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Abstract. Aiming at the problems of missing detection, false detection and poor real-time performance in the 
UAV small object detection of aerial images under the complex background of dim, dense trees and buildings, 
we propose a lightweight YOLO small object detection algorithm with dynamic layer aggregation. Firstly, we 
propose a dynamic efficient layer aggregation lightweight Backbone, and gradient path planning is adopted 
to improve the feature extraction ability for small targets. Secondly, we propose a dynamic Neck with Omni-
Dimensional dynamic convolution. It helps obtain the variability of each dimension and richer context infor-
mation, and reduce the missing rate of the model for small targets. Thirdly, SIoU loss function is designed 
to improve the detection accuracy of small targets and accelerate the convergence of the model. Finally, the 
channel pruning operation is carried out to compress the size of the model without affecting the performance 
of the model. Multi-UAVs detection dataset was constructed to evaluate the performance of the proposed 
model. Compared with the baseline YOLOv5, mAP@0.5 of the proposed model improved by 49.2%, which 
means its good performance in detecting small targets under complex background environments. And FPS 
reaches 78.236, meeting the requirements of real-time detection.
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1   Introduction

Target detection based on UAV (unmanned aerial vehicles) aerial images refers to the autonomous identification 
of vehicles, drones, obstacles and other targets in the video images captured by a visual camera on the UAV plat-
form, and then subsequent tasks such as flight path planning and obstacle avoidance decisions can be carried out 
successively. It has been widely used in many fields such as UAV exploration [1], visual obstacle avoidance [2], 
and traffic supervision [3].

As a basic problem of computer vision, object detection has been extensively studied. Due to the rapid devel-
opment of deep learning, object detection methods based on deep learning have gradually replaced the traditional 
object detection methods and become the mainstream methods at present. According to whether there is a target 
candidate box generation stage, the algorithm is mainly divided into two categories: the two-stage network rep-
resented by R-CNN [4] and the single-stage network represented by SSD [5] and YOLO [6]. Compared with 
the two-stage detection algorithm [7], the single-stage detection algorithm tends to have lower accuracy but 
faster detection speed [8]. Among the single-stage algorithms, SSD method is a multi-frame prediction method 
[9], which uses the method of multi-scale feature graph to detect objects and has good detection performance. 
However, the calculation cost of this method is high. YOLO uses the global information of images to make pre-
dictions [10].

Based on this, many scholars have proposed an optimization algorithm for object detection from the UAV per-
spective. To solve the problems of objects scale change and background interference, Wang et al. [11] extracted 
scale specific information by using parallel deconvolution spatial pyramid pool, improved attention mechanism 
by using multi-path residual module and CBAM module. To improve the problem of information loss during 
down-sampling and effectively improve the average detection accuracy, Zhang et al. [12] introduced spatial 
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depth convolution blocks and added small object detection heads. To solve the occlusion problem, Liu et al. [13] 
introduced mosaic data enhancement, cross-small batch normalization and self-adversarial training to YOLO 
network, improved the performance of object detection and tracking. To solve the problem of mesoscale trans-
formation of marine vessel surveillance of UAVS, Cheng et al. [14] used the dynamic convolution method and 
introduced ConvNeXt to improve the network, which improved both detection speed and detection accuracy. To 
solve the occlusion problem in UAV detection and tracking, Yang et al. [15] introduced DiOUS-NMS and add-
ed CBAM to increase network feature extraction, reducing the problem of missed detection and false detection 
caused by occlusion. To solve the problem of low detection accuracy of multi-scale targets, Lu et al. [16] added 
a small target detection layer and used K-Means++ clustering algorithm and optimized the size of prior frames. 
To solve occlusion problem, Li et al. [17] build an occlusion guided multi-task network and use an occlusion 
decoupling head to replace the conventional detection head, thus improved the detection ability of occluded 
target. To solve the difficulty of detecting small targets of UAVs, Chen et al. [18] introduced an adaptive fusion 
mechanism to improve the fusion mode of deep and shallow features. To improve the detection accuracy of UAV 
images, Sahin et al. [19] improved the YOLO network structure by increasing the number of prediction layers of 
the YOLO model and integrating Transformer method. To solve the problem of dense small and medium targets, 
Cao et al. [20] integrated lightweight GhostConv method into YOLO, and deleted the large object detection head 
to obtain a high detection accuracy of small targets. To improve the dense small targets detection performance in 
complex backgrounds, Jia et al. [21] added CA mechanism to the Backbone YOLO model, extracted important 
features by embedding location information, enhanced the regression and positioning capabilities of the model, 
and improved the detection accuracy and robustness of the model. 

