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Abstract. Ice crystals in clouds have various shapes, which play a crucial role in understanding the develop-
ment of precipitation, climate change and remote sensing retrievals. The copious ice crystal images collected 
by the airborne cloud particle imager probe (CPI) following each research flight impede efficient human iden-
tification, prompting the necessity for an automated, high-precision algorithm to classify ice crystal habits. 
Traditional automatic classification methods require manual feature extraction for a good performance, which 
affects their generalization ability. Instead, the recently perfected machine learning method -- convolutional 
neural network (CNN) holds promise in addressing this issue. In this paper, the ice crystal images observed 
by CPI are used to set up an ice crystal dataset, which consists of eleven shapes containing 5,342 images. 
Additionally, a method to identify ice particle shape based on CNN is presented. The small 3×3 convolutional 
kernels are used to construct a 30-layer CNN model to achieve automatic habit classification of ice crystal 
particle shapes. The CNN model is compared with traditional machine learning models (SVM, BP) using the 
created dataset. The CNN model achieved the highest F1 score for each category and an accuracy of 95.45%. 
Experimental results show that ice crystal classification using CNN is an effective and feasible method, sur-
passing traditional classification methods that require manual feature extraction. This research provides a ref-
erence value for cloud microphysics research. 

Keywords: ice crystal habits, Cloud Particle Imager (CPI), convolutional neural networks (CNN), cloud mi-
crophysics research, deep learning

1   Introduction

Ice clouds have an important influence on atmospheric radiation and energy transport. The radiative characteris-
tics of ice crystal particles are mostly determined by their size and habit [1]. The radiative effects of cirrus clouds 
have been calculated with the help of the distribution of ice cloud particle habits [2]. The net radiative effect of 
cirrus clouds is influenced by the size distribution and ice crystal habit inside the cloud as well as the cloud’s 
vertical and horizontal dimensions [3]. Additionally, the morphology and size of ice crystal particles allow for 
the calculation of cloud microphysical characteristics in different ice clouds, such as particle spectral distribution, 
ice-water content, liquid-water content, precipitation, effective particle radius, and extinction coefficient [4]. And 
the parameters of different ice crystal shapes play a crucial role in determining cloud parameterization schemes 
in numerical models and cloud radiation characteristics in atmospheric remote sensing [4]. When estimating the 
cloud’s overall mass and optical thickness, the morphology of the ice crystal particles is crucial, especially when 
evaluating how individual crystals interact with electromagnetic radiation [5]. Additionally, distinct ice crystal 
forms correspond to distinct microphysical and radiative properties as well as having distinct single scattering 
properties [6, 7]. Studying the form habits of ice crystal particles within clouds is crucial as a result.
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Aircraft observation is one of the important methods for measuring the size and morphology of ice crystal 
particles in clouds, especially with the airborne imaging probes. However, the airborne imaging probes can only 
capture the two-dimensional projection image and size of ice crystal particles, without the ability to identify their 
shapes. While ice particle shapes can be identified by the human eye, it is very time-consumption and subject to 
human subjectivity, because the imaging probe can usually record tens of thousands of ice particles after each 
flight. Therefore, it is necessary to develop an automatic ice crystal habit recognition technology.

In the study of automatic identification methods for ice crystal particle shapes, Korolev and Sussman [8] em-
ployed dimensionless ratio relationships and an inverse approach to classify ice crystal particles into four shapes, 
utilizing the obtained feature parameters from particle images. Lawson et al. [9] presented a method to classify 
the particle shapes by using simple geometric dimensions of the particles in a combinatorial operation. Praz et al. 
[10] utilized polynomial logistic regression with geometric and textural descriptions to categorize six ice crystal 
shapes. In China, Huang and Lei [11] presented an enhanced Holroyd method for identifying cloud particle hab-
its. Dong et al. [12] utilized a back propagation (BP) neural network optimized by simulated annealing algorithm 
to distinguish the shape of cloud particle images. Nevertheless, traditional classification methods often require 
a set of extracted features rather than directly using ice crystal images as input. For complex structures like ice 
crystal particles, it may be difficult to design effective feature representations, which will affect the generalization 
performance of the algorithm.

