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Abstract. Anomaly detection with multivariate time series data collected by multi-sensors is a challenging 
problem due to the complexity and high dimension of data and the difficulty of manually labelling data. This 
paper proposes a novel unsupervised anomaly detection model using spatial-temporal self-attention based on 
transformer architecture, denoted the biself-attention anomaly detection (BSAAD) model. The BSAAD mod-
el not only utilizes a time-step encoder with a self-attention mechanism to capture temporal correlation but 
also constructs a sensor encoder with a self-attention mechanism to capture spatial correlation among multi-
variate time series data. To amplify the reconstruction errors of anomalous points during network training, a 
two-phase training style with an adversarial training strategy is used to improve the anomaly detection per-
formance of the BSAAD model. Experiments on six multivariate time series datasets show that the BSAAD 
model outperforms state-of-the-art anomaly detection methods.
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1   Introduction

Modern IT systems use multi-sensors to collect numerous multivariate time series data continuously, which 
represent the system status [1]. To investigate potential risks in IT systems, we need to determine whether the 
systems are anomalous based on these data. Conventionally, anomaly detection can be implemented by using su-
pervised learning or unsupervised learning methods. Commonly, labelled data are required in supervised learning 
methods; however, a large amount of un-labelled data always exists in real-world measured data. Even if these 
data can be manually labelled, it is not only a time-consuming process, but it also sometimes generates incorrect 
labels in the case of anomalies close to normal data points, which poses challenges to supervised learning meth-
ods. Therefore, we focus on detecting anomalies in multivariate time series data in an unsupervised way.

Unsupervised anomaly detection tasks should formulate proper criteria to distinguish between anomalous and 
normal points. Many machine learning methods have been proposed in recent years, such as principal component 
analysis (PCA) [2], density-based methods represented by local outlier factor (LOF) [3], linear models with one-
class SVM [4], and tree- based methods proposed in isolated forest [5]. However, the increasing complexity of 
data means these methods are no longer the best choices. With the development of deep learning, anomaly detec-
tion based on deep learning has become a research hotspot. LSTM-NDT [6] uses stacked long-short- term-mem-
ory (LSTM) networks to predict input sequences and models the prediction errors to infer the likelihoods of 
anomalies, though LSTM cannot be parallel trained, having high computational complexity. OmniAnomaly [7] 
captures normal patterns of time series based on a stochastic recurrent neural network and detects anomalies by 
reconstruction probabilities. DAGMM [8] learns a low-dimensional representation from data by an autoencoder 
and feeds the reconstruction error into a Gaussian mixture model for anomaly detection. MAD-GAN [9] embeds 
LSTM into a generative adversarial network as the generator and discriminator (GAN) to capture the temporal 
correlation of time series. However, due to a lack of stability, the GAN-based model has suboptimal performance 
on complex datasets. USAD [10] reconstructs the input data with adversely trained autoencoders and detects 
anomalies based on anomaly errors. The simple architecture enables USAD to provide fast training. Recently, 
Graph Neural Networks (GNN) [11], has achieved significant success in modeling various types of data. MTAD-
GAT [12] employs two parallel graph attention mechanisms to separately handle time and feature data, resulting 
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in improved accuracy. Graph Deviation Network (GDN) [13] enhances interpretability by utilizing Graph Neural 
Networks to learn relationships between variables.

Additionally, the Transformer [14] has been proven to have good performance in processing long time series 
and capturing latent associations within sequences. TranAD [15] reconstructs input data based on transformer ar-
chitecture with adversarial training, which improves performance compared with USAD. Anomaly Transformer 
[16] uses a transformer architecture to learn the time-point associations in time series and utilizes associa-
tion-based criteria to detect anomalies. This work achieves promising improvement for anomaly detection in 
multivariate time series.

However, these works use a self-attention mechanism only on time steps and do not learn the dependencies 
between multi-sensor data. This gap leaves room for our proposed improvements in capturing the intricate cor-
relations from high- dimensional sensor data. Actually, the spatiotemporal correlation among multivariate time 
series from different sensors is critical for anomaly detection. For example, the Secure Water Treatment (SWaT) 
system [17] contains various measurements, such as water level, flow rate, valve status, etc., that are collected 
continuously by multi-sensors. Specifically, correlations among multi-sensor data cannot be ignored: for instance, 
opening valves will cause changes in the flow rate and water level, which further triggers a chain reaction of the 
sensors given the internal mechanism of the system. However, it is difficult to obtain the relationships among 
multi-sensor data in real-world scenarios, leading to the problem of how to capture the hidden dependencies 
among sensors in multivariate time series.

