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Abstract. In the scenario of 3C (Computer, Communication, Consumer Electronics), the algorithm for de-
tecting targets in smartphone component assembly consumes a substantial amount of system computing 
resources.It also faces challenges such as the flexible nature of target components and the small scale of het-
erogeneous components, leading to low detection accuracy. To adapt to the 3C scenario, this paper proposes 
improvements based on the DINO object detection model. It introduces a more lightweight and powerful fea-
ture extraction backbone, Efficientnetv2, and utilizes the He-Kaiming weight initialization method to extract 
strong multi-scale feature maps. In training, a more efficient dynamic contrastive denoising training method 
is employed. This approach makes the model lightweight and accurate for 3C detection. This method outper-
forms leading detection algorithms in both accuracy of experimental results and parameter efficiency.
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1   Introduction

Intelligent manufacturing (IM) epitomizes the deep integration of information technology and industrialization 
[1]. In the 3C industry, where manual labor prevails due to high repeatability in assembly processes and rapid 
product updates, the imperative to transition from manual and semi-automatic methods to intelligent automa-
tion is increasingly pressing, especially with China’s aging population. However, traditional visual industrial 
robots face limitations in handling the industry’s characteristics of numerous irregular small parts, semi-flexible 
targets, and complex assembly processes. The incorporation of machine vision technology into industrial as-
sembly robots has emerged as a pivotal direction in intelligent manufacturing, addressing these challenges [2]. 
By significantly enhancing the visual perception capability of 3C industrial robots, intelligent visual recognition 
technology enables them to autonomously identify assembly parts’ category and position information and handle 
complex assembly situations independently. This integration elevates the level of intelligence in assembly robots, 
enhances the flexibility and robustness of industrial production lines, and further improves production efficiency. 
Despite the current challenge of large-sized smartphone component detection algorithm models consuming sig-
nificant computational resources, this approach aligns with the demand for precision assembly, rapid iteration, 
and small-batch customization in the 3C industry, fostering a seamless transition towards intelligent automation.

The rapid development of deep learning has made CNN-based object detection algorithms the mainstream ap-
proach.Object detection algorithms based on CNN can be classified into single-stage, two-stage, and multi-stage 
methods, depending on the detection process stages. R-CNN (Regions with Convolutional Neural Network), pro-
posed by Girshick et al. [3], is a two-stage object detection algorithm that first generates candidate regions in the 
image, then classifies and regresses these regions. By introducing deep learning methods into the traditional ap-
proach, R-CNN greatly improves the detection accuracy. Cascade-RCNN, proposed by Cai et al. [4], is a multi-
stage object detection algorithm. It follows a similar detection process as the two-stage approach but differs in 
that it iteratively refines the candidate regions, leading to improved detection accuracy without sacrificing detec-
tion speed.

Although two-stage object detection algorithms offer high accuracy, their large size hinders real-time detec-
tion. As a result, one-stage end-to-end algorithms such as YOLO [5-7], RetinaNet [8], and EfficientDet [9] have 
been proposed, which excel in real-time object detection.

Both two-stage and single-stage end-to-end object detection algorithms are based on Convolutional Neural 
Networks (CNNs). CNNs primarily utilize local processing, which means they often struggle to effectively 
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capture the deep interconnections between global features of an image. This limitation can lead to performance 
bottlenecks in complex image recognition tasks. In contrast, the Transformer model incorporates an architecture 
based on attention mechanisms, which assesses and utilizes the relationships between data elements, facilitating 
comprehensive global information processing. This capability allows the Transformer to not only identify local 
features but also capture connections across the entire image, significantly enhancing the model’s predictive ac-
curacy and robustness. Therefore, integrating the advantages of the Transformer into object detection algorithms 
can not only compensate for the deficiencies of traditional CNNs in processing global features but also substan-
tially improve the overall performance of object detection, especially in highly complex and dynamically chang-
ing visual environments.

DETR (DEtection TRansformer) [10] is the inaugural end-to-end detection model using the Transformer 
architecture, framing object detection as direct set prediction and separating predictions from specific target po-
sitions. It integrates CNN and Transformer structures for object detection. Zhu et al. [11] identified the attention 
mechanism of the Transformer as the primary cause for the slow convergence of DETR, attributing it to its mo-
deling of dense relationships between global features.Consequently, it takes a long time for the model to focus 
on meaningful sparse positions. To address this, they introduced Deformable DETR, which leverages the idea of 
deformable convolution [12]. By performing sparse sampling on different hierarchical feature maps, the model 
can prioritize learning meaningful key positions and accelerate convergence speed. Additionally,Deformable 
DETR enhances small object detection accuracy by using attention mechanisms to aggregate information across 
multi-scale feature maps.In the same year, Sun et al. [13] introduced the encoder-only version of DETR as a 
means to address the issue of slow convergence resulting from the cross-attention module in the decoder of 
DETR. Expanding upon this concept, they also proposed two ensemble prediction models known as TSP-FCOS 
and TSP-RCNN. These models devised new bipartite matching strategies to address the instability caused by the 
Hungarian loss in the original DETR, achieving faster convergence during ensemble prediction training.

This paper delves into the challenge of detecting smartphone components in the 3C industry, particularly in 
environments characterized by flexible printed circuits and small, diverse parts. Given the constraints of compu-
tational resources in industrial settings, there is a critical need to improve object feature learning and detection 
performance. To effectively address the challenges associated with detecting smartphone component assembly in 
the 3C industry, we have developed a novel, lightweight network architecture that significantly enhances detec-
tion accuracy while maintaining efficiency. Central to our model is the integration of EfficientNetV2 [14] as the 
backbone, which is renowned for its compact structure and superior feature extraction capabilities compared to 
traditional models. This backbone facilitates the extraction of robust feature maps, which are further optimized 
through the implementation of the He-Kaiming weight initialization method, renowned for its ability to maintain 
a balanced variance in activations, thus preventing the vanishing gradient problem during deep network train-
ing. Moreover, we employ a dynamic contrastive denoising training approach that not only reduces noise in the 
training data but also adapts the learning process based on the current state of the model, thereby enhancing both 
the lightness and the precision of the model. This approach ensures that our network remains not only agile in 
processing speeds but also exceptionally accurate in the detection of intricate components in the fast-paced 3C 
industry. 