Convolutional neural network (CNN), in particular, are deep learning algorithms that have attracted a lot of 
interest and applications recently due to their capacity to train and categorize image recognition without the need 
for the pretreatment phase of picture feature extraction. Currently, this technique has been applied to classifica-
tion of ice crystal particle images. Touloupas et al. [13] employed a CNN to classify ice crystals sampled by ho-
lographic imager into three categories with an accuracy of over 96%. Liao et al. [14] designed Hy-INet, a CNN 
embedded with a hypergraph convolution module, achieving a remarkable accuracy of 98.08% in a ten-class 
classification of cloud particles using CPI data. Jiao et al. [15] constructed a three-layer CNN model to identify 
supercooled droplet images captured by CPI with an accuracy of 99.5%. Huo et al. [16] used lightweight convo-
lution modules to build CNN model that classified nine cloud particle shapes sampled by two-dimensional stereo 
probe detector (2D-S) with 96% accuracy. Xiao et al. [17] and Przybylo et al. [18] employed transfer learning 
technique to classify ice crystal images sampled by CPI. Wu et al. [19] also utilized transfer learning approach to 
classify particle images sampled by the Cloud Imaging Probe (CIP). The classification accuracies were all higher 
than 96%. All these preceding studies demonstrate that CNNs necessitate minimal image preprocessing and elim-
inate the need for manually extracted features. They autonomously extract features from the data, enabling more 
dependable and robust predictions directly from ice crystal particle images. In this study, we first established an 
ice crystal database comprising 11 distinct categories, totaling 5342 images. The images are acquired by the air-
borne CPI over continental regions of China and North America, as well as the Pacific and Atlantic Oceans. And 
then we constructed a CNN-based classification model, which was trained and optimized using our constructed 
ice crystal particle shape database. With simple image preprocessing, reasonable network architecture design and 
parameter tuning, we obtained an accuracy of 95.45%.

The rest of this paper is organized as follows. The database and probing device’s working principle is ex-
plained in Section 2.  Section 3 introduces the CNN method for automatic classification of ice crystal particles 
for CPI probes in detail, including image preprocessing, experimental platform, and a description of the training 
process. The experimental comparison mode and the process for assessing model performance are covered in 
Section 4. Section 5 provides the results of the experimental comparisons. Section 6 summarizes the work of this 
paper.

2   Instrument and Dataset

Observing the size and habit distribution of single ice crystal within cloud is difficult. However, the size and 
habits of cloud particles in clouds can be measured by airborne particle imaging instruments, such as the Stratton 
Park Engineering Company’s (SPEC) CPI. The particle detection system of CPI consists of two continuous wave 
laser diodes and their corresponding detectors crossing vertically to form a 2.4 mm wide, 0.5 mm thick strip laser 
beam. The imaging pulsed laser emits a pulsed beam of light in response to a particle passing at the junction of 
the two laser beams; the particle image is then projected onto the CCD. Furthermore, CPI can detect sizes from 
2.3 to 2300 µm and is quantized at 8 bits by the CCD camera. Its maximum transmission rate is 400 frames per 
second, allowing for fast imaging of smaller particles. Additionally, CPI is resistant to low pressure and low 
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temperature. More information on CPI probe can be found in Glienke and Mei [20].
Using images of ice crystal particles observed by CPI over continental regions of China and North America, 

as well as the Pacific and Atlantic Oceans, we created a geographically diverse image dataset containing 11 ice 
crystal categories. Data from continental China were sampled by the Beijing Weather Modification Office’s and 
the Hebei Provincial Weather Modification Office’s King-air research plane in East and North China, respec-
tively. Data from North America and the Pacific and Atlantic Oceans were collected from five field observation 
projects: ATTREX, IDAEAS-4, POSIDON, PREDICT and SEAC4RS. Table 1 provides specific information 
about these projects. A dataset containing a sufficient number of precisely labeled ice crystal particles is needed 
to create an automatic shape identification system for ice crystal particles. In this study, an ice crystal habit data-
set is constructed manually. Table 2 displays the specifics of the ice crystal shape dataset. 5342 representative 
images of CPI ice crystal particles are included in the dataset; only 200 images belong to the dendritic category. 
To ensure a balanced number of samples for each class during model training, 200 particle images of each of the 
11 categories of ice crystal particles were randomly selected from the dataset for model training and testing.

Table 1. Details of CPI data acquisition for the outfield observation projects

Campaign Location Date Aircraft Reference Major ice crystals found
ATTREX Western Pacific Jan - Mar 

2014
Global Hawk Jensen et al. [21] Pla.Agg., Ros, Bud, Col, 

Agg
IDAEAS-4 North Central 

U.S.
Nov 2011 NSF C-130 Stith and Rogers [22] Pla, Pla.Agg., Sph, Col, 

Col.Agg., Den, Gra, Agg
POSIDON Western Pacific Oct 2016 NASA’s WB-57 Gao et al. [23] Ros, Bud, Col, Den, Gra, 

Agg
PREDICT Atlantic Aug - Sep 

2010
Gulfstream-V Montgomery et al. [24] Pla, Pla.Agg., Sph, Den

SEAC4RS Gulf of Mexico Sep 2013 SPEC-Learjet Toon et al. [25] Pla, Pla.Agg., Col.Agg., 
Den, Gra, Agg

Note. ATTREX (Airborne Tropical Tropopause Experiment); IDAEAS-4 (Instrument Development and Education in Airborne Science phase 
4); POSIDON (Pacific Oxidants, Sulfur, Ice, Dehydration, and Convection Experiment); PREDICT (Pre-Depression Investigation of Cloud-
Systems in the Tropics); SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds \ Climate Coupling by Regional Surveys).