It can be seen that although there have been some research results on the detection of multi-small targets from 
the perspective of UAVs, most of the current UAV target detection algorithms can hardly meet both real-time and 
accuracy due to the scale change, light transformation, small target size, interference from background and other 
problems in the images captured by UAVs when flying in the air. Moreover, the hardware condition of the drone 
platform is limited by various factors, thus the computing power that the UAV platform can carry is limited, 
which makes the object detection under the perspective of UAV more difficult. Therefore, aiming at the problem 
that the detection effect of multi-small targets under the UAV aerial photography perspective is easily affected 
by dim and complex interference background, we propose a lightweight multi-UAV small target detection model 
with dynamic layer aggregation. We focus on the small target feature extraction problem of the lightweight target 
detection model, and verify the feasibility of the proposed algorithm through experiments. The experimental re-
sults demonstrate that the proposed algorithm has a good effect on the real-time detection of small targets under 
the UAV view.

The technical contributions we proposed are summarized below
(1) We propose a Neck network structure of omni-dimensional dynamic convolution, leveraging the advan-

tages of dynamic convolution in solving the feature loss problem. The adaptive adjustment of the weight of the 
convolutional kernel is based on input, which enhances the model’s ability to extract features for small targets in 
dim and complex interference environments.

(2) We propose a lightweight Backbone network structure with dynamic efficient layer aggregation, and de-
signed a neural network based on gradient path planning to improve the model’s ability to detect multi-small 
targets, which further solve the problem of multi-UAV small-target detection under complex background inter-
ference environment.

(3) The Angle cost is introduced, and the SIoU loss function was designed to further improve the detection 
performance of the model for small targets of multiple UAVs, which can accelerate the convergence of the model 
and improve the training speed.

(4) Through channel pruning of the model, the detection performance is less affected, model parameters are 
reduced, computation is reduced, less computing resources are taken up, and model detection efficiency is im-
proved.

The paper is structured as follows: firstly, we introduce the structure of the YOLOv5s model and analyze its 
advantages and disadvantages when used in the UAV platform. Secondly, to solve the problem of poor detection 
effect of multi-UAV small targets in complex interference environments, the backbone network and neck network 
of the model are improved, and the whole model is pruned. Finally, the simulation results show that the proposed 
model has been greatly improved in robustness, convergence speed, detection accuracy and detection speed.
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2   Related Work

YOLOv5s network is mainly composed of Backbone, Neck and Head. Its structure is shown in Fig. 1. Firstly, 
the input image is extracted in the backbone network, and the multi-layer feature map of the image is obtained 
through a series of convolution and pooling operations. Secondly, in the neck network, the features of different 
levels are fused through up-sampling and down-sampling operations. Finally, these features are passed to the pre-
diction head for regression prediction, prediction frame generation and classification. YOLOv5s has the fastest 
model detection and performs best on devices with limited computing resources, such as mobile or edge devices.

Although YOLOv5s model is commonly used in target detection tasks performed on UAV platforms, this 
method has low accuracy for small object detection due to the fixed size of the detection frame. At the same time, 
the images taken by drones when flying at low altitudes contain dim, complex scenes with dense trees or build-
ings. Besides, small objects such as lights and birds in the background are easily mistakenly detected as targets, 
and targets are misclassified as background because of their small size and similar colors to the background. Not 
only that, but the drone’s motion during the shooting also causes the light transformation in the image, and the 
size and shape of the target can change significantly. All these factors will make it more challenging to extract 
object features, resulting in worse performance of UAV object detection under these complex interference back-
grounds.