To address this issue, we propose a novel method using spatial-temporal attention in multivariate time se-
ries for anomaly detection based on transformer architecture, denoted as the biself-attention anomaly detection 
(BSAAD) model. The BSAAD model contains a time-step encoder and a sensor encoder, where the time-step 
encoder uses self-attention to learn long-term dependencies along the time-step dimension. while the sensor en-
coder uses self-attention to capture the correlations along the sensor-spatial dimension. Once the features from 
the two encoders are fused, we feed them into decoders to generate reconstruction of input sequence. Then, the 
anomaly label can be predicted by computing the reconstruction error between the input sequence and its re-
construction. Further- more, to enhance the prediction performance, we use a two- phase training style with an 
adversarial training strategy to amplify the reconstruction errors of anomalous points, which aids in better distin-
guishing between normal and anomalous points. Thus, the architecture of the BSAAD model allows us to predict 
anomalies in multivariate time series accurately. The contributions of our work are as follows:

	● We propose a biself-attention framework to capture long- range correlations from both time steps and 
spatial sensors based on transformer architecture. The temporal- spatial correlations can be extracted in 
parallel by the time step encoder and sensor encoder.

	● We use a two-phase training style with an adversarial training strategy, which is conducive to amplifying 
the reconstruction errors of anomalous points and improving performance for anomaly detection.

	● We perform experiments on six multi-sensor datasets. The results show that the BSAAD model has bet-
ter performance than baseline models in anomaly detection in multivariate time series.

The remainder of this work is organized as follows. We introduce the preliminaries in Section 2. The details 
of the proposed BSAAD model are introduced in Section 3. Section 4 describes the experiments and the perfor-
mance of the BSAAD model. Finally, we summarize this work in Section 5.

2   Preliminaries

In this section, we will introduce the fundamental task of multivariate time series anomaly detection and the ba-
sic concepts of attention mechanism.

2.1   Problem Formulation 

To continuously monitor the system,  measures are captured from different sensors. Commonly, the observations 
are recorded at equal-space timestamps. These observed time series m T×∈   are denoted as

{ }1 2, , , ,Tx x x=                                                                     (1)
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where m
tx ∈ denotes the observation at a specific timestamp t , m > 1 denotes that   is a multivariate time se-

ries, i.e., containing more than one observation at t , and T denotes the length of the time series. 
To implement anomaly detection, it is necessary to establish the mapping relationship  f (*)  between   and 

its output Y ,

( ) ,Y f=                                                                           (2)

where  Y = {y1, y2, …, yT}, and  yt  is a binary label vector, given by

0,   normal   
 1,   abnormal.

t
t

t

x
y

x
∈

=  ∈
                                                               (3)

Using the constructed  f (*)  on testing data { }1 2 ,ˆ , ˆ,ˆ ˆ Tx x x=  , the predicted output determines whether ˆtx  is 
anomalous or not. Due to the scale and structural complexity of multi-variables, anomaly detection of multivari-
ate time series is more challenging than that of univariate time series.

                                                                            

                                           (a) Scaled dot-product attention block     (b) Multi-head attention block

Fig. 1. Scaled dot-product attention block and multi-head attention block 

2.2   Self-attention Module

Self-attention, as an attention mechanism, is used to determine the relationships between objects at different lo-
cations within a sequence [14]. For example, in the sentence “The girl sang as she walked”, the two words “girl” 
and “she” refer to the same object, having a high correlation. In anomaly detection applications, this attention 
mechanism can be utilized to capture relationships in multivariate time-series data, which helps the model iden-
tify abnormalities more effectively. The self-attention module is used to construct the network in the proposed 
BSAAD model, where the self-attention module maps the input sequence matrix M into three matrices, the query 
matrix (Q), key matrix (K) and value matrix (V), as follows

,,  ,  Q Q QQ W VMW K M MW= = =                                                        (4)

where (WQ, WQ, WQ) are the parameters to be learned. Although there are various ways to implement self-atten-
tion, “scaled dot-product attention (SDPA”) [14], as shown in Fig. 1(a), is adopted to compute the dot products of 
the queries with all keys divided each by dk. Finally, a softmax function is applied to obtain the weight attention 
on the values:
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( )
T

Attention , , softmax ,
k

QKQ K V V
d

 
=   

 
                                                 (5)

where  (*)T  is a transpose operation and  dk  denotes the dimension of the key vector.

3   Methodology 

In this section, we introduce our proposed BSAAD model, including data preprocessing, model architecture, 
two-phase training, and anomaly detection.

3.1   Data Preprocessing  

To handle the different scales in the values of different dimensions, we normalize the multivariable data on the 
range [0,1) for both training data and testing data as follows

( )
( ) ( )

min
,

max min
t

t

x
x

−
=

− +
                                                            (6)

where  max(  )  and  min(  )  denote the maximum and minimum of  , respectively, and   is a small con-
stant to prevent zero-division.

