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Abstract. Recent advances in feature-based knowledge distillation have shown promise in computer vision, 
yet their direct application to medical image segmentation has been challenging due to the inherent high in-
tra-class variance and class imbalance prevalent in medical images. This paper introduces a novel approach 
that synergizes knowledge distillation with contrastive learning to enhance the performance of student net-
works in medical image segmentation. By leveraging importance maps and region affinity graphs, our method 
encourages the student network to deeply explore the regional feature representations of the teacher network, 
capturing essential structural information and detailed features.This process is complemented by class-guid-
ed contrastive learning, which sharpens the discriminative capacity of the student network for different class 
features, specifically addressing intra-class variance and inter-class imbalance. Experimental validation 
on the colorectal cancer tumor dataset demonstrates notable improvements, with student networks ENet, 
MobileNetV2, and ResNet-18 achieving Dice coefficient score enhancements of 4.92%, 4.34%, and 4.59%, 
respectively. When benchmarked against teacher networks FANet, PSPNet, SwinUnet, and AttentionUnet, our 
best-performing student network exhibited performance boosts of 2.45%, 5.84%, 6.58%, and 3.56%, respec-
tively, underscoring the efficacy of integrating knowledge distillation with contrastive learning for medical 
image segmentation.
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1   Introduction

Medical image segmentation is the process of dividing the structures or tissues in medical images into different 
regions, to make it easier to analyze the images. All these segmentations help doctors and researchers to identify 
the location of the lesion, the severity of the lesion if any, the placement of the organ, etc. However, medical im-
age segmentation is more difficult than semantic segmentation of natural scenes, with more complex lesion parts, 
varying sizes, and unknown unknowns. Deep learning technologies(especially Convolutional Neural Networks 
(CNNs)) have been applied to tackle these problems in medical image segmentation tasks. Moeskops et al. [1] 
first use this in early applications and developed a CNN for segmentation of six tissue classes in MRIs, pectoral 
muscles in MR breast images and coronary arteries. Alakwaa et al. [2] envisaged an automatic 3D-CNN-based 
framework to detect lung cancer by segmenting nodules in 3D CT scans. Vardhana et al. [3] applied hardware-ac-
celerated CNNs to various lung CT images, brain MRI, X-ray images, and introduced CNNs to biomedical image 
segmentation. These studies provide examples of possible usage of deep learning in medical image segmentation 
and the robustness of deep learning in dealing with these challenging tasks.

The introduction of the U-Net architecture was a milestone for medical image segmentation, opening a se-
ries of creative attempts where eventually more dense connections, new feature extractors and applications of 
3D convolutional kernels were used. This allows the RA-UNet [4] model, for instance, to combine an attention 
mechanism with the U-Net architecture [5]. U-Net++ [6]: A Nested U-Net Architecture (U-Net in U-Net) im-
plemented a dense skip pathways through the layers of the encoder and decoder sub-networks to alleviate the 
semantic gap between the respective feature mappings. Other studies recognize that it is necessary to capture 
spatial continuity information, which directly increases the dimensionality of conventional kernels from 2D to 
3D, like the networks 3DU-Net [7] and 3DU2-Net [8]. However, these methods come at the price of increasing 
computational costs and slower deployment. Therefore, to compensate for this, several researchers have studied 
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lightweight networks, such as Enet [9] and ERFNet [10], which are suitable for real-time semantic segmentation, 
applications [11]. The problem is that we regularly simplify models to allow the model to train more quickly, and 
in doing so, we can often compromise the quality of the model itself.