2   Related Work

2.1   DETR and Its Variants

DETR simplifies object detection by eliminating components such as NMS and anchor generation. Based on its 
excellent performance, many variant algorithms based on it have been produced. Meng et al. [15] introduced 
Conditional DETR as a solution to the primary challenge of slow convergence during DETR training. It learns 
conditional spatial queries from decoder embeddings for multi-head cross-attention, narrowing the spatial range 
for object classification and box regression. This reduces reliance on content embeddings and simplifies training. 
Wang et al. [16] presented Anchor DETR, where the query design of this study incorporates the use of anchor 
points, a prevalent approach in CNN-based detectors. Consequently, each object query is directed towards the 
target in close proximity to its corresponding anchor. Dai et al. [17] proposed Dynamic DETR, which integrates 
dynamic attention in both encoder and decoder stages of DETR to address its limitations of small feature reso-
lution and slow training convergence. Additionally, a dynamic decoder replaces the cross-attention module with 
ROI-based dynamic attention in the Transformer decoder, significantly easing learning and speeding up conver-
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gence. DAB-DETR [18] introduces Dynamic Anchor Boxes (DAB) as the definition for DETR queries, effecti-
vely bridging the divide between conventional anchor-based detectors and class-agnostic detectors. DN-DETR 
[19] addresses slow convergence by tackling the instability of bipartite matching, which causes inconsistent 
optimization objectives early in training. The approach introduces noisy GT boxes to the Transformer decoder 
and trains the model to reconstruct original boxes, simplifying bipartite matching and speeding up convergence. 
DINO [20] enhances the performance and efficiency of prior class-agnostic DETR models as an advanced end-
to-end object detector. It incorporates contrastive denoising training, mixed query selection with anchor initial-
ization, and a double look-forward scheme for box prediction. Co-DETR [21] proposes a novel collaborative mi-
xed-task training scheme to learn more efficient DETR-based detectors from multiple label assignment strategies.

DETR models, despite their innovation, have been criticized for not effectively addressing the high computa-
tional costs associated with their operation, which curtails their practical utility and undermines their capability 
to exploit the full advantages of post-processing-free operations such as non-maximum suppression (NMS). The 
RT-DETR model [22] addresses this limitation by introducing a hybrid encoder that optimizes the processing of 
multi-scale features through a sophisticated mechanism of decoupled intra-scale interactions coupled with effi-
cient cross-scale fusion. This enhancement significantly reduces inference delays typically associated with NMS, 
thereby facilitating real-time object detection. Furthermore, in comparative evaluations on the COCO dataset, 
RT-DETR has demonstrated superior performance in both speed and accuracy, outpacing all same-scale YOLO 
[5] detectors. Consequently, within the domain of 3C object detection, RT-DETR presents substantial advantages, 
suggesting a promising direction for future research and application in environments demanding high efficiency 
and precision.

2.2   Lightweight Neural Network

Recent research has focused on the development of compact and efficient neural networks specifically designed 
for resource-limited industrial environments. These networks aim to minimize computational load and parame-
ter count without compromising the integrity of model performance. The primary goal of designing lightweight 
networks is to refine computation methods, particularly convolution techniques, to significantly reduce the 
number of network parameters while maintaining robust network representation capabilities. This approach not 
only optimizes performance in constrained settings but also enhances the efficiency of data processing, thereby 
facilitating more advanced applications in real-time industrial operations.Some research methods include dilat-
ed convolution, deformable convolution, and depthwise separable convolution. For example, SqueezeNet [23] 
achieves parameter reduction by compressing the channel count within feature maps through the utilization of 
1x1 convolution kernels. Additionally, the fire module combines dilated convolution and 1x1 convolution, further 
enhancing feature extraction efficiency. The MobileNet [24] series, developed by Google’s research team, com-
prises lightweight convolutional neural network architectures designed to markedly reduce network parameters 
and computational burden while preserving high performance. They are particularly su for resource-constrained 
environments like mobile devices and embedded systems. ShuffleNet’s [25] brings a significant innovation to the 
field of neural network architectures through the introduction of group convolution and channel shuffling mech-
anisms. The channel shuffling mechanism, in particular, plays a crucial role by facilitating effective information 
exchange across channels. This exchange enhances the interaction between feature maps, thereby significantly 
improving the overall performance of the network. Such advancements make ShuffleNet particularly suitable for 
environments where computational resources are limited, such as in mobile devices and embedded systems. This 
architecture not only optimizes the computational efficiency but also maintains competitive accuracy, underscor-
ing its utility in advancing the capabilities of lightweight neural networks.

2.3   Parameter Initialization Method

Convolutional neural networks (CNNs) have dramatically transformed a variety of visual tasks, yet the process 
of training these models from scratch presents considerable challenges for researchers in the field. To circumvent 
these difficulties, the prevailing strategy involves the utilization of larger, pre-trained models which are then 
fine-tuned or specifically adapted to distinct visual tasks. This approach primarily stems from the complex and 
delicate nature of network initialization, where even minor inaccuracies in setting the initial weights can lead 
to significant issues, such as the phenomena of gradient vanishing or explosion. These issues, in turn, result in 
suboptimal convergence rates during the training phase. This widespread reliance on pre-trained models not only 
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highlights the challenges associated with the effective initialization of CNNs but also underscores the importance 
of these foundational models in achieving optimal performance across a spectrum of visual tasks. This strategic 
emphasis on pre-trained models thereby plays a pivotal role in simplifying the training process and enhancing the 
overall efficacy and efficiency of CNN deployment in diverse applications.