Fig. 1. Overall network structure of YOLOv5s

To solve these problems, we propose a lightweight multi-small target detection model of improved YOLOv5s 
based on fusion dynamic layer aggregation, focusing on the feature extraction problem of multi-small targets 
under complex background interference to reduce the error detection and missing detection rate of small targets 
under complex background, meet the requirements of real-time target detection of UAV aerial images and obtain 
high detection accuracy.
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3   Proposed Methods

In this section, the YOLOv5 structure of the object detection network is improved to meet the requirements of 
UAV aerial photography object detection tasks under complex backgrounds, and a lightweight YOLOv5 multi-
small target detection network with dynamic layer aggregation is proposed. The overall block diagram is shown 
in Fig. 2. Firstly, the traditional volume layer of the YOLOv5s neck network is replaced by an omni-dimensional 
dynamic convolution layer. Secondly, the backbone network is improved to a dynamic efficient layer aggregation 
network structure, and the pool layer module structure is modified to further improve the feature extraction capa-
bility of small targets under complex backgrounds. In addition, to solve the problem of the model’s difficulty in 
converging, the loss function is optimized, and the Angle cost is introduced. The Angle relationship between the 
prediction box and the ground-truth box is considered, and the robustness and training speed of the small target 
detection model are improved. Finally, channel pruning is carried out on the whole model so that the model can 
maintain good detection performance on the UAV platform with limited computing power.

Fig. 2. Structure of lightweight multi-small target detection model we proposed

3.1   The Neck with Omni-Dimensional Dynamic Convolution

Omni-dimensional dynamic Convolution (ODConv) is used to replace the convolution layer in Neck for the 
multi-small target detection lightweight model from the UAV perspective. By multiplying the dimensions of po-
sition, channel, filter, and kernel with different attention, the variability of each dimension can be obtained, which 
can improve the performance of the model and capture rich context information with better performance.  It 
greatly improves the feature extraction ability of convolutional and enhances the detection ability of multi-small 
targets, which is helpful in solving the problem of UAV small target detection in complex environments.

The principle of ODConv is to dynamically adjust the shape and size of the convolution kernel according 
to the characteristics of the input data in the convolution process to adapt to different input data. The ODConv 
structure is shown in Fig. 3.
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Fig. 3. Structure of ODConv

It is defined as

( )1 1 1 1 1w f c s wn fn cn sn ny W W xα α α α α α α α= + ⋅⋅⋅ + ∗                                (1)

Where αwiR represents the attention scalar of convolution kernel Wi . αsiRk×k, αciRcin and αfiRcout represent 
the attention introduced by the spatial dimension, the input channel dimension and the output channel dimension 
of the kernel space of convolution kernel Wi respectively. ⊙ indicates multiplication is performed on all dimen-
sions of the kernel space.

ODConv considers the dynamic characteristics of spatial space, input channel, output channel, and other di-
mensions at the same time. By introducing a multi-dimensional attention mechanism that uses parallel strategies, 
the multi-dimensional attention mechanism learns along the four complementary dimensions of the kernel space. 
By gradually multiplying the convolution Wi along the position, channel, filter, kernel and other dimensions with 
different attention, the convolution operation will have different dimensions for the input, providing better per-
formance to obtain rich context information.

3.2   Dynamic Efficient Layer Aggregation Lightweight Backbone Network

Efficient Layer Aggregation Network (ELAN) is a lightweight network architecture that maximizes accuracy 
within a minimal parameter budget. In terms of target detection, ELAN has shown good performance in terms of 
accuracy and detection speed at different computing modules and depth Settings. ELAN is a neural network de-
signed with gradient path planning.

In order to further improve the detection performance of multi small objects under complex background in-
terference, a lightweight dynamic efficient layer aggregation Backbone network is proposed. The structure of the 
main part is shown in Fig. 4. Compared with ELAN method, dynamic ELAN we proposed uses dynamic convo-
lution method instead of traditional convolution method in ELAN structure, which has stronger feature extraction 
ability. The feature extraction ability of the model is greatly improved in a variety of complex background envi-
ronments while only a small amount of computation is increased.
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Fig. 4. Structure of Dynamic efficient layer aggregation lightweight Backbone network

The dynamic efficient layer aggregation backbone network we proposed adopts a full-dimensional dynamic 
convolution method, where multiple parallel convolution cores are dynamically aggregated, and the weight of 
each convolution kernel is dynamically adjusted according to the input, thus generating an adaptive dynamic 
convolution. As is shown in Fig. 4, the input size of the Dynamic ELAN module is c×w×h, c is the number of 
channels, w is the height of the number of frames, and h is the width of the number of frames. After splitting, the 
input is divided into two parts, one of which is integrated with the input of the other part after a series of con-
volution, and the number of output channels is c. After a series of convolution and dynamic ELAN convolution 
operations, the resulting feature maps are pooled.