As an approach to address the challenge of degrading model performance in lightweight networks, several 
techniques, such as model compression [12], transfer learning [13], and knowledge distillation (KD) [14], have 
been proposed in the literature. Of these, KD has been one of the most popular and successful methods in aca-
demia and industry. This improves the student model learning as it considers soft labels generated by a trained 
teacher model as an additional information to prevent overfitting [15]. In the literatures of the existing KD frame-
works, Mean Teacher [16] is a popular forms and is being used in the field of medical image classification. A 
moving average over time updating the student model gives rise to feature distributions and predictions that are 
forced invariant to various perturbations, e.g. higher generalization ability with the small data, a stronger model 
sensible to noise. consequently, the secret to training highly accurate student networks is to distill knowledge of 
the teacher as much as possible. Relatively few works integrating efficiency studies with KD technology have fo-
cused on medical image segmentation problems in the past few years. Previous works have applied KD to chest 
X-rays [17] and 3D optical microscope images [18]. Most of these studies extract single sample-level knowledge 
from the teacher model, e.g. output logits [19] or feature maps [20]. Recently, Liu et al. [21] directed extraction 
toward specific small groups of samples The majority of current KD methods [20-25] were mainly borrowed 
from computer vision area and have not effectively addressed the following challenges in the medical domain. 
Medical datasets have larger intra-class variation and inter-class similarity, compared to data in the natural do-
main according to table_COUNTERS, row_HEP-2 Cell Strip Image Classification. In particular, two kinds of 
diseases could look so close to each other, in color, shape, texture, et. as opposed to two types of natural images 
(dogs vs cats case), overpowered softer attention mechanism for this task. Secondly, the medical image datasets 
tend to have severe class imbalance due to the nationwide prevalence and severity of some diseases (e.g.TB) or 
rarity of classes(e.g. ARDS). This means that what is being learned currently could be skewed towards the ma-
jority class and be less representative of the minority class.

In this paper, to solve the problem of high intraclass variance and the class imbalance in the medical imag-
es, we propose a method integrating the information distillation and contrastive learning, termed as Positive-
Negative Contrastive Distillation Network (PNCD). This strategy tries to utilize the relevant information learned 
by sophisticated medical image segmentation networks for specialized purpose and adapt the established knowl-
edge into a portable student network. The method mainly involves the following four modules:Region Matching 
Distillation (RMD), Region Affinity Distillation (RD), Positive-Negative Sample Contrastive Distillation 
(PNSCD), and Prediction Maps Distillation (PMD). These modules combine to make a good knowledge transfer 
from teacher network to student network.

The main idea of the RMD and RD modules is to provide a dedicated mechanism to transfer information 
in the intermediate layer importance maps and region affinity graphs from the teacher network to enhance the 
semantic understanding capability of the student network. The PNSCD module uses a class-guided contrastive 
manner to improve the feature discrimination of the student network. A PMD module then buzzes the student 
network to follow the final output of the teacher network, speeding up learning. Furthermore, it also gives a guar-
antee of the student network essentially by adding the loss of the segmentation task. To summarize, the major 
contributions of the paper are as follows:

(1) This paper introduces an architecture based on knowledge distillation, the Positive-Negative Contrastive 
Distillation Network (PNCD). It relies on four key modules: Region Matching Distillation (RMD), Region 
Affinity Distillation (RD), Positive-Negative Sample Contrastive Distillation (PNSCD), and Prediction Maps 
Distillation (PMD). By integrating knowledge distillation and contrastive learning, combined with the low train-
ing cost characteristics of lightweight models, it achieves relatively high accuracy in medical image segmenta-
tion.

(2) This paper designs a new Positive-Negative Sample Contrastive Distillation (PNSCD) module, which, by 
designing positive and negative samples for medical images, enables the student model’s features to exhibit high-
er intra-class similarity and inter-class variance.

(3) This paper demonstrates the feasibility and reproducibility of the method by conducting robust experi-
ments on a private medical image dataset and thoroughly considering ablation factors.

In this paper, we have organized the paper as follows: In Section 2: we discuss related work related to knowl-
edge distillation and contrastive learning. Section 3: Principles of PNCD Structure Specifics To quantitatively 
evaluate the effectiveness of PNCD structure, we conduct comprehensive experiments in Section 4. Finally, 
Section 5 is used to conclude the paper.
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2   Related Work