Table 2. Details of the ice crystal particle shape dataset

Category Number of images Description
Plate 317 Like a thin, flat plate structure, ice crystals are flat in shape.
Plate Aggregate 269 Aggregates formed by combining multiple plate ice crystals 

together.
Bullet Rosette 505 Ice crystals show a slender branching structure, similar to the 

shape of a rose.
Budding Rosette 625 Combination of short columns showing an embryo structure.
Sphere 1053 Mostly spherical or almost spherical particles, including cloud 

drops and raindrops.
Column 453 Rectangular shape, one axis longer than the other, no signs of 

aggregate.
Column Aggregate 248 Aggregates formed by combining multiple column ice crystals 

together.
Dendritic 200 No further ice crystals are condensing on the branch corners, 

and the six branch formations are spaced uniformly apart.
Graupel 388 As they descend, liquid water droplets collide with ice crystals 

to generate particles of a specific density.
Aggregate 341 A complex structure created by combining several ice crystals.
Irregular 943 Arbitrary shape with no distinguishing characteristics.
Total 5342

Natural ice particles have a wide variety of shapes and it is difficult for people to group them in a small num-
ber of categories. However, as demonstrated by in-lab tests and aerial observations, specific shapes are identifi-
able and commonly transpire in clouds. Lindqvist et al. [2] classified ice crystals from CPI into eight types: plate, 
bullet, column, irregular, bullet rosette, budding rosette, plate aggregate, and column aggregate. The classification 
proposed by Praz et al. [10] classified ice crystal images into six categories: sphere, column, plate, compact par-
ticle, bullet rosette and aggregate. Xiao et al. [17] established the Ice Crystals Database in China (ICDC), which 
classified ice crystal images into ten types: bullet rosette, budding rosette, aggregate, plate, sector plate, long 
column, short column, hollow column, sphere, and small irregular. Nine categories were created by Przybylo 
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et al. [18] based on the ice crystal particles images by CPI: rimed, aggregate, bullet rosette, budding rosette, 
column, irregular, blur, plate, and sphere. In addition, CPI probe can record particle images with a high resolu-
tion of 2.3µm and 256 gray levels, compared to the pixel of the optical array probes (2D-S: 10µm; CIP: 25µm). 
However, due to the CPI instrument itself and the external detection environment, there is still uncertainty that 
the captured ice crystal images may be out of focus and oversized [26]. Eleven categories are identified by care-
ful examination of the ice crystals: dendtritic (Den), sphere (Sph), graupel (Gra), aggregate (Agg), bullet rosette 
(Ros), budding rosette (Bud), column (Col), column aggregate (Col.Agg.), plate (Pla), plate aggregate (Pla.Agg.), 
and irregular (Irr). A representative image of each shape classification is shown in Fig. 1. Compared with other 
classifiers, the number of classified categories increases. It can bring the following benefits. First, by increasing 
the number of classification categories, different types of ice crystals can be distinguished more finely, thus pro-
viding more detailed and comprehensive information. Secondly, different shapes of ice crystals reflect different 
microphysical processes in the atmosphere [27]. Understanding the mechanisms of ice crystal formation, growth, 
and their interactions with climate factors including clouds, precipitation, and atmospheric circulation can be im-
proved by improving the classification of ice crystal shapes.

Plate Plate Aggregate

Bullet Rosette Budding Rosette

Sphere Dendritic

Column Column Aggregate

Graupel Aggregate

Irregular

Fig. 1. Typical example diagram of ice crystal particle shape categories in this study
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3   Methodology

In this section, we present the CNN classification method used in the experiment for the type of ice crystal parti-
cles measured by the CPI probe. Firstly, the implementation of the CNN technique is studied in depth. Then the 
image preprocessing is described in detail. Finally, the training details are described.