In the backbone network, we not only replace some C3 modules with dynamic ELAN modules, but also 
the original SPPF (Spatial Pyramid Pooling) module is replaced with the SPPELAN (Spatial Pyramid Pooling 
Enhanced with ELAN) module. As is shown in Fig. 4, the SPPELAN module combines the pooling function of a 
spatial pyramid with an efficient feature aggregation network structure to capture spatial information at different 
scales. Compared with the SPPF module, the SPPELAN method makes the model more lightweight while main-
taining the robustness of the model, which helps the model reduce the calculation and improve the reasoning 
speed.

3.3   Design of the Loss Function

In order to solve the problem of slow convergence in the training of the improved model, the loss function of 
the model is modified. Loss function is needed to measure the degree of prediction error of the model [22]. 
Compared with the original CIoU (Complete Intersection over Union) loss function used in YOLOv5, which 
has the problem of slow convergence during training, SIoU (SCYLLA- Intersection over Union) loss function 
enables the model faster convergence because it adds directionality to the cost function and further considers the 
angle relationship between prediction box and ground truth box. It can improve the model training efficiency, and 
it is more suitable for small object detection model. Thus we use SIoU to calculate the loss function.

The SIoU loss function consists of four cost functions: Angle cost, Distance cost, Shape cost and IoU cost. 
By calculating the width difference, height difference, distance, angle α and angle β of the center point between 
prediction box and ground truth box, we can get Angle cost LA , Distance cost LD , Shape cost LS and IoU cost       
LIoU Cost . The details are as follows.

Angle cost LA is defined as:

21 2 sin arcsin( )
4AL x π = − ∗ − 

 
                                                       (2)
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Regression loss function Lbox is defined as:

1
2boxL IoU ∆ +Ω

= − +                                                               (6)

The loss function L consists of two parts: classification loss and box loss:

box box cls clsL W L W L= +                                                                (7)

Where Wbox is box loss weight, Wcls is classification loss weight, and Lcls is focal loss.

3.4   Model Compression

YOLO consists of tens of millions of parameters and requires nearly 100 billion floating-point operations, which 
makes it difficult to detect the target in real-time on the UAV platform, so we introduce model compression 
technology. Commonly used model compression methods include pruning [23], knowledge distillation [24] and 
quantization [25]. Although the quantization method can significantly reduce the model size, the performance of 
the model will be greatly reduced due to the uneven data distribution. Knowledge distillation can accelerate net-
work convergence, but the model trial and error cost is high, and the interpretability is poor. In contrast, the prun-
ing method has less impact on the model performance while reducing the amount of computation, so it is more 
used in the model compression of deep neural networks. 
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Aiming at the lightweight requirement of the YOLOv5s high-performance model proposed in this paper, 
Channel Pruning [26] is adopted to compress the improved YOLOv5s model after training. Channel pruning is 
a method to reduce the number of parameters and computation of deep neural networks, which can effectively 
reduce the model size and improve the efficiency of target detection and is more suitable for optimizing the net-
work structure of YOLO. The channel pruning method selects a certain number of channels to delete according 
to the characteristics of the model after the basic model training and further fine-tune. The pruning diagram is 
shown in Fig. 5. In the figure, (a) is the initial network before pruning, and (b) is the network after pruning. The 
channel removed by pruning operation is the part marked orange in the figure (a), which has a small weight and 
negligible effect on the overall model.
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Fig. 5. Pruning process

For the improved YOLOv5 model we proposed, the pruning rate was set to 80% according to the weight of 
each layer, and the convolution layers Conv, C3 and SPPELAN modules in Backbone with low weight were 
pruned. After pruning is completed, the pruning model is trained again for fine-tuning to further adjust it to re-
duce the impact of compression operation on model performance.