2.1   Knowledge Distillation 

Knowledge Distillation (KD) [14] is a popular technique that enables complex and larger networks to train light-
weight models to improve their performance without sacrificing on efficiency. As KD was first developed with 
the main idea of transferring the output, lately, there is a growing interest in the image segmentation community 
to distil feature and structural information as well. In this domain, He et al. [26] discussed a method to adapt 
knowledge from transferring long range dependencies, in semantic segmentation on natural images. It was the 
first successful demonstration that complex long-range relations exist as more than hand-crafted features in deep 
networks and can be exploited to improve segmentation tasks. Liu et al. [27] proposed a structured knowledge 
distillation to transfer pixel similarity to reinforce segmentation performance. Moreover, Xu et al. [28] investigat-
ed whether knowledges could be transferred by utilizing the different size of models for CT liver segmentation 
with a Growing Teacher Assistant Network (GTAN) strategy. Furthermore, Li et al. [29] introduced mutual KD 
to boost cross-modal segmentation as there are much discrepancies between CT and MRI, thereby demonstrating 
the necessity of translating prior knowledge to mitigate disparities between different imaging modalities. Qi et 
al. [30] proposed knowledge adaptation using the same teacher and student model networks and embedding the 
coordinate distillation that mixes channel and spatial features. Knowledge adaptation would enhance the transfer 
of information, thereby unfolding new perspectives on the brain segmentation tasks.

As the research continues, much more emphasis has been placed in this direction to find the best similarity 
between the features each of the teacher and the student model features. For example, He et al. [26] proposed 
an approach with an affinity distillation module which computes non-local interactions over the whole image to 
model long-range dependencies and then uses a distillation loss term to enforce the similarity between teacher 
and student features, thus facilitating the fusion between foreground and background. Liu et al. [31] proposed 
pixel-wise distillation and structured stacked distillation based on intermediate feature learning essentially two 
distillation schemes, pairwise distillation (pairwise-wise similarities are improved) and holistic (GANs that is 
used to improve global information). These two approaches complement each other and perform better than 
tradition model-based performance. Qin et al. [32] proposed a new module, importance mapping distillation, to 
rescale feature maps of a student to those of a teacher to match them even at the pixel level, thereby overcom-
ing blurry boundaries in medical imaging and encoding detail internal to each semantic region for transfer. Ji 
et al. [33] aimed at transferring the structural and statistical knowledge of the texture from teacher networks to 
student networks by using contourlet decomposition and a novel texture intensity normalization module in early 
regions to allow the VGG-16 CNN model to capture more texture information and present it better. Wang et al. 
[34] introduced a technique to apply this idea on the missing modalities for medical imaging segmentation task 
and further in other domains using Dice Score as evaluation metric. Qin et al. [32] present an effective medical 
image segmentation method using knowledge distillation. It transfers some regional knowledge of teacher to the 
student, which speeds up the learning speed and improves the practical application efficiency. It provides a novel 
method for medical image analysis.

2.2   Contrastive Learning

Over the past couple of years, self-supervised learning, particularly in the to the point contrastive learning meth-
ods have made a lot of progress in computer vision applications and surpassed the performance of conventional 
supervised learning. Contrastive learning is used to learn representations with higher mutual information of 
different samples by pushing positives closer while pulling negatives further. This approach has been broadly 
utilized in different computer vision tasks [35-38], and a common objective of contrastive learning methods in 
the self-supervised training phase is to learn strong feature extractors that can be transferred later to downstream 
tasks [39-40]. For these methods, positive sample pairs are generated using data augmentation techniques [41-
42], and a large number of negative sample pairs are essential for their success. Contrastive learning has been 
successful in the medical imaging realm. Chaitanya et al. [39] designed global and local contrastive losses based 
on structural similarities in 3D medical data, and utilized strategies rooted in the 3D volumetric medical image 
structural similarities to learn local areas of medical images, which offers a fresh perspective to choose positive 
and negative samples. Contrastive learning applied to Fully Supervised Semantic Segmentation. Wang et al. [43] 
presented a contrastive learning learned in pixel space, that effectively enhances the pixel-wise metric learning 
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by encouraging the pixel embeddings from the same class to be closer, compared to those from different classes. 
You et al. [44]  presented an approach towards semi-supervised learning of anticorrelation in anatomical percep-
tion with contrastive distillation on medical images, updating an appropriate sample correction for the sample 
identification teaching set based on the anatomy or semantics for the better learning of the standard boundaries. 
Lee et al. [45] proposed a semantic-aware contrastive learning framework to learn the embedding that pulls two 
pixel embeddings of the same class closer and compute the similarity between two pixel embeddings more ef-
fectively, facilitating the multi-object segmentation on medical images. Li et al. [46] to solve the class imbalance 
problem in medical dataset a hierarchical instance comparison learning is presented. The technique addresses the 
issue of data imbalance and under-labeling in the data by learning from the majority class, in order to detect the 
minority class of diseases in data.