3.1   Network Architecture

CNN is a feed forward neural network category deep learning system that employs the convolutional layer to ex-
tract picture features, which are then used in the output layer to perform classification tasks. A typical CNN mod-
el architecture typically comprises input layer, hidden layers, and output layer. The hidden layer can be further 
divided into multiple layers, including the convolutional layer, fully connected layer, activation function, pooling 
layer, and more [28]. The convolutional layer is the most important component of CNN, and its main procedure 
is convolution operation. Its operational formula is as follows:

( )* ( ) ( )* ( )f t g t f x g t x dx
+∞

−∞

= −∫  . (1)

In the past decades, CNNs have found successful applications across various research domains [29-32]. These 
studies demonstrate that CNN algorithms are highly relevant techniques for image analysis. In 2012, Krizhevsky 
et al. [33] proposed a classical CNN architecture, AlexNet, which won the image classification competition and 
gained significant attention for CNNs. Subsequently, researchers have proposed numerous new models, includ-
ing VGGNet [34] and ResNet [35]. While all these prevalent CNN architectures are suitable for classification 
tasks, each model possesses distinctive attributes. VGGNet, as a classical model, is an important improvement 
of Alexnet. It reflects the trend of increasing network depth while replacing the use of a 7×7 large convolutional 
kernel with a 3×3 small convolutional kernel. This improvement reduces the parameter footprint and improves 
the model’s nonlinear processing capability, thus enhancing its discriminative power.

The CNN model used during this work is designed with reference to the VGGNet architecture. When applied 
to image classification, CNN algorithm consists of two parts: a feature extractor and a classifier. Both have a 
large number of learnable parameters, which will be continuously optimized to update the network with the re-
quired parameters during the learning phase using back propagation algorithm. In this paper, the feature extractor 
of the CNN model comprises three fundamental layers: the convolutional layer, the activation function layer, 
and the pooling layer. The convolutional layer serves as the central component of the CNN, employing a series 
of convolutional kernels to execute convolution operations on the input image, thereby extracting features. The 
smaller convolution kernels require fewer parameters and computations, while larger convolution kernels capture 
more complex image information. The activation function layer nonlinearly transforms the output from the con-
volutional layer, thereby enhancing the model’s expressiveness. After normalizing and applying the activation 
function, each convolution kernel produces a set of feature maps for input image. These feature maps are then 
downsampled with a 2×2 pooling layer. The pooling layer’s primary goal is to process less data overall while 
keeping relevant information intact and speeding up network training. Pooling is an aggregation operation that 
reduces the target resolution and aggregates statistics for features at different locations. Two common types of 
pooling operations are mean pooling and maximum pooling. Mean pooling has a smoothing effect on the extract-
ed features, while maximum pooling highlights features. The feature extraction part of the CNN model in this 
paper repeats convolution layer, batch normalization operation, activation function layer and pooling layer until 
each feature map is reduced to a 1×1 size. Among them, the convolutional layers utilize 3×3 convolutional ker-
nels with stride S=1, same padding and ReLU activation. The ReLU activation function is expressed by equation 
(2). The number of convolution kernels increases throughout the convolution part of the model, from 8 to 16, 
32, 64, 128, and finally 256. The pooling layers conduct max pooling with a stride of S=2. In the classifier seg-
ment of the network, two fully connected layers are utilized to reduce the dimensionality from 512 to 11. Then, 
the Softmax layer normalizes the output of the fully connected layers, generating probability distributions that 
interpret the model’s output as probabilities for each category. ReLU activation function is also employed as an 
activation function for the fully connected layer. The specific model is depicted in Fig. 2.
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( ) ( )Max 0,f x x=  . (2)

ImageInputLayer

Convolution2dLayer

BatchNormalizationLayer

ReluLayer

MaxPoolingLayer

FullyConnectedLayer

ReluLayer

FullyConnectedLayer

× 6

SoftmaxLayer

ClassificationOuutputLayer

Fig. 2. Network architecture of CPI classification model

3.2   Data Preprocessing

(1) Normalizing the input
Normalizing a picture’s pixel values into an appropriate range, like [0, 1] or [-1, 1], is essential before feeding 

the image into a CNN. The performance of the model may be impacted if images with pixel values between 0 
and 255 are directly supplied. This can cause gradient explosion or disappearance. He et al. [36] explained the 
need for fixed input image sizes in CNN models. If the input vector’s dimensionality is not fixed, it causes dy-
namic changes in the network, preventing effective parameter training. Therefore, it is necessary to fix the input 
image size when using a fully connected layer. To expedite convergence and gradient descent in the CNN model, 
we applied the same transformation to each dataset segment: resizing ice crystal particle images to 100×100 and 
normalizing the pixel matrix.