4   Experiment

The experimental running environment we used is set up in the deep learning framework PyTorch, and the GPU 
parallel accelerated computation is carried out in the CUDA environment of the GPU server NVIDIA GeForce 
RTX3090. The experimental environment is shown in Table 1.

Table. 1. Experimental environment

Device Configuration
Operating System Windows 10.0

CPU Intel Xeon Gold 6133
GPU NVIDIA GeForce RTX3090

Training Environment CUDA 11.1 cuDNN 8.2.1
Developing Environment Python 3.8.10 Pytorch 1.10.2

Since there are few multi-UAV detection datasets from the UAV perspective, we use images collected from 
the MOT-FLY dataset and modify them into object detection datasets. The multi-UAV image data used in this 
paper includes different background scenes, viewing angles, UAV sizes, flight heights, and lighting conditions. 
After selected and annotated images by LabelImg software, 1290 images were used as the training set and 270 
images were used as the validation set. In order to verify the performance of the model under dim and complex 
interference backgrounds, the validation set mainly consists of pictures of night and complex backgrounds. Some 
of the annotated images are shown in Fig. 6.
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(a) Part of the annotated training set

(b) Part of the annotated validation set

Fig. 6. Part of the annotated dataset

4.1   Model Performance Evaluation Metric

This experiment uses the commonly used indicators of target detection performance evaluation. FPS (Frames Per 
Second) represents the number of images that can be processed per second and is used to evaluate the model’s 
processing speed on the hardware. R (Recall) represents the proportion of correctly identified positive samples to 
all predicted samples, which is defined as

TPR
TP FN

=
+

                                                                      (8)

Where TP (True Positives) represents instances where the model correctly predicted the positive sample, and FN 
(False Negatives) represents instances where the positive sample was incorrectly predicted to be negative.

P (Precision) represents the proportion of correctly predicted positive samples to all positive samples, which 
is defined as

TPP
TP FP

=
+

                                                                     (9)
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Where FP (False Positives) represents instances where the negative sample was incorrectly predicted to be posi-
tive.

mAP (mean Average Precision) represents the mean of the average precision of all individual classes, which is 
defined as

( )1

0
1

1 n

i i

mAP PdR
n =

= ∑ ∫                                                              (10)

Where n represents the number of all individual classes.

4.2   Ablation Experiments

To verify the effectiveness of the lightweight YOLOv5 multi-small object detection method we proposed, the ab-
lation experiment was designed. That is, dynamic ELAN backbone network structure, omni-dimensional dynam-
ic convolution ODConv neck network and SIoU loss function were added to the baseline YOLOv5s model. At 
the same time, the various kinds of combinations of above improvement methods are added, and the comparison 
before and after pruning was made. The results are shown in Table 2. 

The results show that after replacing the backbone network with a dynamic ELAN structure, mAP@0.5 in-
creases by 33.8%. After introducing ODConv into the neck network, mAP@0.5 increased by 18.0%. Therefore, 
the detection performance of the model can be greatly improved by using the Backbone with dynamic efficient 
layer aggregation we proposed, and the detection accuracy and recall rate of the model can be further enhanced 
by introducing ODConv convolutional module. Besides, after modifying the loss function to the SIoU method, 
the detection performance does not get much improvement. However, the training time of the model can be 
shortened, which also proves that the SIoU loss function is more conducive to model convergence and can im-
prove the robustness of the model. Moreover, it has also been proved that the model we proposed has good de-
tection performance before and after pruning, and mAP@0.5 can reach more than 95%.

Table. 2. Ablation experiment results

YOLOv5 GELAN ODConv SIoU Pruning mAP@0.5 Precision Recall
√ - - - - 0.458 0.810 0.411
√ √ - - - 0.796 0.919 0.738
√ - √ - - 0.638 0.859 0.635
√ - - √ - 0.551 0.866 0517
√ √ √ - - 0.963 0.983 0.934
√ √ √ √ - 0.966 0.980 0.938
√ √ √ √ √ 0.950 0.967 0.899