Compared with information from a single point  xt , historical data points before  xt  usually provide more 
information and contribute to a better understanding of  xt ; thus, instead of just  xt  at the current timestamp t, a 
windowed sequence  m K

tW ×∈  with length K , defined as

{ }1 2, , , ,t t K t K tW x x x− + − +′ ′ ′=                                                               (7)

is used to model time series  W = {W1, W2, …, WT−K+1}. Thus, we use  W  and Ŵ  rather than   and ̂  in 
Section 4 as the training input and testing input, respectively.

3.2   Model Architecture

BSAAD model follows the encoder–decoder structure, comprised of three main substructures: encoder submod-
ule consisting of a window encoder, sensor encoder and time-step encoder, feature fusion submodule, and de-
coder submodule, as shown in Fig. 2. In our model, the window encoder utilizes the windowed sequence  Wt  as 
input. To leverage a larger context, the complete input sequence m LC ×∈  for an input batch is taken as the input 
of sensor encoder and time step encoder, where  L  is the sequence length of  C . In other word, the complete 
sequence  C  contains all of the samples in an input batch, such sequence contains long temporal trends in time 
series, which allows model utilize the wider context information to reconstruct  Wt . The sensor encoder and the 
time step encoder operate on  C  with a focus score to capture spatial correlations among the different sensors and 
temporal correlations among different time stamps, respectively. Furthermore, temporal and spatial information 
are fused in the feature fusion submodule, which is then fed into window encoder to obtain a latent representation 
of the input window  Wt , then the decoders use this to generate reconstruction of the input window  Wt . More 
details of the abovementioned substructures will be discussed in the following. To match the upcoming layers, 
we will first use the learned embeddings to map the inputs to vectors with dimension  dm .

(1)	 Positional Embedding: To enhance distinctions between datapoint features, position embedding is used 
to inject the relative position information into the multivariate sequence. First, the input sequences are 
transformed into a matrix form with modality dm. Then, we adopt sine and cosine functions of different 
frequencies as the positional encoding [14], given by
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( ) 2PE ,2 sin ,
10000 m

k
d

tt k
 
 =   
 

                                                            (8)

( ) 2PE ,2 1 cos ,
10000 m

k
d

tt k
 
 + =   
 

                                                         (9)

Where  PE(t, 2k)  and  PE(t, 2k + 1)  denote the even and odd dimensions of the positional encoding layer, re-
spectively, and k is the dimension index in the range of  [1, dm /2] . Positional embedding has the ability to asso-
ciate information across multivariate sequences with spatial positional awareness.

(2)	 Sensor Encoder: The sensor encoder uses the multi-head self-attention mechanism to capture the correla-
tions among different sensors. After the complete sequence  C  and focus score  F , which represents the 
deviation between the real input and reconstruction input (more details can be found in Section 3.3), are 
concatenated to matrix ( )m L K

FC × +∈ , denoted as

( , ),FC Concat C F=                                                                 (10)

then, the input embedding and positional encoding are applied on  CF  to obtain m md
sX ×∈ .

To jointly capture the information of different representation subspaces from different sensors, multi-head at-
tention, concatenated from h self-attention, as shown in Fig. 1(b), is applied on  Xs as:

( ) ,1 ,MultiHead , Concat ,, ,...,H(Head ead )s s s s s s h sX XX W=                                   (11)

where m mhd d
sW ×∈ , and  Heads,i  denotes the i-th self-attention, given by

( ), , , ,Head Attention , , ,Q K V
s i s s i s s i s s iX W X W X W=                                              (12)

where ( ,
Q

s iW , ,
K

s iW , ,
V

s iW )  are the parameters to be learned related to the  Q  matrix,  K  matrix and  V  matrix, re-
spectively, in the i-th self-attention.

Two skip connections are used to alleviate the difficulty of training deep neural networks. The output feature 
m2 md

sX ×∈   of the sensor encoder layer is obtained as:   

( )( )1 Norm MultiHead , , ,s s s s s sX X X X X= +                                              (13)

( )( )2 1 1Norm FeedForward ,s s sX X X= +                                                   (14)

where  Feedforward(.)  denotes the forward neural layer,  Norm(.)  denotes layer normalization, which can im-
prove the training speed and make the model more robust, and the symbol “+” denotes matrix addition according 
to the data and their residual.

(3)	 Time-step Encoder: The time-step encoder obtains dependencies from different time steps, similar to the 
sensor encoder, by using a multi-head self-attention mechanism. In contrast to using  CF  in the sensor 
encoder, 
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Fig. 2. Architecture of the BSAAD model

position embedding is applied to the transpose of matrix data CF  to obtain Xt  as the input of the time-step encod-
er, ( ) mL K d

tX + ×∈ . Accordingly, the output feature ( )2 mL K d
tX + ×∈  of the time-step encoder is given by 

( )( )1 Norm MultiHead , , ,t t t s s sX X X X X= +                                              (15)

( )( )2 1 1Norm FeedForward ,t s sX X X= +                                                  (16)

where 

( ) ,1 ,MultiHead Concat ,, , ,(Head Head..., )t t t t t t h tX X X W=                                   (17)

where m mhd d
tW ×∈ are the parameters to be learned for the time-step encoder. 