In this paper, we use contrastive loss to guide mutual learning between the student and teacher networks in 
the knowledge distillation model, aiming to maximize the student network’s ability to learn from the teacher net-
work.

3   Methodology

In this section, we will elaborate on the said method. The overall architecture designed in this paper is shown in 
Fig. 1. Blue structures correspond to the teacher network and yellow structures correspond to the student net-
work. The input is a W H×  grayscale medical image, and both teacher and student networks output a segmenta-
tion result in the same size. Four modules, i.e. Region Matching Distillation (RMD), Region Affinity Distillation 
(RD), Positive-Negative Sample Contrastive Distillation (PNSCD), and Prediction Maps Distillation (PMD) 
modules bridge the teacher and student structures with the knowledge distillation mechanism builtinto the meth-
od. RMD, RD, and PNSCD modules export intermediate information by building salient maps, region affinity 
graph, and creating class-guided contrastive formulation, respectively. The PMD Module forces the student 
network to replicate the teacher’s final output, hastening the model’s learning for segmentation. Subsequently, a 
loss specific to the segmentation task was introduced. This way, the student network can focus on segmenting the 
student network and the teacher network can extract experience. This will detail each module later on.

Fig. 1. The framework of Positive-Negative Contrastive Distillation Network (PNCD) module
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3.1   Region Matching Distillation

Receiving knowledge from segmentation results is essential, but even more fundamental is the ability to learn 
segmentation process from the teacher network. The fundamental problem is that, two neural networks are not 
having same feature sizes, the feature sizes varies between the teacher and student networks. We therefore pres-
ent an Region Matching Distillation (RMD) module for learning to transform the region matching across neural 
networks. The Detailed framework of this module is expressed in Fig. 2. 

Fig. 2. The framework of Region Matching Distillation (RMD) module

More concretely, for a feature map  Es  of size s s sc w h× ×  extracted from any layer of the student network and 

an associated feature map Et of size t t tc w h× ×  extracted from the teacher network, we first perform a rescaling 
operation to make the spatial scales of the student and teacher feature maps  Et . This step can be defined as fol-
lows:

.                                                           (1)

Whether unpooling or pooling are utilized depends on the spatial size relationship between  Es  and  Et : re-
spective smaller or larger or unaltered, the method  f (∙)  selected.

For a feature map of size C W H× × , we create an importance aggregation map w hM R ×∈  by summing the 
absolute value of ε  along the channel dimension  C . This process is defined as:

.                                                                     (2)

Where iε  represents the ith matrix of  ε  along the channel dimension C . 
Therefore, knowledge can be transferred by outputting its importance matching map, and the loss function for 

this module is as follows:

.                                                       (3)

.                                                     (4)

s
ie  and t

je  is the feature map extracted from the ith layer of student network and jth layer of teacher network, 
s
iM  and t

jM  is the importance matching map. P  is the index pair set for all positions with the same embedding 
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size. 1
⋅  and 2

⋅  are the  l1  and  l2  norms, normalized.

3.2   Region Distillation

The crux is how to propagate the implicit structural information extracted by deep convolutional layers with 
large receptive field from teacher to student so as to enhance the student segmentation model performance even 
more. Motivated by this view, we introduce the Region Distillation (RD) module to transfer relational knowledge 
of areas from the teacher network to the student network.

We use labeled segmentation masks, including first-level feature maps extracted from specific regions of each 
type of semantic class Subsequently, we compute the similarity contrast values of regions for similarity between 
regional information. The structure of the RD module shown in Fig. 3. (Note that the RD module also take an ex-
tra input which is the auxiliary region mask in the Fig. 3.) 

Fig. 3. The framework of Region Distillation (RD) module

That is more formally from a size feature map  ε  represented by, say, some intermediate layer, of size 
C W H× × . Because the feature map is not the same size as the input image, we need to resize the binary label 
mask from W H×  to w h× . Moreover, then for a semantic class  i , we compute the region vector of  Ri  by av-
eraging all features of length c in  ε . Here is formula that can be used for this process:

.                                                                 (5)

Where  i = 1, 2, …, Ni  is the ith pixel in the jth effective area of the ith mask. Finally, the regional contrast is 
obtained as:

.                                                             (6)

Where  n  represents the total number of possible class pairs. In the end, the loss for regional affinity is com-
puted using the following loss function given the regional contrast values s

rcV  and t
rcV  of the student and teacher:
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.                                                       (7)

Where  p  is the type of norm. P  denotes the index pairs set for positions sharing identical embedding sizes.