4.3   Comparative Experiments

Comparison with other detection methods in the YOLOv5 series. To verify that the method used in this paper 
can more effectively improve the detection performance of small targets under complex background, a compara-
tive experiment is conducted. The experiment compares the method we used with other detection methods based 
on the YOLOv5s model. The comparison includes the baseline YOLOv5s model, the model with introduction of 
Self Attention mechanism [27], the introduction of SPATIAL-SHIFT(S2) attention mechanism  [28], the convo-
lutional layer modified as dynamic convolution CondConv [29], the convolutional layer modified as full-dimen-
sional dynamic convolution ODConv, and the loss function modified as CIoU [30], EIoU [31], SIoU. The com-
parison experiment designed in this section is also based on the multi-UAV small target detection dataset with 
complex interference background, mainly comparing the model size, mAP@0.5, mAP@.5:.95, Accuracy, Recall 
and other performance indicators, as shown in Table 3.

As is shown in Table 3, firstly the Self Attention mechanism is integrated into the baseline YOLOv5 model. 
Although the model size can be reduced, the detection performance is worse. Subsequently, the self-attention 
mechanism is substituted with the S2 attention mechanism, resulting in an increase in the size of the trained mod-
el without any improvement in detection performance. Furthermore, the convolution layers within the baseline 
model are replaced with dynamic convolution. In comparison to the CondConv dynamic convolution method, it 
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is found that utilizing the full-dimensional dynamic convolution ODConv we used has greater improvements in 
detection accuracy, mAP@0.5 incresed by 25.6%, and Recall increased by 46.0%. Additionally, modifications 
are made to the loss function of the bsaeline model. It is observed that using SIoU loss function outperforms 
CIoU and EIoU in terms of Accuracy and Recall. Compared to IoU used in the baseline model, employing SIoU 
results in an increase of mAP@0.5 by 20.3% and Recall by 25.8%. Moreover, due to implementing SIoU loss 
function, there is also a reduction in training time for model convergence which demonstrates its ability to accel-
erate convergence process.

Table. 3. Comparison of small target detection based on different YOLOv5s models under complex background

Models Size mAP@0.5 mAP@.5:.95 Precision Recall
Baseline YOLOv5s 13.7M 0.458 0.299 0.810 0.411
+Self Attention [27] 11.6M 0.409 0.285 0.737 0.425

+S2-MLPv2 [28] 17.6M 0.449 0.274 0.751 0.415
+CondConv [29] 14.6M 0.508 0.316 0.819 0.435

+ODConv (We used) 14.7M 0.638 0.425 0.859 0.635
+CIoU [30] 13.7M 0.510 0.379 0.829 0.423
+EIoU [31] 13.7M 0.524 0.473 0.860 0.502

+SIoU (We used) 13.7M 0.551 0.479 0.866 0.517

In order to further analyze and explain the superiority of the proposed method in complex interference scenes, 
we have selected the detection effects of UAVs under two complex interference backgrounds for demonstration, 
as marked in Fig. 7. The red box indicates the location of UAVs. In Fig. 7(a), Scene 1 is a dim environment with 
various light disturbances, including two drones. In Fig. 7(b), Scene 2 depicts a scene with small objects such as 
cars and trees interfering in the background, including three drones.

Scene 1

Scene 2

Fig. 7.  Two annotated scenarios with complex interference

The test results are presented in Fig. 8. In Fig. 8(a), the detection results of three models in Scene 1 are shown, 
including the addition of a self-attention mechanism, the addition of an S2 attention mechanism, and the im-
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provement of the convolutional layer to ODConv layer from top to bottom. Fig. 8(b) displays the detection re-
sults of these three models in Scene 2.

In Scene1, all three methods miss detectig a drone in the background with light interference. The model in-
corporating the Self Attention method and the model using full-dimensional dynamic convolution did not exhibit 
false detections. However, the model introducing S2 attention mechanism mistakenly detected building and 
background light as a drone. In Scene 2, both methods introducing attention mechanisms resulted in some false 
detections by mistaking trees and vehicles in the background as drones. Although our proposed full-dimensional 
dynamic convolutional layer model also failed to detect all UAVs, it significantly reduced false detection rates.

From both training data and model detection images obtained from experiments, it is evident that our proposed 
method can more effectively address multi-UAV small target detection issues, especially those related to false 
detections under complex interference backgrounds by using full-dimensional dynamic convolution methods.