(4)	 Feature Fusion: To fuse the temporal and spatial features from the time-step encoder and the sensor en-
coder, respectively, the feature fusion module is utilized to form a new feature  Xf  , given by

( )2 2 Concat ,,f s tsX XX=                                                              (18)

where ( ) mm L K d
fX + + ×∈ , and  Concats  denotes the concatenate operation along the sensor dimension, allowing 

the model to capture feature information from both the sensor dimension and time-step dimension.
(5)	 Window Encoder: Similarly, we apply input embedding and positional encoding to the input window data 

Wt  to obtain mm d
wX ×∈  . The window encoder includes two multi-head self-attentions. The first multi-

head attention performs a mask operation on  Xw , which is applied to conceal the window sequences for 
future timestamps within the same input batch. The second multi-head self-attention receives keys and 
values from the fused feature  Xf   of the sensor and time-step encoders, which allows the window encoder 
for the attention operation to utilize different time steps and ’sensor information from the complete se-
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quence. The queries of the second multi-head self-attention are from the output of the previous masked 
multi-head self-attentions. Finally, the window encoder performs the following operation:

( )( )( )1 Norm Mask MultiHead , , ,w w t s s sX X X X X= +                                       (19)

( )( )2 1 1Norm MultiHead , , ,w w w f fX X X X X= +                                             (20)

where 2 mm d
wX ×∈  is the output feature of the window encoder.

(6)	 Decoder 1 and Decoder 2: To implement adversarial training with stability in the subsequent procedure, 
two separate decoders, Dec1 and Dec2, consisting of a feedforward network and sigmoid function, are 
used to analyze the weight features of different sensors and time steps extracted from complete sequences 
and window sequences. Two decoders perform the operation on 

( )( )2Sigmoid FeedForward 1,2,i wO X i= =                                                 (21)

where m K
iO ×∈��  denotes the outputs of Dec1 or Dec2. To match the normalized input window  Wt , we use the 

sigmoid function to map the outputs on the range [0, 1]. After the above operations, we take  C  and  Wt  as inputs 
and obtain the reconstructed input windows  O1  and  O2

3.3   Two-phase Training 

Similar to other encoder-decoder models, the BSAAD model predicts the anomaly label using the reconstruction 
error, i.e., the deviation between reconstructed and original inputs. However, traditional encoder-decoder models 
tend to ignore anomalies when the reconstruction error is not large enough. To solve this problem, we train our 
model in a two-phase adversarial training style to amplify the reconstruction error. The focus score F, obtained 
from the reconstruction loss of Dec1 in the first phase, is introduced into the second phase as a prior of the short-
range temporal trends and allows the BSAAD model to focus on the anomaly points by assigning higher neural 
network activation to anomaly points in the time series. As Fig. 3 shows, if the trend of the time series changes 
suddenly (This implies there may have been anomalies),  F  would be higher. Additionally, according to  F , the 
sensor encoder and time step encoder will modify the attention weights for the anomaly points, which further 
prompts the model generate a poor reconstruction for anomalies.

Fig. 3. Visualization of focus scores 

1)	 Phase 1: Reconstruct Input Window: In this phase, the focus score  F  is initialized as a zero matrix, i.e.,  
F = [0]L×m . Two decoders have the same objectives and attempt to reconstruct the input window  Wt  as 
well as possible. The reconstruction losses of Dec1 and Dec2 are defined as: 
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1
1 1 2

,tL O W= −                                                                     (22)

1
2 2 2

,tL O W= −                                                                    (23)

respectively, where  ||.||2  denotes the L2 norm. 
2)	 Phase 2: Reconstruct Input Window with Focus Score: In this phase, the reconstruction loss of Dec1 is 

used as the focus score, i.e., 1
1F L= , which allows the encoders to focus on data points with high devia-

tions. In addition, to improve the robustness of our model, Dec1 and Dec2 are trained in an adversarial 
way. At this phase, Dec1 is trained to fool Dec2 by reconstructing the input window  Wt  as perfectly as 
possible, while Dec2 is trained to distinguish between input window  Wt  and the reconstruction of Dec1. 
Thus, Dec1 would generate a perfect reconstruction (i.e.,  O1 = Wt ) and  F  would be a zero matrix in both 
phase 1 and phase 2, which prompts Dec2 to generate the same outputs in two phases (i.e., 2O  = 2Ô ). 
Using the adversarial training strategy, we can simplify the objective of Dec1 as minimizing the deviation 
between output 2Ô  of Dec2 and input window  Wt , while Dec2 maximizes the deviation between 2Ô  and 
Wt ; thus, the adversarial loss is defined as: 

D 2Dec1 2ec2
min max ˆ .tO W−                                                                 (24)

Furthermore, the adversarial losses for Dec1 and Dec2 can be rewritten from (20) as 

2
1 2 ,ˆ

tL O W= + −                                                                    (25)

2
2 2

2
,ˆ tand L O W= − −                                                               (26)

respectively. (19) and (21) show that the two decoders aim to minimize the reconstruction losses in phase 1, 
while they have opposite objectives in phase 2.