3.3   Positive-Negative Sample Contrastive Distillation

By incorporating contrastive learning into the traditional KD paradigm, Contrastive Representation Distillation 
(CRD) has obtained impressive distillation performance. To be specific, it obviously pulls away images between 
different classes, but it falsely separates images even from the same class to far distance in feature space and it 
grows the intra-class variance. To address this deficit, we propose a new Positive-Negative Sample Contrastive 
Distillation (PNSCD). In particular, PNSCD treats a pair of samples of the same class as a positive pair and 
moves the representations of them closer together, while a pair of image-level samples of different classes as 
negative pairs and separates the representations of them as illustrated in Fig. 4. Further, the feature embeddings 
of the teacher and the student are projected on the  gs  and  gt  through  Proj(∙) , respectively, and  gs  and  gt  are 
normalized to the unit hypersphere via  L2  normalization to measure their similarity through the dot product. The 
loss for PNSCD is defined as:

.                      (8)

Where τ  is the temperature, which controls the concentration level of classes,  LPNSCD , M  is the size of the 
dataset. In this case,  LPNSCD  is minimized and therefore the student model is being trained to produce representa-
tions which are closer to the positive samples and further from the negative samples in the teacher model.

 Fig. 4. The framework of Positive-Negative Sample Contrastive Distillation (PNSCD) module
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3.4   Prediction Maps Distillation

Knowledge distillation [14] (Hinton et al., 2014) aims to make the student network replicate the teacher’s final 
output, utilizing metrics such as cross-entropy and Kullback-Leibler (KL) divergence.In this paper, a Prediction 
Maps Distillation (PMD) module is introduced, and the main approach targets to do this by calculating the differ-
ences among the final layers. PMD further improves the teacher and student interrelationship by comparing the 
output segmentation maps of the two models to strengthen the student network from a spatial perspective. In this 
module, a pixel-aligned approach is employed, which compares the results on corresponding pixel locations of 
the teacher and student networks. Next, the Kullback-Leibler divergence function is used to measure the differ-
ence between the two to include all pixel dependencies. This computes the loss between all pixel pairs of the two 
networks at the same spatial location, and finally adds the loss to the total loss of the module. The loss function is 
given by the following:

.                                                         (9)

Where, N W H= ×  calculates pixel count in a segmentation map. The Kullback-Leibler divergence function 
is  KL(∙) . where s

ip  and t
ip  represent the probability for the ith pixel in the segmentation maps from the student 

and teacher networks respectively.

3.5   Training Process

Based on the PNCD method architecture diagram and combining the loss functions  LRMD ,  LRD ,  LPNSCD , and 
LPMD , the total loss function  Losstotal  for the PNCD is as follows:

.                  (10)

Where Lossseg  is the general segmentation loss function, the hyperparameter α  is set to 0.1, and 1β , 2β , and 

3β  are all set to 0.9. In our experiments, it has been proven that the fluctuation of any single value is not sensi-
tive. During the training process, we first utilize a pretrained teacher network, then minimize the total loss func-
tion  Losstotal   to update the student network’s parameters.This process includes not only the direct distillation 
comparing the outputs of the teacher and student networks but also involves the effective extraction and com-
parison of low-level and high-level features between them. Theoretically, we find that one can utilize any of the 
features of equal dimension for distillation, however, we also find that the selection of a few classes of low-level 
and high-level features that represent most of the feature space is more effective. It is noteworthy that the teacher 
network portion and the distillation modules are only used during the training phase and will be discarded during 
the testing phase. This means that the student network can predict independently after training is completed, 
without reliance on the teacher network or additional distillation mechanisms. This design not only ensures the 
lightweight and efficiency of the student network during inference but also demonstrates that carefully designed 
distillation strategies can significantly enhance the performance of the student network.