(2) Data augmentation
Data augmentation is an excellent way to reduce CNN generalization errors and helps prevent the network 

from overfitting. Data augmentation transformations include rotation, scaling, cropping, flipping, and panning. 
We used the data augmentation operation after 2200 randomly selected images of ice crystal particles and only 
on the training set. During CNN training, each image undergoes a transformation operation with a 50% probabil-
ity before being input into the network. This implies that an image may be subjected to multiple transformations 
during training, or it may undergo no transformations at all.
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3.3   Training Details

This work makes use of the Machine Learning and Deep Learning Toolbox with MATLAB R2021B as its ex-
perimental operating platform. The system configuration and hardware utilized are AMD Ryzen 3 3300U with 
Radeon Vega Mobile Gfx@2.10 GHz and 16GB RAM.

The training details of CNN are as follows. First, 2200 images of ice crystal particles, randomly selected from 
the dataset, are divided into training and test sets at a ratio of 7:3. This ratio division reduces the possibility of 
network overfitting to the data and allows for accurate testing of generalization. In order to optimize the network 
parameters, we employed the Sgdm optimizer, a deep learning gradient descent algorithm. Sgdm introduces 
first-order momentum to mitigate the issue where traditional stochastic gradient descent (SGD) encounters zero 
gradients at local optima, thereby enabling continuous updates and addressing the problem of excessive oscilla-
tions in oscillation amplitude [37]. We utilized a momentum parameter [38] with a decay of 0.9 to get suitable 
parameters for the final convolutional layer. The learning rate was set to η=0.01, which was halved every time 10 
epochs were passed. The gradient was computed using a small batch of 16 samples, and the epochs to 25. Every 
15 iterations, the model is assessed on the validation set to track its improvement and determine whether overfit-
ting has occurred. Lastly, the model is assessed using the Section 4 assessment parameters.

4   Baseline of Classification Algorithms used for Comparison

Since both support vector machine (SVM) and back propagation (BP) neural network exhibit excellent learning 
performance and are capable of effectively addressing high-dimensional and nonlinear problems, they are the 
preferred methods for pattern recognition. Therefore,we conducted a performance comparison between CNN and 
SVM and BP neural networks in shape recognition models. Both techniques were trained and tested on identical 
datasets. The specifics of the compared models are delineated below.

4.1   Support Vector Machine

SVM is a general feed-forward network model and is one of the most influential methods in supervised learning. 
Its main objective is to find a hyperplane that accurately separates different types of datasets. The optimal hyper-
plane, also referred to as the best hyperplane, maximizes the distance between the nearest data points from each 
dataset. In cases where the datasets are not linearly separable, the samples from the original space can be project-
ed by SVM into a higher-dimensional feature space, where they can be separated linearly.

For each object in the ice crystal particle images, they require a set of feature vectors (see Table 3). The cre-
ation of the SVM model primarily hinges on parameter selection, including the kernel function and penalty 
factor. In this paper, we compared experiments to construct SVM classification recognition model by applying 
the libsvm toolbox developed by Zhijian Lin and his lab in Matlab platform at National Taiwan University. The 
SVMcgForClass function in the libsvm toolbox is applied to automatically search for the optimal penalty factor c 
and gamma parameters for the SVM model. Since determining the kernel function lacks a clear methodology, we 
assessed the performance of SVM using various kernel functions (linear, polynomial, radial basis function, and 
sigmoid) in identifying 11 types of ice crystals. Ultimately, we compared the model constructed with a polynomi-
al kernel function to the CNN model.

Table 3. Explanation of every feature utilized in the SVM and BP neural network training and testing

Feature Component
Aspect ratio Ratio of the longest longitudinal axis to the longest horizontal axis of ice crystal par-

ticles.
Area ratio Ratio of ice crystal particle area to specific area.
Rectangularity Ratio of the area of particles to the smallest external rectangle of particles.
Circularity The degree to which ice crystal particles tend to be round.
Normalized descriptor An important way to describe the shape of the particle, when the number of dimen-

sions is greater than 20, the normalization factor is already close to 0, so take the 
first 20 dimensions of the normalized descriptor features.

Local binary pattern Capable of extracting local texture features of ice crystal particle images, the dimen-
sion of feature parameters for each particle is 256.
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4.2   BP Neural Network

BP neural network, a type of feed-forward neural network, adjusts network weights by back-propagating the er-
ror to calculate the error in each hidden layer. It consists of three or more layers and offers a simple structure and 
easy training compared to other networks. The training process involves two steps: signal forward propagation 
and error backward propagation. Signal forward propagation involves feeding particle feature parameters into 
the network as input, propagating activation values through the input, hidden, and output layers, and comparing 
the output values with expected values based on the error criterion. The network parameters are adjusted in each 
layer through repeated training iterations until the output error reaches the desired level.