For the sake of training stability, the losses of two phases need to be combined in an evolutionary way. We de-
fine the final cumulative losses as 

1 1 22 2

1 11 ,ˆ
t tL O W O W

n n
 = − + − − 
 

                                                   (27)

2 2 22 2

1 11 ,ˆ
t tL O W O W

n n
 = − − − − 
 

                                                  (28)

where n is a training epoch and  1/n  and  (1−1/n)  are the weights for the reconstruction loss and the adversarial 
loss, respectively. At the beginning of training, two decoders generate poor reconstructions in phase 1. Thus, the 
focus score obtained by the reconstruction loss is unreliable; therefore, we give higher weights to the reconstruc-
tion loss. With increases in  n , the reconstructions of decoders move closer to  Wt  in phase 1, the focus score 
becomes valuable, and the adversarial loss is given a higher weight. 

3.4   Anomaly Detection 

After the parameters of the proposed BSAAD model are trained by the online training procedure, the BSAAD 
model can be applied to the test window input ˆ

tW  and the complete sequence Ĉ . Instead of obtaining the anoma-
ly label directly, we first calculate the anomaly score  for this window, given as
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1 2
2 2

ˆˆ1 1 ,
2 2

ˆ
t ts O W O W= − + −                                                         (29)

where  O1  is the reconstruction output of Dec1 in phase 1 and 2Ô  is the reconstruction output of Dec2 in phase 
2. We combine the outputs for two phases to obtain the anomaly score. The anomaly score for the  i-th  (i ≤ m) 
variant in ˆ m K

tW ×∈  is denoted  si . Given a threshold, the data points of the anomaly scores that are larger than 
the given thresholds are labelled anomalies. As other works [7, 18] have determined, the anomaly thresholds 
are automatically determined based on the peaks over threshold (POT) method [18]. The POT method takes the 
samples exceeding a given sufficient threshold as observations and fits the distribution with a GPD (generalized 
Pareto distribution) to infer the distribution of the extreme values. Then, we can obtain the threshold for dimen-
sion  i  by the POT method, denoted  POT(si) . Furthermore, the anomaly label  yt  can be defined as 

( ) 1,   POT( ) 
,

0,                     
i

t
i i

l
y

if s s
e se

>
= 


                                                          (30)

( ) ,i
t ti

y y= ∨                                                                         (31)

where ( )i
ty  is the anomaly label of the  i-th  variant ˆtx   at timestamp  t.

4   Experimental Setup and Results 

We trained all models using the PyTorch-1.11.0 library, while adopting the hyperparameters of the baseline mod-
els as specified in their respective papers. The hyperparameters are set as follows. 

	● Window length=10. 
	● Dropout in all encoders=0.1. 
	● Hidden units in input embedding layer=128. 
	● Heads in sensor encoder layer=8. 
	● Heads in time step encoder layer=8. 

For training, we use AdamW optimizer with learning rate of 0.01 and batchsize is 128. All experiments are 
performed on a Windows 11 workstation, which is equipped with 32-GB RAM, an Intel i5-11400 CPU and a 
RTX3060 GPU. In later section, we first introduce the datasets used in our experiments and the evaluation met-
rics for anomaly detection and then conduct comparison and ablation experiments and sensitivity analysis.

Table 1. The characteristics of six datasets

Dataset
name

Training
set size

Test set 
size

No. of
dimensions

No. of
entities

Anomaly ratio 
(%)

SMD 708405 708420 38 28 4.16
SWaT 496800 449919 51 1 11.98
MSL 58317 73729 27 55 10.72

WADI 1048571 172801 123 1 5.99
SMAP 135183 427617 55 25 13.13
MSDS 146430 146430 10 1 5.37

4.1   Datasets

We use six commonly used public datasets to demonstrate the effectiveness of our model. The basic characteris-
tics of the datasets are summarized in Table 1. These datasets can be briefly described as follows. 
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	● Server Machine Dataset (SMD): The SMD dataset, introduced by [7], contains time-sequence data col-
lected by 28 different machines, each with 38 metrics. Due to many trivial sequences in the dataset, as 
noted by [15], we use only the nontrivial sequences (i.e., machine-1-1, 2-1, 3-2 and 3-7) in our experi-
ments. The models are separately trained for each model, and the average performance is evaluated. 