4   Experimental Results and Analysis

4.1   Setup

We experimented on modern segmentation architecture that mimicking a teacher network (DCSAU-Net) and a 
few lightweight networks (ENet) from an open-source community as a student network to show the efficiency of 
our distillation method. We can train these architectures separately for which we followed there official settings 
for network structures and hyperparameters. We optimized Adam with beta1 (0.9) and beta2 (0.999) for the dis-
tillation process and training all segmentation networks in experiments. Our initial learning rate was 0.001, and 
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we annealed the learning rate to 0.00001 using a cosine annealing scheduler. And data augmentation techniques 
such as random rotation and flipping. The actual MRI images that served as an input were 512 × 512 in dimen-
sions, and another common pre-processing involved masking. The models to all the experiments are implement-
ed with the PyTorch framework for training in a standard experimental setting. We failed to achieve all networks 
converge, so max trained 100 epochs.

4.2   Dataset

We gathered a novel dataset of 375 colorectal cancer tumors for this study, which included a series of MRI im-
age datasets of colorectal cancer tumors from 2013 to 2020. This dataset was then split into training, testing and 
validation datasets that were used to train and evaluate the network. The main purpose to create this dataset is to 
collect the data for the region detection and segmentation of colorectal cancer. With this aim in mind, we have 
developed the methods presented in this paper and applied them to carry out these tasks before transitioning to 
clinical applications.

4.3   Evaluation Metrics

Dice index is widely used in evaluating medical image segmentation results. Since the Dice scores in our exper-
iments are linked to segmentation tasks, it is important that methods are implemented in a practical and useful 
way. The per-case Dice metric function is defined as:

.                                                            (11)

Where  P  and  G  are the predicted and ground truth masks of the volumetric tumor, respectively. 
In addition, two more metrics: Volume Overlap Error (VOE) and Relative Volume Difference (RVD) for vol-

umetric overlap and annotation differences, other than Dice, which is the main segmentiation metric presented, 
were also introduced. Here is the functions of VOE and RVD.

.                                                         (12)

.                                                            (13)

4.4   Experimental Results

To validate that the proposed method is effective training and the trained method through distillation of number 
of different teacher and student networks as the first step. As teacher network structures, more complicated seg-
mentation works, e.g. RA-UNet, DCSAU-Net, and UNet++ were used. In addition to the baseline and the exist-
ing light-weight models (ENet, MobileNet V2, ResNet-18), the student networks were some of the commonly 
used throughout those years. Following that, we conducted ablation experiments to validate each component and 
several largely adopted segmentation network structures which are employed as teacher networks in the distil-
lation framework. Ideally, we compared them with the performances of the top student models as a benchmark 
for our method. Lastly, we will also look into the modules of our approach and the hyper parameters in the equa-
tions.

Main Experiments.  After that, we use the distillation method proposed in this paper to dozens of teacher-stu-
dent network pairs and verify it on our own dataset. The inconsistency of both number of upsampling and downs-
ampling layers changes feature dimensions during the extraction of intermediate features. Therefore, we selected 
the first (low-level feature) and last (high-level feature) pairs embedding as well with the same sizes to feed as 
input in our distillation modules.
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In this section of the experiment, we used the traditional medical segmentation model such as RA-UNet, a 
DCSAU-Net model, and the more relationship UNet++. Results are summarized in Table 1 for Dice, RVD, and 
VOE segmentation evaluation criteria (best results in bold), with the number of parameters in millions marked 
as  M . The results indicated that with the help of teacher networks that have performed the best, all three student 
networks were subjected to significant improvements.

Table 1. Cross-experimental results on the PNCD method

Method Dice RVD VOE #Params (M)
Teacher

T1: DCSAU-Net 0.8906 0.1690 -0.0019 6.3

T2: RA-Unet 0.8501 0.1714 0.0034 22.1

T3: Unet++ 0.8182 0.1755 -0.0093 20.6

ENet 0.8074 0.1756 0.0104

0.353
ENet+T1 (ours) 0.8566 0.1710 -0.0078

ENet+T2 (ours) 0.8270 0.1736 0.0120

ENet+T3 (ours) 0.8125 0.1766 -0.0134

ResNet18 0.7783 0.2243 0.0509

11.2
ResNet18+T1 (ours) 0.8143 0.1814 0.0329

ResNet18+T2 (ours) 0.8031 0.1917 0.0388

ResNet18+T3 (ours) 0.7884 0.1804 0.0427

MobileNetV2 0.7810 0.1993 0.0398

2.2
MobileNetV2+T1 (ours) 0.8344 0.1745 0.0154

MobileNetV2+T2 (ours) 0.8123 0.1896 0.0198

MobileNetV2+T3 (ours) 0.8014 0.1842 0.0210

As we can see in our results with several student networks trained, all of them benefited from their more pow-
erful teacher networks, by employing our knowledge distillation method. Our approach is well-suited for med-
ical image segmentation problems. The Dice coefficient scores for colorectal cancer tumor segmentation were 
improved by 4.92% (0.8566), 4.34% (0.8344) and 4.59% (0.8243) respectively over student networks, ENet, 
MobileNetV2, and ResNet-18. Among them, the ENet had the best improvement. In following experiments, 
ENet will be compared with other models.