Philipp et al. [26] introduced a swift and straightforward data-dependent initialization process that establish-
es the network weights in a manner that promotes balanced training rates across all units, mitigating the issues 
of gradient vanishing or explosion. A novel neural network architecture has emerged, known as networks with 
block-sparse weights. These kernels enable the efficient evaluation and differentiation of linear layers, including 
convolutional layers, while also offering the flexibility to configure block-sparse patterns within weight matrices. 
And a class of weight initialization conditions called random orthogonal initialization, which, like unsupervised 
pre-training, has deep independent learning time.

Xavier initialization, alternatively termed Glorot initialization, was originally proposed by Glorot et al. [27] as 
a pivotal strategy to mitigate the limitations associated with random initialization in neural network training. The 
crux of their proposal lies in aligning the distributions of inputs and outputs to maintain consistency across lay-
ers, thereby averting the propensity for subsequent layers’ activation function outputs to gravitate towards zero. 
By ensuring that the variance of the activations remains relatively consistent across layers, Xavier initialization 
fosters more stable and efficient training dynamics, ultimately enhancing the convergence properties of the neural 
network. This initialization technique has since become a cornerstone in the design and training of deep learning 
models, underscoring its significance in facilitating robust and expedited convergence during the optimization 
process.

In contrast to Xavier initialization, Kaiming initialization [28] does not require each layer’s output mean to be 
0, nor does it require f’(0) = 1. In Kaiming initialization, distinct initialization strategies are employed for each 
forward and backward pass. The objective is to maintain a variance of 1 for both the output of each layer during 
forward propagation and the gradients during backward propagation.

3   Model

3.1   Preliminaries

DETR pioneered the application of the Transformer model to object detection tasks.The image first goes through 
a traditional CNN to extract features, then the output of the CNN is directly fed into the Transformer network. 
The Transformer outputs a set of predictions, each including the bounding box’s center coordinates, width, 
height, and class. A bipartite graph matching strategy is employed to associate the predicted boxes with the 
ground truth (GT) boxes in order to compute the loss.

In the DETR model, the cross-attention mechanism necessitates a simultaneous match between the query’s 
content embedding and both the content and spatial embeddings in the key, which imposes stringent quality 
requirements on the content embeddings. Observations from the training process, particularly after 50 epochs, 
indicate that DETR’s performance is hampered by suboptimal content embedding quality, leading to an inabili-
ty to accurately narrow down the object search scope, and consequently, slow convergence rates. This sluggish 
convergence is primarily due to DETR’s heavy reliance on high-quality content embeddings for pinpointing the 
extremity regions of objects, which are pivotal for accurate object localization and recognition.To address the 
challenges associated with the dependency on high-quality content embeddings, the Conditional DETR model 
introduces a decoupling mechanism in the decoder’s cross-attention functionality. In this architecture, content 
embeddings are tasked exclusively with identifying regions pertinent to the object’s appearance, eliminating the 
need for alignment with positional embeddings. This separation allows the conditional positional embeddings to 
explicitly target and refine the search towards the object’s extremity regions, thus enhancing the efficiency and 
precision of the object localization process.

In the Conditional DETR paradigm, the construction of each query is orchestrated by the fusion of a content 
query (cq) and a spatial query (pq), thereby orchestrating the synthesis of a prospective detection outcome at the 
terminal phase of each decoder layer. This architectural configuration engenders the emergence of a candidate 
detection outcome, which is pivotal in discerning the salient features within the visual input. The crux of the 
attention mechanism lies in the computation of attention weights, a process facilitated by the dot product interac-
tion between the queries and the keys. This interactional modality assumes paramount importance in delineating 
the relative significance of different elements within the input sequence, thereby underpinning the discernment of 
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pertinent visual cues essential for accurate object detection.
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In DAB-DETR, the object query is explicitly represented as coordinates [x, y, w, h]. Within the framework 
of Conditional DETR, the process involves transforming decoder embeddings through a Feedforward Neural 
Network (FFN) to derive offsets. These offsets, when amalgamated with reference points, result in a refined po-
sitional encoding. This refined encoding is subsequently integrated into the Cross Attention mechanism of the 
Decoder. Distinctively, DAB-DETR performs an iterative update of the query at the conclusion of each decoder 
layer. This update process, mirroring the Conditional DETR approach, leverages an FFN to generate offsets from 
the decoder embeddings. The resultant offsets are combined with reference points to achieve a multi-tiered refi-
nement of the positional encoding. In this architecture, each layer’s computation of relative offsets is guided by 
supervision from the ground truth, with the optimization confined to the parameters specific to the current layer.

Drawing from Conditional DETR, DAB-DETR introduces a novel cross-attention mechanism that integrates 
positional and content information as both queries and keys. This methodology enables the systematic decou-
pling of the influences of content and position on query-feature similarity into a refined dot product calculation 
between queries and keys. To advance the sophistication of positional embeddings, DAB-DETR incorporates 
conditional spatial queries. More precisely, it utilizes a Multilayer Perceptron (MLP), MLP(csq): ℝ^D → ℝ^D, 
to generate a scale vector predicated on content information. This scale vector is subsequently utilized in an ele-
ment-wise multiplication with the positional embeddings, thereby achieving a targeted refinement of these embe-
ddings within the model’s architecture.  
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where ,
D

x yF ∈ represents the image feature located at position (x, y), and the symbol •  signifies element-wise 
multiplicatio.

DN-DETR targets the issue of slow convergence inherent in DETR by analyzing the discrete and stochastic 
nature of the match between Ground Truth (GT) boxes and predicted boxes, a process typically governed by 
the Hungarian algorithm. This mechanism results in a dynamic and unstable matching environment, where each 
query’s predicted detection box may correspond to different GT boxes, thus complicating the offset learning 
process. The core of the instability lies in the Decoder’s task of learning offsets relative to an anchor, with the 
variability in GT box matching leading to erratic learning of offsets. To mitigate these challenges, DN-DETR 
innovatively employs a denoising task as a strategic shortcut, enabling the direct learning of relative offsets and 
effectively sidestepping the complex matching process. As a result, DN-DETR simultaneously trains on two dis-
tinct tasks: the conventional matching task and the supplementary denoising task, thereby refining the learning 
pathway and enhancing stability in offset learning.

