The analysis of the first and second clusters reveals that these clusters are geographically close in proximity 
and have similar quantities. The examination of these two clusters yields the following insights:

(1) From a geographical distance perspective, the intersection of Provincial Road S230 and Township Road 
Y964 is an area with frequent occurrence of prolonged idling. In this area, the prolonged idling behavior is main-
ly concentrated on Provincial Highway S230. 

(2) From the perspective of time distribution, the ultra long idle behavior of both clusters occurs during the 
time period from early morning to morning. There are fewer vehicles on the road during this time period, but 
driving behavior is mainly concentrated in this time period, indicating that the driver may be in two bad driving 
states: fatigue driving and prolonged idle. In this situation, the operational safety of the vehicle will be seriously 
affected.

Fig. 6. The distribution of the second types of clusters on the map
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Furthermore, the analysis of the third cluster, exemplified by local visualization shown in Fig. 6, with deep 
blue points representing clustered areas, reveals the following:

(1) The north-south direction road in the graph is national highway G220, with the northeast direction road on 
the south side being a city road named Changkeng Road, and the northeast direction road on the north side being 
a city road named Wujing Road. Instances of speeding behavior are prevalent at the intersections of G220 with 
the two city roads.

(2) Instances of speeding behavior predominantly occur during the late night to early morning period, a time 
when the roads are sparsely populated, making it easier for drivers to engage in speeding behavior when transi-
tioning from city roads to national highways.

In summary, the spatial-temporal distribution of the main clustering clusters obtained through the consider-
ation of spatiotemporal attributes using the DBSCAN clustering algorithm indicates that:

1) Transitioning from township roads, city roads, and other relatively narrow roads to national and provincial 
roads constitutes high-incidence areas for speeding behavior.

2) The late night to early morning period is a high-incidence timeframe for speeding behavior among com-
mercial vehicles.

2. Overspeed behavior clustering
Due to the fact that speeding behavior mainly occurs on highways, its frequency is significantly higher than 

other bad driving behaviors. In order to accurately identify it, parameters have been reset in this section, Eps_
time = 30min; Eps space = 100m, Minpts = 5, and using the inverse geocoding method, the speeding coordinate 
points located on the highway were screened. The spatiotemporal DBSCAN algorithm was used to cluster this 
type of data, and the local clustering results were plotted on the map. The cluster with the most matching number 
in the class was labeled in the map. After calculation, a total of 76 normal populations and 2626 individual noise 
points were obtained. Some ethnic groups are shown in descending order of number in Table 13.

Table 13. Clustering results for overspeed behavior

Group/Cluster Number of points in cluster Time
first kind 304 11:12:00-12:47:00

second kind 286 12:01:00-12:38:00
third kind 284 12:59:00-13:50:41

……
Noise 2626 -

The area with the most obvious concentration of speeding behavior is shown in Fig. 7.

Fig. 7. The distribution of the overspeed behavior on the map
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Based on time, it is found that the high incidence of speeding behavior is mostly concentrated in the middle 
of the day. Within the four hours from 11:00 to 14:00, there are 23 high incidence sub sections, accounting for 
nearly 47% of all high incidence sub sections. From the 21st hour to 1am the next day, within five hours, there 
were only two high speed sub sections. In terms of time dimension, the high speed sub section reached its peak at 
noon, indicating that this batch of operating vehicles had the highest possibility of speeding behavior occurring 
at noon

In terms of spatial evaluation, as speeding behavior often occurs on a longer road section, this article selects 
the cluster with the highest local density, Point I, as the analysis case. As shown in the following example, there 
are 38 speeding behavior points in a 200 meter road section. These speeding behavior points have a serious im-
pact on road transportation safety due to a considerable number of speeding behaviors occurring within the short 
circuit section.

  

Fig. 8. Comparison of Graham algorithm performance

Utilizing the previously described Graham algorithm, the boundary of this category is computed and plotted 
on the map, as illustrated in Fig. 8. The black line area indicated by the arrow represents the boundary line of this 
category. It can be observed from the figure that the boundary line encompasses all the located points and effec-
tively delineates the area of this category.

5   Conclusion

This article designs a spherical latitude and longitude interpolation method to reduce errors in data interpolation 
steps. Multiple indicators of bad driving behavior were calculated based on vehicle satellite positioning data. 
For the two indicators that occur more frequently and have a more concentrated distribution: excessive idle and 
speeding behavior, the DBSCNA algorithm considering time and space distance was used to cluster the designat-
ed points of bad driving behavior, and several areas of bad driving behavior were obtained. The clustering results 
show that speeding: ① prolonged idling driving behavior mostly occurs at night, and for vehicles driving on 
national roads from urban and rural roads, the likelihood of excessive idle behavior is higher. ② Overspeed and 
poor driving behavior often occur in the midday, in hot areas on certain road sections, and local law enforcement 
agencies need to improve law enforcement targeting. Poor driving behavior points are highly concentrated.

In addressing the clustering outcomes, particular attention was given to the challenge of high-density clusters 
that lack distinct boundaries. To tackle this issue, we developed a clustering region detection algorithm grounded 
in the Graham scan technique, which effectively delineates the clustering area using a two-dimensional spatial 
linear shape. This method allows for the precise identification of regions with a prevalence of poor driving be-
haviors, based on specific geographic locations and time frames. Moreover, recognizing the existence of cluster-
ing boundaries enables regulatory authorities to carry out more precise and targeted vehicle supervision within 
the defined area ranges. Such an approach not only enhances the efficiency of supervisory efforts by the manage-
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ment authorities but also contributes to a safer road traffic environment. Ultimately, these improvements lead to a 
reduction in carbon emissions produced by vehicles in road transport.
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