	● Secure Water Treatment (SWaT): The SWaT dataset [17] is collected by a water treatment system, which 
ran continuously for 11 days with normal operations for the first 7 days and attacked for 4 days. 

	● Soil Moisture Active Passive and Mars Science Laboratory (SMAP&MSL): SMAP and MSL datasets 
[18] contain the data of surface and subsurface soil moisture, soil moisture profile, and soil moisture 
anomalies collected by NASA. Similar to the SMD dataset, SMAP and MSL have many trivial sequences, 
as noted by [20]; thus, we use only nontrivial telemetry channels (i.e., A4, C2 and T1). 

	● Water Distribution (WADI): Similar to the SWaT dataset, the WADI dataset is collected by the WADI 
testbed [21], which ran continuously for 16 days with normal operations for 14 days and attacked for 2 
days. 

	● Multi-Source Distributed System (MSDS): As a multisource dataset, MSDS contains distributed metrics, 
logs, and tracing data collected by a complex distributed system [22]. 

4.2   Evaluation Metrics 

To evaluate anomaly detection results, we use the precision (P), recall (R), and F1 score (F1), calculated as fol-
lows: 

TP TP P RP ,  R = ,  F1 = 2 ,
TP FP TP FN P R

⋅
= ⋅

+ + +
                                             (32)

where TP, FP and FN denote true positives, false positives, and false negatives, respectively.

4.3   Comparison Experiments 

To demonstrate the effectiveness of the BSAAD model for anomaly detection in multivariate time series, we 
compare it with seven popular network models, including IF [5], DAGMM [8], LSTM-NDT [6], MAD-GAN [9], 
OmniAnomaly [7], TranAD [15], USAD [10], GDN [13] and CAE-M [23]. The Isolation Forest (IF) used in this 
work is from the scikit-learn implementation. The codes of other methods except for DAGMM are open-sourced, 
and DAGMM is reproduced based on the settings specified in [8]. All these models are trained and tested on six 
datasets. Then, the performances for anomaly detection are shown in Table 2. 

DAGMM uses a deep autoencoder Gaussian mixture model for feature space reduction, capturing correla-
tions between different features in the time series. However, its modeling capability for temporal dependencies 
in the time dimension is relatively weak. The LSTM-NDT model performs well on the SMD dataset but exhibits 
poor performance on other datasets. This is attributed to the LSTM-NDT’s use of LSTM structures to model 
the temporal dependencies in the data, without capturing the correlations between different features in space. 
Additionally, its reliance on the NDT thresholding method makes it sensitive to dataset variations, as it cannot 
dynamically set thresholds based on sequence changes [15]. The POT method used in BSAAD fits the distribu-
tion of extreme values in the sequence, allowing it to dynamically set thresholds adaptively. Fig. 4 illustrates the 
visualization of anomaly detection in the first dimension of the SMD test set, indicating that the POT method 
can accurately set anomaly thresholds. MAD-GAN and USAD share similar drawbacks, limiting their anomaly 
detection performance. In contrast, BSAAD employs a multi-head attention mechanism to encode time series at 
both temporal and spatial levels, capturing both temporal dependencies and spatial correlations in the data, effec-
tively enhancing the anomaly detection performance of BSAAD.
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Fig. 4. Visualization of anomaly prediction for the SMD test set (machines 3-7, dimension 0) using the BSAAD model

Table 2. Evaluation metrics for anomaly detection on different datasets (P: Precision, R: Recall)

Method	                              SMD                                        SWaT                                        MSL
P R F1 P R F1 P R F1

IF 0.2129 0.9988 0.3374 0.4139 0.9359 0.5740 0.6250 1.0 0.7692
DAGMM 0.7416 0.8957 0.7820 0.9034 0.7897 0.8427 0.7363 0.9999 0.8481

LSTM-NDT 0.8016 0.8947 0.8329 0.9171 0.7213 0.8075 0.5678 1.0 0.7243
MAD-GAN 0.8830 0.7160 0.7598 0.9552 0.7058 0.8118 0.8516 0.9999 0.9199

OmniAnomaly 0.9119 0.8753 0.8914 0.9636 0.7708 0.8565 0.7848 0.9999 0.8794
TranAD 0.9410 0.9136 0.9246 0.9510 0.7704 0.8512 0.9038 0.9999 0.9495
USAD 0.8800 0.9036 0.8890 0.9663 0.7670 0.8552 0.7949 0.9999 0.8857
GDN 0.8142 0.8949 0.8544 0.9697 0.6957 0.8101 0.9293 0.9844 0.9371