DINO, a DETR-like model, features a backbone network, multi-layer Transformer encoder and decoder, and 
multiple prediction heads. According to DAB-DETR [18], the model assigns queries in the decoder as dynamic 
anchor boxes. Similarly, DN-DETR [19] introduces ground truth labels and noisy boxes to the Transformer de-
coder layer, enhancing bipartite matching stability during training.To enhance computational efficiency, we also 
employ deformable attention [11]:

1 1
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The model employs a contrastive denoising training approach to enhance one-to-one matching by adding pos-
itive and negative samples with identical ground truths. As depicted in Fig. 1, two different noises are applied to 
the same truth, one labeled as positive and the other as negative, which prevents repetitive detections of the same 
object. Additionally, the model uses a hybrid query selection method for better query initialization, selecting 
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initial anchor boxes from the encoder’s outputs as positional queries. Furthermore, it introduces a ‘look forward 
twice’ scheme that utilizes gradients from later layers to refine parameters in earlier layers, optimizing perfor-
mance.

Fig. 1. The framework of DINO model 

(Our decoder also includes a dynamic contrast denoising (DCDN) section with positive and negative samples.)

The study of Conditional DETR [15] and DAB-DETR [18] reveals that DETR queries consist of positional 
and content components, referred to as position queries and content queries in this paper. DAB-DETR [18] de-
fines each position query as a 4D anchor box (x, y, w, h), where x and y denote the center coordinates, and w and 
h the width and height. This definition allows for dynamic optimization of anchor boxes across decoder layers.

3.2   Eff﻿icientnetv2

EfficientNetV2 [14], an innovative convolutional neural network architecture devised by Google in 2021, marks 
a significant advancement in the lineage of EfficientNet models. Renowned for its superior accuracy coupled with 
a reduced parameter count, EfficientNetV2 offers expedited inference speeds, surpassing its predecessors in effi-
ciency and performance. The architectural enhancements introduced in EfficientNetV2 optimize the utilization of 
parameters, enabling the network to achieve remarkable accuracy levels while demanding fewer computational 
resources during both training and inference phases. This evolution represents a pivotal stride towards addressing 
the ever-growing demands for efficient yet high-performing deep learning models across various applications and 
domains.

The model integrates training-aware neural architecture search with model scaling, enhancing both training 
speed and parameter efficiency. EfficientNet’s main training bottleneck is the extensive use of depthwise con-
volutions, which have fewer parameters and FLOPs than standard convolutions. Fused-MBConv, introduced by 
Gupta & Tan [29], combines the depthwise 3x3 and pointwise 1x1 convolutions in MBConv [30] into a single 
regular 3x3 convolution, as depicted in the figure. This model uses neural architecture search (NAS) to optimize 
the combination of MBConv and Fused-MBConv modules.
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Fig. 2. Structure of MBConv and Fused-MBConv

EfficientNetV2 heavily utilizes MBConv and Fused-MBConv, as shown in Fig. 2. It spans from Stage0 
to Stage7. The initial stage (Stage0) features a convolutional layer with a kernel size of 3 and a stride of 2. 
Subsequent stages, Stage1 to Stage3 and Stage4 to Stage6, incorporate repeated stacking of Fused-MBConv and 
MBConv structures, while Stage7 employs a standard 1x1 convolutional layer. EfficientNetV2 uses smaller 3x3 
convolutional kernels but compensates for the reduced receptive field caused by these smaller kernels by adding 
more layers. This approach allows information from larger regions of the input image to be incorporated into the 
final output, thereby maintaining or enhancing network accuracy with smaller convolutional kernels. The struc-
ture of EfficientNetV2-S is depicted in Table 1.

Table 1. The architecture of EfficientNetV2-S, consisting of MBConv and Fused-MBConv blocks, is depicted in Fig. 2

Stage Operator Stride #Channels #Layers
0 Conv3*3 2 24 1
1 Fused-MBConv1, k3*3 1 24 2
2 Fused-MBConv4, k3*3 2 48 4
3 Fused-MBConv4, k3*3 2 64 4
4 MBConv4, k3*3, SE0.25 2 128 6
5 MBConv6, 3*3, SE0.25 1 160 9
6 MBConv6, 3*3, SE0.25 2 256 15
7 Conv1, k3*3 - 1280 1

In our object detection framework, we leverage the potent feature extraction capabilities of EfficientNetV2-S 
and ResNet50, which are pretrained on the extensive ImageNet-22k dataset [31], followed by fine-tuning on our 
specific dataset. This amalgamation empowers our model with a robust foundation for discerning intricate visual 
features across a plethora of object categories. A pivotal aspect enhancing our model’s efficacy is the incorpora-
tion of a deformable attention module, which seamlessly integrates with the multi-scale feature maps obtained 
during the feature extraction process. This strategic integration not only facilitates the aggregation of contextual 
information across varying spatial scales but also fosters the discernment of nuanced spatial dependencies crucial 
for accurate object localization and classification. By harnessing the deformable attention mechanism, our model 
adeptly captures subtle spatial nuances inherent in diverse object scales, thereby bolstering its object detection 
performance comprehensively. This amalgamation of state-of-the-art backbones with deformable attention mech-
anisms underscores our commitment to advancing the frontiers of object detection by amalgamating cutting-edge 
methodologies with established architectural prowess.
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3.3  HKM Parameter Initialization

Weight initialization involves setting initial network parameters (weights and biases) to prevent issues like van-
ishing or exploding gradients, thereby accelerating network convergence and enhancing model performance 
and accuracy. The Xavier initialization method performs poorly with ReLU layers, mainly because ReLU maps 
negative values to zero, affecting the overall variance. Additionally, the Xavier initialization method is limited 
to certain types of activation functions: those that require symmetry around zero and linearity. ReLU activation 
function does not meet these requirements, and experiments have shown that Xavier initialization is indeed not 
suitable for ReLU activation.