Matlab neural network toolbox is used by us to construct BP neural network model. To ensure parity in com-
parison with the CNN model for classification, we applied the same dataset to train the BP neural network as 
used for the CNN model. The BP neural network was trained on the identical set of features as the SVM (see 
Table 3). We also compared the performance of the BP neural network models constructed by trainscg, traingdx, 
traingdm and traingd, and selected the best training function to construct the classification model for comparison 
with the CNN model.

Lastly, the BP neural network’s configuration settings are set up as follows.The target expectation error is 
0.01, the maximum training times is 1000, the hidden layer’s activation function is a tansig function, the output 
layer’s activation function is a logsig function, the trainscg training function is used for training, and the starting 
learning rate is 0.05.

4.3   Performance Measure

Assessing the generalization performance of automatic image classifiers necessitates not only reliable and feasi-
ble experimental estimation methods but also evaluation criteria to gauge the model’s generalization capability. 
Employing various performance measures can often yield divergent assessment outcomes. Hence, we employed 
multiple performance metrics to assess various facets of the model’s performance. The subsequent section pro-
vides an overview of the model’s performance metrics.

In machine learning, FP denotes judging counterexamples incorrectly as positive examples; TP denotes judg-
ing positive examples correctly as positive examples; FN denotes judging positive examples incorrectly as coun-
terexamples; and TN denotes judging counterexamples correctly as counterexamples.

(1) Confusion matrix
The confusion matrix can be used as a basic visualization tool for classification problems and can give a better 

understanding of the errors in the classification. It is easy to observe where there are mistakes in the confusion 
matrix as all of the accurate predictions are situated on its diagonal.

(2) Accuracy
Accuracy is the most basic classification model performance evaluation metric. The percentage of correctly 

identified samples to the total number of samples is indicated.

c
TP TNA

TP FP TN FN
+

=
+ + +

 . (3)

(3) Precision
Precision is the proportion of ice crystal particles correctly classified as the i-th category as a percentage of the 

total number of particles identified the i-th category (i = 1, 2, 3..., 11).

TPP
TP FP

=
+

 . (4)

(4) Recall
Recall is the proportion of the number of ice crystal particles correctly classified as the i-th category to the to-

tal number of particles in i-th category (i = 1, 2, 3, ..., 11).
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c
TPR

TP FN
=

+
 . (5)

Precision and recall are complementary metrics. Typically, when precision is high, recall tends to be low, and 
vice versa. It is usually only possible to have high precision and recall in some simple classification tasks.

(5) F1 score
F1 score is the summed average of the precision and recall rates.

1
2

2
TPF

TP FN FP
=

+ +
 . (6)

(6) Macro-Precision, macro-Recall and macro-F1score
The multi-classification problem is split into n pairwise binary classification problems, so that n confusion 

matrices can be obtained, and Macro-Precision, macro-Recall and macro-F1score are calculated based on the 
average values of each category P and Rc. These three performance metrics are used to measure the overall per-
formance of model. The calculation formulas are as follows:

1

1_
n

i
i

marco P P
n =

= ∑  . (7)

1

1_
n

ci
i

marco R R
n =

= ∑  . (8)

1
_ * _

_ 2
_ _

c

c

marco P marco R
marco F

marco P marco R
=

+
 . (9)

(7) Standard deviation
Standard deviation of the recognition accuracy is used to assess the model’s robustness and is calculated as:

( )2

1

1

n

i
i

x x

n
σ =

−
=

−

∑ (10)

where xi (i = 1, 2, 3, ..., 11) indicates the recognition accuracy of the model for i-th category particle and x  indi-
cates the average recognition accuracy.

5   Results and Discussion

In this section, we initially present the results of the experimental comparison among three models: CNN, SVM, 
and BP neural network. Subsequently, we briefly discuss the classification process of the CNN model.