CAE-M 0.8913 0.8931 0.9127 0.9644 0.6839 0.8006 0.7862 1.0 0.8769
BSAAD 0.9661 0.9229 0.9419 0.9435 0.8083 0.8707 0.9038 0.9999 0.9495

Method	                            WADI                                       SMAP                                       MSDS

P R F1 P R F1 P R F1
IF 0.0554 0.9999 0.1049 0.4269 0.9999 0.5984 0.8491 0.9974 0.9172

DAGMM 0.4797 0.8296 0.6079 0.8069 0.9999 0.8931 0.9999 0.8026 0.8905
LSTM-NDT 0.2227 0.8296 0.3512 0.8523 0.7326 0.7879 0.9997 0.1852 0.3125
MAD-GAN 0.4545 0.6140 0.5224 0.7974 0.9999 0.8873 0.9999 0.6107 0.7583

OmniAnomaly 0.7745 0.6541 0.7092 0.8009 0.9999 0.8894 0.9999 0.7964 0.8867
TranAD 0.3993 0.8296 0.5391 0.8043 0.9999 0.8915 0.9999 0.8026 0.8905
USAD 0.2096 0.8296 0.3347 0.8139 0.9999 0.8974 0.9999 0.7959 0.8863
GDN 0.2912 0.7931 0.4260 0.7479 0.9833 0.8501 0.9989 0.8026 0.8900

CAE-M 0.3142 0.8013 0.4307 0.8082 0.9433 0.8746 0.9901 0.8392 0.9110
BSAAD 0.7557 0.8296 0.7909 0.8842 0.9999 0.9385 0.9999 0.8790 0.9356

As Table 2 shows, our BSAAD model achieves the best average F1 score for all six datasets among the eight 
models. For example, BSAAD achieves up to 0.0116 and 0.2518 improvements in the F1 score, respectively, 
over the second best TranAD model [15] on the WADI dataset. TranAD can capture long-term correlations be-
tween data points because it applies self-attention to sequences along the time-step dimension; thus, TranAD has 
the second best performance but has poor results on the WADI dataset due to the high sensor dimension. Among 
all the models, the IF model has relatively poor performance on most datasets since it does not utilize temporal 
information. Actually, for anomaly detection, temporal information is essential to exploit temporal trends be-
tween data points. USAD takes a sequence of observations containing short-term temporal information as input 
and thus has good performance on SMAP but performs relatively poorly on complex datasets. OmniAnomaly 
performs well on the SWaT and WADI datasets because it models complex time series data and captures tem-
poral dependencies in time series by GRU. Compared with other models, our BSAAD model not only applies 
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self-attention to time steps but also applies self-attention to sensors, enabling it to capture long-range dependen-
cies from both aspects, which leads to good performance on large-scale datasets (SMD, WADI) in terms of the 
sequence length and number of sensors. 

4.4   Ablation Experiments

To verify the effectiveness of the sensor encoder, focus score, and adversarial training in our BSAAD model, we 
perform ablation experiments using the WADI, SWaT, and MSDS datasets. This is due to the fact that these data-
sets contain sensor dimensions and sequence lengths of different scales (see Table 1). The experimental setup is 
as follows: 

	● Without (w/o) Sensor Encoder: only self-attention along the time-step dimension is applied to the input 
sequences. 

	● Without (w/o) Focus Score: the focus score used to amplify the reconstruction error is discarded, i.e., 
fixed to be a zero matrix. 

	● Without (w/o) Adversarial Training: one decoder rather than the original two decoders is used to recon-
struct the input window. 

The experimental results of F1 score are shown in Fig. 5, which show that removing the sensor encoder great-
ly decreases the F1 score on the WADI dataset and results in slight decreases in the SWaT and MSDS datasets. 
Thus, the sensor encoder helps to improve performance, especially for high-dimensional datasets. After we re-
move the focus score, the F1 score slightly decreases for the three datasets. These results shows that the focus 
score aids in improving the prediction performance. Not using the adversarial training strategy degrades the 
prediction performance most, as indicated by the F1 score on the WADI and SWaT datasets, because adversarial 
training can enhance the robustness of our proposed model.

Fig. 5. The results of ablation experiments

4.5   Sensitivity Analysis

To study the sensitivity of the BSAAD model, we change the ratio of the training set and window length to 
evaluate the performance of the BSAAD model. As the SWaT dataset has relatively moderate dimensions and 
sequence lengths compared to other datasets (see Table 1), the experiments for sensitivity analysis are performed 
on the SWaT dataset. 

Different ratios of the training set (20%-100%) are used to observe the performance variation for the BSAAD 
model in terms of the F1 score. For comparison, we also use other models to perform the experiments on the 
same ratio of the training set. As Fig. 6 shows, the BSAAD model is relatively insensitive to changes in the size 
of the training dataset. Because of the usage of the time window and transformer architecture, the BSAAD model 
can fully exploit temporal trends, which leads to relatively stable performance. 