To address these limitations, improvements have been made by Kaiming initialization proposed by He et al. 
[30] Initially, Kaiming initialization was mainly applied to computer vision and convolutional networks. Glorot 
and Bengio [26] introduced a method called “Xavier” initialization, this method assumes linearity in the acti-
vation function, which is ineffective for ReLU and PReLU activation functions. To overcome these limitations, 
this paragraph introduces a theoretically more reliable initialization method that takes into account ReLU and 
PReLU. This new method can successfully converge very deep models with up to 30 convolutional or fully con-
nected layers, while the “Xavier” method.

Forward Propagation Case.  For the convolution layer, the output response is

                       ly l l lW x b= + .                                                                       (4)

We make the initialized elements independent of each other and assume that the elements in  xl  also share the 
same distribution, while  xl  and  Wl  are independent of each other. Then we have:

[ ] [ ]l l l lVar y n Var w x= .                                                               (5)

After assuming a zero mean for  wl , the variance of the product of independent variables is obtained as fol-
lows:

2[ ] [ ] [ ]l l l lVar y n Var w E x= .                                                             (6)

Here  E[x2
l ]  is the expectation of x2 . And, it is worth noting  E[x2

l ] ≠ Var[xl] , unless the mean of  xl  is zero, 
for ReLU activation,  xl = max(0, yl−1) , so its average is not zero.

If we assume  wl−1  has a symmetric distribution near 0 and  bl−1 = 0 , the mean of theta is zero and there is also 
a symmetric distribution near 0. This results  Var[x2

l ] =1/2 Var[yl−1]  when f is ReLU. Bring it into the above equa-
tion:

1
1[ ] [ ] [ ]
2l l l lVar y n Var w Var y −= .                                               (7)

With L layers assembled, we have:

1 2

1[ ] [ ]( [ ])
2

L
l l ll

Var y Var y n Var w
=

= ∏ .                                                        (8)

Proper initialization methods should steer clear of exponentially diminishing or amplifying the amplitude of 
the input signal. Consequently, we anticipate the aforementioned product to adopt an inherent scalar value (e.g., 
1), under specific conditions:

1 [ ] 1
2 l ln Var w = .                                                                       (9)

This leads to a zero-mean Gaussian distribution having a standard deviation (std) of 2

ln . Moreover, we set b = 0. 
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Backward Propagation Case.  For backpropagation, the gradient of the transition layer is:



ll lx W y∆ = ∆ .                                                                      (10)

Here we use  Δx  and  Δy  to represent the gradient (
x
ε∂
∂

and y
ε∂
∂

).  Δy  represents k-by-k pixels in d channels, 

and is reshaped into a k2d-by-1 vector. We denote  2n k d=   Take note that  2n n k c≠ = . W  is a c-by- n  matrix 
where thefilters are rearranged in the manner of back-propagation.

In backpropagation, we also have  Δyl =  f '(yl)Δxl+1. where  f '  represents the derivative of  f . In the case of 
ReLU,  f '  is either 0 or 1, with equal probabilities. Let’s assume that  f '(yl)  and  Δxl+1  are independent. Thus we 
have E[Δyl] = E[Δxl+1]/ 2 = 0, and also E[(Δyl)

2] = Var[Δyl] = 1/2 Var[Δxl+1], then, calculate the variance of the gra-
dient.

[ ] [ ] [ ]llVar x n Var wl Var yl∆ = ∆ .                                         (11)



1
1[ ] [ ] [ ]
2

ll l lVar x n Var w Var x +∆ = ∆ .                                                        (12)

Putting the L layers together, we have:



2
2

1[ ] [ 1]( [ ])
2

L

l l
l

Var x Var L n Var w
=

∆ = ∆ + ∏ .                                                   (13)

We consider that the gradient is not a sufficient condition for being exponentially large/small:



1 [ ] 1
2 l ln Var w = .                                                                    (14)

For the first layer (L= 1), computation of ∆x1 is unnecessary as it pertains to the image domain. However, 
Eqn.(14) can still be applied to the first layer, similar to forward propagation, since single-layer factors do not 
exponentially increase the overall product. If initialization scales the backward signal suitably, the forward signal 
is similarly affected, and vice versa. In this study, both methods converge across models.

Efficientnetv2 utilizes the SILU [32] activation function, an enhancement over the RELU type. Both functions 
are depicted in Fig. 3 below, demonstrating compatibility with He Kaiming’s initial method.

Fig. 3.  SiLU and ReLU Activation function
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3.4   Dynamic Contrastive Denoising Training

Dynamic Contrastive Denoising Training (DCDN) emerges as a robust methodology in enhancing model accura-
cy within computer vision domains. It amalgamates the efficacy of contrastive learning and denoising autoencod-
ers to refine feature representations essential for various tasks. Contrastive learning, primarily employed in unsu-
pervised or semi-supervised paradigms, fosters feature enhancement by orchestrating a process of pulling similar 
data points together while concurrently pushing dissimilar ones apart. This approach capitalizes on the funda-
mental principle of maximizing the similarity between positive pairs and minimizing it between negative pairs, 
thereby encouraging the model to discern subtle differences crucial for accurate classification or representation 
learning. On the other front, denoising autoencoders, rooted in unsupervised learning frameworks, contribute sig-
nificantly by inducing noise into input data and training the model to reconstruct the original, unadulterated data. 
Through this process, the autoencoder learns to denoise and distill the salient features from the noisy input, con-
sequently facilitating robust feature extraction and representation learning. By integrating these two methodolo-
gies synergistically, DCDN not only leverages the discriminative power of contrastive learning but also harness-
es the denoising capabilities of autoencoders, thereby yielding superior performance in various computer vision 
tasks. The fusion of these techniques not only enhances model robustness but also fosters a deeper understanding 
of the underlying data manifold, which is pivotal for advancing the state-of-the-art in computer vision research.