5.1   Performance Comparison of Different Classification Algorithms

Every model that achieved the highest accuracy rating during training was saved and assessed on the test set. The 
highest accuracy of CNN model, SVM model, and BP model were 95.45%, 83.94%, and 89.55%, respectively. 
We also examined the prediction outcomes of these three training models on the test set and give the results of 
the experimental comparison.
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Fig. 3 shows the accuracy and cross-entropy loss values obtained from the CNN model network during train-
ing and testing. The training dataset comprised 1540 ice crystal particle images, and the training process spanned 
2400 iterations. The CNN model achieved an accuracy of 95.45% with a loss function of 0.08, showing little 
variance between each run. The training duration was 13 minutes and 18 seconds. As illustrated in Fig. 3, the ac-
curacy and loss values stabilized when the epoch number approached 12. Fig. 4(a) displays the confusion matrix 
of the ice crystal particle recognition results of the CNN model on test set. This matrix exhibits the total number 
of images for each possible classified particle, revealing that most types of ice crystal shapes are distinguished 
quite well. It’s evident from Fig. 4(a) that the model exhibits minimal prediction errors in the classification of 
bullet rosette, column, dendritic, graupel, irregular, plate, budding rosette, and sphere. However, the CNN model 
faces challenges in differentiating between column aggregate and aggregate. Increasing the number of samples 
could potentially enhance the network’s ability to distinguish between these two categories.

Fig. 4(b) and Fig. 4(c) depict the confusion matrices for the recognition results on the test set using the SVM 
and BP neural network models, respectively. Both models achieved their best classification results for the “sphere” 
category when trained and tested on the same dataset. As previously mentioned, the CNN model achieved the 
highest accuracy of 95.45%. Conversely, the SVM model exhibited the lowest accuracy of 83.94%, which is 
lower than both the CNN and BP neural network models. This discrepancy can be attributed to the strong depen-
dence of SVM on the choice of kernel function and parameter tuning. Selecting an inappropriate kernel function 
or mis-tuning the parameters can lead to decreased classifier accuracy. In contrast, the BP neural network and 
CNN models are more intuitive and simpler to tune parameters, as they automatically optimize network weights 
and biases through the back propagation algorithm. They also have stronger expressive power in handling non-
linear problems. We also evaluated macro-Precision, macro-Recall, macro-F1 score, and the standard deviations 
of recognition accuracy for the three models at the highest accuracy during testing (see Table 4). The CNN model 
exhibited better performance in terms of macro-Precision, macro-Recall, and macro-F1 score, all exceeding 95%, 
whereas the SVM and BP models did not exceed 90%. Additionally, the CNN model demonstrated a lower stan-
dard deviation of recognition accuracy compared to the SVM and BP models, indicating better model robustness. 
In summary, our proposed CNN model is effective and has superior performance in the ice crystal particle classi-
fication task.

10 20

10 20Epoch Epoch

Epoch Epoch

Fig. 3. The model underwent training for 25 epochs, comprising a total of 2400 iterations

[(top) The average value is verified every 15 iterations (black dots) over 25 epochs with an accuracy of 95.45%. (Bottom) The loss function 
evaluation shares the same parameters with a final value of 0.08.]
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Fig. 4. Confusion matrixs of ice crystal particle recognition results on the test set

(The true and predicted labels are on the vertical and horizontal axes, respectively, and the correct classification is located on the diagonal 
line.)
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Table 4. Comparison of macro_Precision, macro_Recall and macro_F1 and standard deviation

Method macro_P (%) macro_R (%) macro_F1 (%) σ
CNN 95.47 95.45 95.46 0.0601
SVM 83.91 83.94 83.93 0.1361
BP 89.61 89.55 89.58 0.1006

We also used the three models to perform additional assessments of precision, recall, and F1 score for every 
class of ice crystal particles (see to Table 5). The sphere and column shapes performed well across all three 
models, likely due to their distinct and easily recognizable features. Conversely, column aggregate and aggregate 
were the most challenging to classify among three models, likely because of the similarities in their complex 
structures. It is worth noting that the CNN model can reach 100% precision for classifying sphere, column and 
graupel. Except for the irregular’s recall, the recall and F1score of CNN model are the highest values of the 
three models, and the performance measures for most categories are higher than 95%. Moreover, it is evident 
that the CNN model achieves the maximum F1 score for every category. To assess the classification model more 
effectively, the F1 score can take precision and recall into account. The aforementioned findings demonstrate 
that the suggested CNN model outperforms conventional classification techniques that call for manual feature 
extraction in terms of generalization and learning with small data.