As the window length is changed, the F1 score of BSAAD and its ablated versions are shown in Fig. 7 
BSAAD and its ablation version (w/o sensor encoder) have close performance on SWaT dataset for diffrent win-
dow lengths, whereas the performance of BSAAD on WADI dataset surpasses that of its ablated version by a sig-
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nificant margin (see Fig. 5(a)). This is because the sensor encoder facilitates modeling high-dimensional datasets. 
Moreover, a large window does not improve the performance of anomaly detection since a short anomaly, espe-
cially a point anomaly, may be undetected due to being hidden within many data points, while a window that is 
too small would no longer represent the short-term temporal trends in the time series and fail to detect anomalies. 
For comprehensive consideration, a window length of 10 is a reasonable selection for the BSAAD model. 

Fig. 6. F1 score with different training dataset ratios on SWaT dataset

Fig. 7. F1 score with different window lengths on SWaT dataset

4.6   Validation of the Effectiveness of the POT Method 

In practical engineering applications, the selection of anomaly thresholds is crucial for improving anomaly de-
tection performance. To validate the effectiveness of the POT method proposed in this paper, we first enumerate 
all possible anomaly thresholds, denote the best F1 score as  F1best ​, and compare it with the F1 score obtained 
by setting anomaly thresholds using the POT method, denoted as  F1POT . The comparison results are presented 
in Table 3. From Table 3, it can be observed that the F1 score obtained through the POT method is only slightly 
lower than  F1best (0.0029 to 0.0131). This indicates the effectiveness of setting anomaly thresholds through the 
POT method.

Table 3. Comparison between the F1 score obtained through the POT method and F1best

Evaluation metrics SMD SWaT MSL WADI SMAP MSDS
F1POT 0.9419 0.8707 0.9495 0.7909 0.9385 0.9356
F1best 0.9550 0.8736 0.9537 0.8012 0.9482 0.9401
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4.7   Training Time 

In this section, we evaluate the computational performance of the BSAAD model by assessing its training time 
and comparing it with benchmark models. Table 4 presents the average training time for a single iteration of 
BSAAD and benchmark models on different datasets. In comparison to the benchmark models, BSAAD utilizes 
a Transformer-based spatiotemporal self-attention mechanism to extract spatiotemporal dependencies in parallel. 
This allows for simultaneous consideration of information from other neurons when processing each neuron, 
enabling parallel computation. Not only does BSAAD enhance performance in unsupervised anomaly detection, 
but it also reduces training time compared to the baseline models, which has a comparatively inferior overall per-
formance.

Table 4. Training time in seconds per epoch on each dataset

Models SMD SWaT MSL WADI SMAP MSDS
DAGMM 204.05 62.51 18.46 169.34 23.19 114.12
LSTM-NDT 284.17 70.43 32.77 286.79 28.36 389.66

MAD-GAN 155.56 106.44 28.52 287.60 39.08 340.10

OminAnomaly 134.48 129.67 29.45 273.28 138.80 302.83

TranAD 38.42 54.77 8.97 112.14 4.67 17.49

USAD 85.97 106.32 28.39 239.47 30.31 34.82

GDN 309.94 2128.71 90.93 3947.02 65.32 476.37

CAE-M 983.09 1844.91 602.84 4534.53 194.11 409.14

BSAAD 33.42 43.57 11.58 96.41 9.84 14.81

5   Conclusion

In this paper, we propose the BSAAD model by using biself-attention in multivariate time series to implement 
unsupervised anomaly detection. The BSAAD model contains two key components, i.e., a sensor encoder and a 
time-step encoder, which capture the correlations along the sensor dimension and time-step dimension, respec-
tively. The two-phase training allows the BSAAD model to amplify the reconstruction error, and adversarial 
training improves training stability. The incorporation of the POT adaptive threshold method further enhances 
the performance of STSAAD. In comparison to traditional fixed-threshold methods, the POT approach dy-
namically sets the threshold based on the data distribution, contributing to the improved robustness of anomaly 
detection. We use six public datasets to test and verify the performance of the model. The results show that the 
BSAAD model outperforms some state-of-the-art methods in terms of the F1 scores. Specially, BSAAD achieves 
an improvement of 0.0173 for F1 score on WADI datasets.  With  lower training times compared to the baseline 
methods, BSAAD proves to be an ideal choice for modern industrial systems where accurate and rapid anomaly 
predictions are essential.

For the future, we will consider applying model-agnostic meta learning (MAML) to our model to achieve bet-
ter performance on small-scale datasets. Additionally, we aim to explore the application of cost-benefit analysis 
for each model component based on the deployment setting, aiming to avoid expensive computations.
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