DCDN combines these two methods. During the training process, the noise level and contrastive strength are 
dynamically adjusted based on the requirements of the task. This approach enables the model to concentrate on 
varying feature representations at distinct stages, effectively capturing the data’s hierarchical structure and en-
hancing the accuracy of computer vision tasks to a certain degree. DN-DETR features a hyperparameter λ to reg-
ulate noise scale, ensuring that generated noise does not exceed λ, as it reconstructs the ground truth (GT) from 
moderately noisy queries. In the DINO method, there are two hyperparameters λ1 and λ2, the scales of λ1 and λ2 
are shown in Fig. 4, where λ1 < λ2. As demonstrated in Fig. 5, positive queries within the inner square possess a 
noise scale smaller than λ1 and aim to reconstruct their corresponding GT boxes. Negative queries between the 
inner and outer squares have a noise scale greater than λ1 and smaller than λ2. They are anticipated to predict “no 
object”. Typically, a smaller λ2 is chosen since hard negative samples are closer.

GT boxes enhance performance, with each CDN group holding a set of positive and negative queries. For an 
image with n GT boxes, a CDN group contains 2×n queries, each GT box producing one positive and one neg-
ative query. Like DN-DETR, multiple CDN groups are used to improve our method’s effectiveness. The recon-
struction losses are l1 and GIOU for box regression, and focal loss [19] for classification.

Fig. 4.  λ1 and λ2 in GT box
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Fig. 5. Assuming that the center of the square is the GT box, the points inside the inner square are regarded as positive exam-
ples, and the points between the inner square and the outer square are regarded as negative examples 

In this paper, the dynamic contrastive denoising training method is utilized, deriving its efficacy from the 
capacity to attenuate ambiguity and identify superior anchors (queries) for bounding box prediction. Ambiguity 
arises when multiple anchors are proximate to an object, posing challenges for the model in anchor selection. To 
better capture the hierarchical structure of the data by focusing on different feature representations at different 
stages, the noise level is dynamically adjusted and decreases during the training process. The equation for the de-
creasing noise level is: _ 0.006 0.6DN LNR EPOCH= − +

DN_LNR (dn_label_noise_ratio) represents the probability of randomly flipping noisy labels in the training 
data. We achieve dynamic contrastive denoising training by continuously reducing this probability during the 
training process. The decreasing scale of dynamic contrast denoising in the training process is shown in Fig. 6.

Fig. 6. The decreasing scale of dynamic contrast denoising in the training process
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Specifically, dynamic contrastive denoising training (DCDN) is implemented by introducing positive and neg-
ative samples around the true labels of targets. Positive samples are very close to the actual targets but with slight 
variations or noise, whereas negative samples are significantly different from the actual targets in the feature 
space. During the training, the model learns to differentiate positive from negative samples, thereby enhancing 
its ability to detect subtle feature differences. This method is particularly suitable for detecting small objects in 
target detection tasks or those that are difficult to distinguish in complex backgrounds. The key to the DCDN 
strategy is how to dynamically adjust the noise level and contrast intensity. In the early stage of training, a higher 
noise level and contrast intensity enable the model to swiftly capture the rough features of the target. As the train-
ing progresses, the noise level and contrast intensity are gradually reduced, allowing the model to focus more 
on learning the detailed features of the target. This gradual refinement process helps the model continuously im-
prove its detection performance throughout the training cycle.

Through this dynamic adjustment mechanism, the DCDN training strategy can effectively balance the model’s 
rapid learning in the initial stage and fine-tuning in the later stage, ultimately achieving high-precision detection 
of targets, especially for small-sized targets or those in complex backgrounds. This training strategy not only im-
proves the model’s performance but also enhances its adaptability to 3C scenarios.

The DCDN strategy also optimizes the loss function to moderate the effects of various error types on model 
performance. By tuning the weights within this function, the model effectively balances reducing false positives 
(misidentifying the background as the target) and false negatives (overlooking the actual target), enhancing de-
tection accuracy. Additionally, we adjust the cost coefficients for classification loss and bounding box loss to fur-
ther refine DCDN’s adaptability.

4   Experimental Results

4.1   Datasets

The Microsoft Azure Kinect sensor, attached to the manipulator’s end and acting as its ‘eyes,’ is employed in 
dataset generation. It simulates diverse scenarios across various times and lighting conditions to broaden the 
dataset’s diversity and enhance the model’s generalization capabilities. In the context of the 3C scene, which 
features semi-flexibility and small-scale objects, a specific strategy for enhancing small objects is implemented 
in the dataset construction. This strategy focuses on incorporating numerous small targets and ensuring high-res-
olution imagery of these elements within the scenes, which helps the network model to adequately learn data fea-
tures pertinent to small objects. The dataset comprises 2000 images of five components: Flexible Printed Circuit 
(FPC), Coaxial Cable (COAX), SIM Card Slot, Front Camera (CAM), and Mobile Phone (MP) models, each 
with a resolution of 2048×1536. We trained our model using this self-built dataset, dividing it into training, vali-
dation, and test sets at an 8:1:1 ratio for our experiments.

4.2   Implementation and Experimental Setup

In this experiment, we utilized a server equipped with an Intel(R) Xeon(R) Silver 4110 CPU, 64GB RAM, 
Ubuntu OS, and 8 RTX2080Ti GPUs. We employed the PyTorch framework, training a model comprising 
6-layer Transformer encoders and decoders, each with a hidden feature dimension of 256, at a batch size of 2. 
Performance testing of DINO was limited to 4-scale mode, alongside comparative and ablation studies, detailed 
in Table 2.