Table 5. Experimental evaluation of the three models

Category Method P (%) Rc (%) F1 (%)

Plate
CNN 98.33 98.33 98.33
SVM 81.36 80.00 80.67
BP 98.31 97.00 97.48

Plate Aggregate
CNN 94.92 93.33 94.12
SVM 83.72 60 69.90
BP 88.24 75.00 81.08

Bullet Rosette
CNN 95.16 98.33 96.72
SVM 88.14 86.67 87.39
BP 86.44 85.00 85.71

Budding Rosette
CNN 95.24 100 97.56
SVM 90.16 91.67 90.91
BP 95.16 98.33 96.72

Sphere
CNN 100 100 100
SVM 93.75 100 96.77
BP 100 100 100

Column
CNN 100 98.33 99.16
SVM 95.24 100 97.56
BP 98.31 96.67 97.48

Column 
Aggregate

CNN 85.96 81.67 83.76
SVM 66.67 66.67 66.67
BP 78.57 73.33 75.86

Dendritic
CNN 98.36 100 99.17
SVM 82.09 91.67 86.61
BP 89.29 83.33 86.21

Graupel
CNN 100 96.67 98.31
SVM 79.45 96.67 87.22
BP 82.86 96.67 89.23

Aggregate
CNN 83.87 86.67 85.25
SVM 77.59 75.00 76.27
BP 77.78 81.67 79.67

Irregular
CNN 98.31 96.67 97.48
SVM 84.91 75.00 79.65
BP 90.77 98.33 94.40
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5.2   Discussion

To better understand the classification process of the CNN model, we compared the activation region with the 
original image to check the activation and discover the features learned by the network, and the activation of the 
CNN are shown in Fig. 5. By visualizing the activation of CNN, we can observe the sensitivity of the network 
to different features at different levels. Fig. 5. demonstrates that the shallow channels (Conv_1-4 , Conv_2-8 and 
Conv_3-16) primarily learn simple features such as edges. These simple features can effectively represent differ-
ent particle shapes. In contrast, the deep channels (Conv_4-32, Conv_5-64 and Conv_6-128) learn more abstract 
and complex features, exhibiting only local characteristics. Deeper layers construct their features by combining 
features from shallower layers. Consequently, the CNN’s convolutional layer effectively extracts local features 
from images. Through the integration of pooling and fully connected layers, the CNN progressively learns in-
creasingly abstract feature representations, forming a layered feature extraction mechanism. This mechanism 
enables CNNs to gradually acquire features at different levels within an image, making them valuable for image 
classification tasks.

Images input Conv_1-4 Conv_2-8 Conv_3-16 Conv_4-32 Conv_5-64 Conv_6-128

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 5. Visualization of feature maps in CNN model, denoted Conv_1-4 (channel 4 on Conv_1), Conv_2-8, Conv_3-16, 
Conv_4-32, Conv_5-64, and Conv_6-128

In addition, when server resources are not available, the issue of extended training time for CNN may become 
particularly pronounced. Compared with the TL-ResNet152 model and TL-EfficientNet-b6 model proposed by 
Xiao et al. [17] and Wu et al. [19], the CNN model constructed in this paper has a simpler structure, requiring 
less time for training. It can classify more different types of ice crystals, and achieve a good level of classification 
accuracy.

6   Conclusion and Outlook

An automatic ice crystal particle shape classifier based on CNN was created to derive particle habit from CPI 
that is routinely used aboard research airplane in cloud observation community. The proposed CNN model clas-
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sifier was a 30-layer network and built with small 3×3 convolutional kernels. For developing and testing the clas-
sifier, data collected over continental regions of China and North America, and the Pacific and Atlantic Oceans 
by CPI were used to establish an ice crystal habit dataset, which consists of eleven shape categories containing 
5,342 images. Using this dataset, we compared the performance of the CNN classifier with that of traditional 
machine learning models such as SVM and BP. The CNN achieved an accuracy of 95.45%, while SVM and BP 
neural network achieved accuracies of 83.94% and 89.55%, respectively. The CNN model performed the best 
and obtained the highest F1 score for each category. These experimental results demonstrate the CNN model’s 
effectiveness and superiority in ice crystal shape classification tasks. Compared to the traditional methods, the 
CNN model can better learn essential features in ice crystal particle images, enabling improved discrimination of 
different ice crystal types.

Furthermore, we conducted an in-depth analysis of the CNN model to gain insights into its functioning in 
ice crystal shape classification. Our findings indicate that the CNN model can effectively capture features such 
as shape, texture, and structure of ice crystals, which are crucial for accurate classification and identification. 
Through visualization and feature mapping analysis, we further confirmed the CNN model’s efficacy and 
interpretability in ice crystal shape classification. Overall, the proposed automatic particle image classification 
method achieves better classification results.

However, our algorithm still requires improvements in recognizing the shapes of complex ice crystal particle 
aggregates. Future research should focus on refining and optimizing the CNN model proposed in this study to 
enhance its accuracy in recognizing complex aggregates’ shapes. This will enable better discrimination of various 
ice crystal shapes and facilitate broader applications in meteorological and climate research, fostering deeper 
understanding and analysis of ice crystal particles.
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