Comparative Experiments.  To demonstrate our model holistically we compare our learned student model 
against FANet, PSPNet, SwinUNet and AttentionUNet, which are classical network employed as teacher net-
works in the field of knowledge distillation. These two years ago we started with these selected networks, and 
they have been pioneers teacher networks doing knowledge distillation. Similarly, we picked DCSAU-Net as the 
teacher network for our chosen ENet network. Table 2 indicates experimental results with the best performance 
highlighted by a thick font style.

Table 2. Performance comparison between our method (PNCD) and current mainstream models used as teacher networks

Method Dice RVD VOE
FANet 0.8321 0.1708 0.0082
PSPNet 0.7982 0.1755 -0.0093

SwinUnet 0.7908 0.1742 -0.0083
AttentionUnet 0.8210 0.1834 0.0110

ENet (ours) 0.8566 0.1710 -0.0078
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This table clearly demonstrates that the Dice of the student model learned through our distillation framework 
is much higher than any of those of networks used as teacher models in other distillation frameworks. In particu-
lar, with comparing to FANet, PSPNet, SwinUnet and AttentionUnet, our student model achieved a performance 
increase of 2.45%, 5.84%, 6.58% and 3.56%, each. This result can better reflect the striking superiority of our 
proposed PNCD framework on our colorectal cancer tumor dataset built by us. Also, According to the visualisa-
tion results in Fig. 5. in the top row, since teacher network for the ENet network is DCSAU-Net, pixel-level seg-
mentation map, we represent the background area in black and target area in green. Now, in Fig. 5. We can con-
firm ours being a superior method in terms of handling the colorectal cancer tumor dataset. By visualized cases, 
we find that in complex scenarios, our method can better approximate the ground truth segmentation and predict 
the lesion correctly when compared with other teacher models, which even outperforms other teacher models.

Fig. 5. Results of four sets of comparative experiments extracted from the dataset

Ablation Experiments.  We performed the ablation experiments to carefully investigate the impact of each 
module in helping the student network better learn the knowledge from the tumor data of the colorectal cancer. 
The first three main contributions in this paper are the Region Matching Distillation (RMD) module, Region 
Distillation (RD) module, Positive-Negative Sample Contrastive Distillation (PNSCD) module, and Prediction 
Maps Distillation (PMD) module. Table 3: The Dice coefficient for colorectal cancer tumor, and for the this 
dataset other evaluation metrics, VOE and RVD Full size table Best performance results are highlight in bold. 
Experimental results reveal that the student network’s performance significantly improved with the integration 
of any of these modules, as evidenced not only by a higher Dice coefficient but also by decreased VOE and RVD 
metrics. In addition, the experimental results showed that, when these modules were combined in our method, 
the optimal performance was achieved, which is illustrated in the last row of the experimental table.

In further analysis of the ablation experiments, we detailed the impact of each component on model perfor-
mance. Specifically, we found that the Positive-Negative Sample Contrastive Distillation (PNSCD) module 
played a crucial role in enhancing the performance of the student network. Introducing the PNSCD module alone 
could increase the Dice coefficient score from 0.8074 to 0.8369, achieving a significant improvement of 2.69%. 
When we applied the Prediction Maps Distillation (PMD) module, Region Matching Distillation (RMD) module, 
Region Distillation (RD) module, and PNSCD module together in our distillation architecture, the model’s Dice 
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coefficient score was further improved to 0.8566, a total increase of 4.92%. This result clearly demonstrates the 
positive role of each distillation component in enhancing model performance, especially the contribution of the 
PNSCD module. This not only confirms the effectiveness of our distillation architecture but also highlights the 
importance of considering different modules comprehensively when designing knowledge distillation strategies.