Table 2. Experimental parameter setting

lr 0.0001 num queries 900
lr_backbone 1e-5 enc_n_points 4
enc_layers 6 dec_n_points 4
dec_layers 6 set cost class 2.0

dim feedforward 2048 set cost bbox 5.0
hidden dim 256 set cost giou 2.0

dropout 0.0 focal alpha 0.25
nheads 8 batch 2
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4.3   Main Results

In the comparative evaluation of object detection methodologies, our study juxtaposed the performance of 
our proposed DINO (OURS) model against established benchmarks including Faster RCNN, Mask RCNN, 
SSD, RetinaNet, DETR, DAB-DETR, and DN-DETR. Table 3 delineates the results, where the DINO (OURS) 
model distinguishes itself by achieving a commendable Average Precision (AP) of 60.2 following 50 epochs. 
Remarkably, it exhibits an AP50 of 94.5 and an AP75 of 65.6, surpassing the performance metrics of all scruti-
nized models. Conversely, the traditional Faster-RCNN model, while boasting a notable AP50 of 95.0, only re-
cords an overall AP of 57.6, underscoring its limitations particularly in the realm of small object detection (APS) 
where it demonstrates a modest 14.0 AP. This nuanced analysis highlights the efficacy of the DINO (OURS) 
model in addressing challenges associated with granular object detection tasks.

The DAB-DETR and DN-DETR models, conceived as refinements to ameliorate the DETR’s protracted 
convergence, have demonstrated incremental advancements with recorded average precisions (APs) of 56.9 and 
56.5, respectively. These iterations exhibit heightened proficiency in detecting medium and large-scale objects, 
indicative of their capacity for robust detection within such contexts. However, despite these enhancements, 
the persistent challenge lies in the detection of diminutive objects, where performance remains circumscribed. 
Noteworthy is the DETR (DC5) model’s underwhelming AP of 46.3, signaling its deficient detection capabilities 
particularly in intricate environmental settings. Hence, while strides have been made to enhance overall detection 
efficacy, the pursuit of comprehensive object detection, especially in scenarios with intricate spatial configura-
tions, remains a focal point for further refinement and innovation within the realm of transformer-based models.

Table 3. Results for DINO and other detection models

Model Epochs AP AP50 AP75 APS APM APL Params
Faster-RCNN 50 57.6 95.0 68.2 14.0 48.7 69.4 40M
Mask-RCNN 50 55.6 92.8 58.0 17.7 47.3 61.5 54M

SSD 50 54.6 89.5 56.7 5.4 33.8 66.2 41M
Retinanet 50 56.9 90.5 62.5 11.5 49.2 65.4 32M

DETR(DC5) 50 46.3 83.6 49.7 2.4 22.4 54.5 41M
DAB-DETR 50 56.9 84.1 58.6 12.3 40.1 66.6 44M
DN-DETR 50 56.5 82.7 59.5 11.7 36.3 65.0 48M

DINO 50 58.1 93.6 63.4 17.9 45.6 67.7 47M
DINO (Ours) 50 60.2 94.5 65.6 19.3 46.7 70.3 34M

Fig. 7.  Algorithm accuracy curve
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The empirical evidence from the provided data unequivocally underscores the superior performance of the 
DINO (OURS) model in object detection tasks, particularly in the nuanced realm of detecting objects of varying 
sizes. Notably, its adeptness in discerning small objects surpasses that of its counterparts by a significant margin. 
This prowess is further accentuated by the model’s parsimonious parameterization, boasting a mere 34M pa-
rameters, which not only contributes to its operational efficiency but also hints at untapped potential for further 
optimization. The discernible advantage of the DINO (OURS) model is underscored by its impressive balance 
between accuracy and efficiency, positioning it as a frontrunner in the domain of object detection. The illustrated 
AP curves in Fig. 7 serve as visual confirmation of these assertions, delineating the comparative performance of 
each algorithm and solidifying the superiority of the DINO (OURS) model in this critical task.

4.4   Ablation Study

In this comprehensive ablation study, we meticulously scrutinized the intricate interplay of various components 
within the DINO model to discern their individual contributions to overall performance. Initially, our investi-
gations centered on the DINO model instantiated with the ResNet50 backbone, wherein the utilization of DC5 
yielded a discernible average precision (AP) score of 58.1. Subsequent augmentation through the simultaneous 
incorporation of DC5, DCDN, and HKM techniques resulted in a marginal yet noteworthy refinement, elevating 
the AP metric to 58.3. This incremental enhancement underscores the subtle yet cumulative impact achieved 
through the amalgamation of these refined methodologies, further substantiating their efficacy in fortifying the 
model’s precision. Consequently, we established the DINO-4scale configuration as the foundational baseline, le-
veraging the DC5 mode as a pivotal catalyst for subsequent analyses and optimizations.

The tabulated results from the ablation experiments, as delineated in Table 4, offer a comprehensive eluci-
dation of the nuanced impacts of varying configurations on model performance. Notably, a pivotal shift occurs 
upon transitioning to the employment of the EfficientNetV2 backbone, manifesting in a discernible augmentation 
of the average precision (AP) metric from 59.5 to 60.2. This substantial improvement underscores the paramount 
importance of an adeptly engineered backbone network in bolstering detection efficacy. Particularly noteworthy 
is the confluence of EfficientNetV2 with the strategic integration of DC5, DCDN, and HKM methodologies, en-
gendering not only a marked elevation in AP but also nuanced enhancements across distinct object size detection 
accuracies, as evidenced by improvements in AP50 and AP75. This holistic refinement underscores the symbiotic 
synergy achieved through the judicious fusion of advanced techniques, reaffirming their pivotal role in fostering 
balanced and comprehensive improvements in detection accuracy.