Table 3. Reliability of the components of our method on the dataset

Method Dice RVD VOE
Teacher: DCSAU-Net 0.8906 0.1690 -0.0019

Student: Enet 0.8074 01756 0.0104
+PMD 0.8098 0.1820 -0.0112
+RMD 0.8133 0.1741 0.0113
+RD 0.8114 0.1810 0.0145

+PNSCD 0.8369 0.1698 0.0110
+PMD+RMD 0.8213 0.1723 0.0138
+PMD+RD 0.8310 0.1820 -0.0146

+PMD+PNSCD 0.8369 0.1698 -0.0110
+RMD+RD 0.8376 0.1789 0.0085

+RMD+PNSCD 0.8368 0.1745 -0.0094
+RD+PNSCD 0.8312 0.1723 0.0098

+PMD+RMD+RD 0.8387 0.1760 0.0121
+PMD+RD+PNSCD 0.8412 0.1892 0.0084
+RDM+RD+PNSCD 0.8436 0.1930 0.0113

+PMD+RMD+RD+PNSCD 0.8566 0.1710 -0.0078

Hyperparameter Insensitivity Experiments.  In our study on hyperparameter sensitivity, we not only focused 
on the model’s performance under the optimal values of given hyperparameters but also explored the impact on 
model performance after slight adjustments to these hyperparameters. Specifically, through experimentation, we 
found that the model achieved its best segmentation effect, 0.8566, when the optimal values of the four weight 
parameters in the given loss function,  α,  β 1 ,   β 2 , and   β 3 , were set to 0.1, 0.9, 0.9, and 0.9, respectively, as 
shown in Table 4. When these weights were set to 0, the training process was equivalent to training the original 
network, with bold indicating the best performance result.

Table 4. Experimental results for the component weights of hyperparameters  α,  β 1 ,   β 2 , and   β 3  in  Lossseg 

Method
Weight of components

Diceα β 1 β 2  β 3 
Teacher: DCSAU-Net 0 0 0 0 0.8906

Student: ENet 0 0 0 0 0.8074

ENet
+

PNCD

0.1 0.9 0.9 0.9 0.8566
0.2 0.9 0.9 0.9 0.8433
0.1 1.8 1.8 0.9 0.8124
0.1 1.8 0.9 1.8 0.8269
0.1 0.9 1.8 1.8 0.8398

Notably, after doubling these weight values, we observed some relatively minor performance decreases. Even 
after doubling the four weight parameters  α,   β 1 ,   β 2 , and  β 3  , we could still notice a slight decrease in model 
performance. This suggests that while minor changes in hyperparameters might have some impact on the model’s 
performance, our method is relatively insensitive to the selection of hyperparameters.

Based on these findings, we are inclined to use the best values for hyperparameters in practical applications to 
ensure that the model can achieve optimal performance. Although we also recognize that there may be some flex-
ibility in the choice of hyperparameters, for stable and reliable model performance, we recommend prioritizing 
the optimal hyperparameter values previously proven by experiments in practice. Doing so not only simplifies 
the hyperparameter tuning process but also enhances the reproducibility and stability of the model.
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5   Conclusion

This paper proposes a distillation approach that combines knowledge distillation and contrastive learning, which 
can empower lightweight student networks in mastering formidable medical image segmentation missions. 
Our method, comprising four different novel modules: Region Matching Distillation (RMD), Region Affinity 
Distillation (RD), Positive-Negative Sample Contrastive Distillation (PNSCD), and Prediction Maps Distillation 
(PMD), allows for the deep and efficient transfer of knowledge. The deep intermediate layer information of the 
teacher network is taught to the student network by the student network, not only deepening the understanding 
of the student network about the information of the middle layer of the teacher network, but also improving the 
segmentation accuracy of the student network by means of precise prediction mapping and contrastive learning. 
Furthermore, our approach unlocks a new solution for computationally restricted setting on medical image seg-
mentation, and illuminates the way on combining KD and CL in a broader range of medical image analysis areas.

While our results on specific datasets affirm the effectiveness of the proposed method, the challenges in med-
ical image segmentation are diverse, encompassing various disease types and imaging techniques. Therefore, 
future efforts will focus on assessing the performance of our approach across different medical imaging datasets 
to ensure its broad applicability and effectiveness.
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