Table 4. Ablation results

Model Backbone DC5 DCDN HKM AP AP50 AP75 APS APM APL Params

DINO

Resnet50  58.1 93.6 63.4 17.9 45.6 67.7 47M
Resnet50    58.3 93.3 64.5 17.6 43.2 67.3 47M

Efficientnetv2  59.5 95.6 62.8 18.9 45.8 68.9 34M
Efficientnetv2    60.2 94.5 65.6 19.8 45.2 70.3 34M

Moreover, a comparison of the number of parameters revealed that despite having fewer parameters in the 
Efficientnetv2 version (34M) compared to the Resnet50 version (47M), there was a significant performance 
improvement. This reflects the advantages of the Efficientnetv2 backbone in enhancing model efficiency and 
performance. Overall, this ablation experiment revealed the role of each technological component in enhancing 
the object detection performance of the DINO model, while also highlighting the importance of selecting a more 
efficient backbone architecture for optimizing model performance.

In our research, we implemented a methodology to introduce perturbations into bounding boxes, utilizing 
center shifting and box scaling techniques parameterized by the noise scale factors λ1 and λ2, respectively. This 
approach was meticulously designed to investigate the robustness of the bounding box predictions under varying 
degrees of noise. Specifically, our experimental design comprised two distinct series. In the first series, we kept 
the noise scale parameter λ2 constant at a value of 2.0 while systematically adjusting λ1 to evaluate its impact 
on the bounding box accuracy. Conversely, the second series of experiments involved maintaining λ1 at a fixed 
level while modulating λ2 to discern its influence on the bounding box performance. This structured exploration 
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of noise scales allowed us to comprehensively assess the sensitivity of our bounding box model to different types 
and magnitudes of noise, thereby enhancing our understanding of its resilience and generalizability in real-world 
applications.

A lower value of λ1 elicits only a marginal deviation in the centroid of the bounding box, thereby preserving 
the proximity of positional adjustments to their initial states. This refinement promotes the model’s efficacy in 
precisely localizing objects but may not sufficiently fortify its resilience against spatial fluctuations. Our investi-
gation underscores that the model achieves peak detection accuracy when λ1 is configured at 1.0 and λ2 at 2.0.

On the other hand, an increased λ1 value leads to more substantial center shifts, injecting greater positional 
diversity into the learning process. This diversity aids in enhancing the model’s adaptability to changes in object 
location. Nonetheless, an excessive offset might cause the detected bounding box to deviate from the actual ob-
ject, potentially compromising detection accuracy. The pertinent experimental results are presented in Table 5.

Table 5. Center shifting and box scaling 

λ1 λ2 Epochs AP APS APM APL

0.25
0.5
1.0
2.0

2.0
2.0
2.0
2.0

50
50
50
50

58.2
59.7
60.2
58.4

18.5
19.1
18.9
17.7

45.1
45.7
45.8
44.6

67.7
68.8
68.9
68.7

1.0
1.0
1.0
1.0

1.0
2.0
3.0
4.0

50
50
50
50

58.5
60.2
59.6
58.1

17.6
18.9
19.2
19.1

45.2
45.8
45.6
45.0

67.4
68.9
68.9
68.7

For λ2, a lower value restricts the extent of box scaling, causing the model to primarily learn objects near their 
original scale. This condition favors the recognition of objects that are size-wise similar to those in the training 
dataset but might limit the model’s flexibility to scale variations. Conversely, a higher λ2 value facilitates a wider 
range of box scaling, providing the model with extensive exposure to learning across varied object sizes. While 
this can improve the detection capabilities for objects of different sizes, an excessively large scaling range might 
lead to imprecise learning of object dimensions, consequently impacting the accuracy of detection.

In the process of tuning the parameters λ1 and λ2, it is crucial to achieve a delicate equilibrium between the 
variability introduced by noise and the preservation of precise object features in the model. Striking the right lev-
el of noise is essential, as it can considerably enhance the model’s ability to generalize and strengthen its robust-
ness against diverse inputs. However, excessively high or low noise levels can detrimentally impact the model’s 
effectiveness. Thus, the careful calibration of λ1 and λ2 is essential to optimize the performance of the object de-
tection model, ensuring it delivers accurate and reliable results across varied scenarios. This requires a methodi-
cal approach to parameter tuning, guided by experimental data and informed by the specific characteristics of the 
objects being detected.

We continue to explore the impact of query denoising by altering the quantity of denoising queries, utiliz-
ing an optimized dynamic group. Performance significantly improves when the number of queries exceeds 50. 
However, after exceeding 100 denoising queries, further increasing the number of denoising queries only leads to 
a small additional performance improvement, and may even result in performance degradation. Ablation on num-
ber of denoising queries is shown in Table 6.

Table 6. Ablation on number of denoising queries

Denoising 50DCDN 50CDN 100CDN 40CDN 30CDN 20CDN 10CDN
AP 60.2 59.1 56.6 59.4 59.2 59.8 58.8

Additionally, the figures highlight the impact of each ablation component on key metrics such as accuracy, 
precision, and recall. Through visual analysis, insights into the algorithm’s strengths and weaknesses under dif-
ferent configurations can be obtained. The effect diagram of 3C parts testing is shown in Fig. 8. This visual repre-
sentation aids in making informed decisions regarding further optimizations and enhancements to the algorithm 
for better object detection performance.
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                                          (a) Master drawing                                                             (b) Resnet50

     

                        (c)  Efficientnetv2                                                              (d) Ours

Fig. 8. Detection results of four algorithms

5   Conclusion

This paper presents a target detection algorithm tailored for mobile assembly components within the 3C domain. 
Building upon DAB-DETR, we designate the queries in the decoder as dynamic anchor boxes and progressively 
refine them within the decoder layers. Following DN-DETR, it incorporates ground truth labels and noisy 
boxes in the decoder layers to stabilize bipartite matching during training. Building upon these foundations, 
a lightweight detection network architecture is proposed for mobile component assembly detection in the 3C 
scene, incorporating the Efficientnetv2 as the backbone model and utilizing the He Kaiming weight initialization 
method to extract robust feature maps, with training conducted using the efficient dynamic contrastive denoising 
method. Extensive results validate our algorithm’s lightweight yet high-performance detection in the 3C scene.
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