(a)                                                                                (b)

Fig. 8.  The detection results of different improved models under complex background interference

Comparison of the proposed model before and after pruning with the baseline model. To verify the per-
formance superiority of the proposed model, we design a comparison experiment, which includes the comparison 
of the performance of the baseline YOLOv5s with the model before and after pruning of the model we proposed. 
The multi-UAV small target detection dataset for verification contains the following five complex backgrounds: 
Scene 1 is the overall dim light with interference background such as lights and buildings, Scene 2 is the dense 
forest background interference background, Scene 3 is the complex background including woods, buildings, 
land and other disturbances, Scene 4 is the dim light with dense building interference background, Scene 5 is the 
background with dense building interference. The detection results of the three models under five different com-
plex backgrounds are shown in Fig. 9, where column (a) is the results of the baseline YOLOv5s model, column 
(b) is the results of the improved YOLOv5s model of fusion dynamic layer aggregation we proposed, and column 
(c) is the test results of the model used in column (b) after pruning.

According to the results displayed in Fig. 9, the detection performance of the baseline YOLOv5s model is 
poor. There are missing detection problems in the first, second, fourth and fifth scenes, and the problem of false 
detection is prone to occur in the fourth scene with dim light and dense building interference. Then, we use the 
model we proposed, which contains the dynamic layer aggregation Backbone, Neck with ODConv and SIoU loss 
function. After the proposed improvement, the missed detection and false detection are effectively solved, and it 
had a good small-target detection performance. After the improved model is pruned, the model is trained again. 
According to the detection results, most of the UAVs can still detect, and only in the second scene with dense 
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forest interference, there is a case of missing detection, which has little impact on the performance of the pruned 
model.

             (a)                                                         (b)                                                          (c)

Fig. 9. Comparison of detection results of different models on multiple small targets in complex scenes

The data of the performance indicators of the baseline model and our proposed model are shown in Table 4.

Table. 4. Comparison of multi small object detection performance of different models in complex scenarios

Model Size mAP@0.5 mAP@.5:.95 Precision Recall FPS
Baseline YOLOv5s 13.7M 0.458 0.299 0.810 0.411 75.996

Ours (without pruning) 23.3M 0.966 0.655 0.980 0.938 77.353
Ours (with pruning) 16.4M 0.950 0.593 0.967 0.899 78.236

According to the comparative experimental results in Table 4, it is evident that the introduction of dynamic 
layer aggregation Backbone, Neck with ODConv, and SIoU loss function has significantly improved the per-
formance of the model compared with the baseline YOLOv5s model. Specifically, there is a 50.8% increase in 
mAP@0.5, a 35.6% increase in mAP@.5:.95, a 17.0% improvement in accuracy, and 52.7% enhancement in 
Recall. The Accuracy under dim background was notably enhanced while reducing false detection rate and miss-
ing detection rate under complex background interference. After conducting channel pruning operation on the 
proposed model, there is a reduction of 29.6% in Size. However, this reduction only resulted in little decreases 
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in mAP@0.5 (1.6%), mAP@.5:.95 (6.2%), Precision (1.3%), and Recall (3.9%) compared to the model before 
pruning.

Compared with the baseline model, mAP@0.5 of the proposed model with pruning improves by 49.2%, 
mAP@.5:.95 by 29.4%, Precision by 15.7%, Recall by 48.8%, and FPS by 2.9%. The comparison experiment 
shows that the proposed model has a great improvement in Precision, Recall and Accuracy compared with the 
baseline model. And after pruning operation, the performance of the model does not drop much, whose FPS 
reaches 78.236, meeting the real-time requirements.

In order to further demonstrate the superiority of ours proposed model, the training effect is compared with 
the baseline model. The training curve of the baseline YOLOv5 and the dynamic layered lightweight model we 
proposed in this paper are shown in Fig. 10(a) and Fig. 10(b) respectively.

As shown in Fig. 10, the loss box_loss and obj_loss curves of the model we proposed smoothly reach a small 
value, reaching the performance level after only 50 rounds of training compared to 150 rounds required by the 
baseline model. Compared from the aspects of robustness, convergence speed and detection effect, The perfor-
mance of the model proposed in this paper is far superior to the baseline model in all aspects.

(a) Training curves of the baseline YOLOv5s model 

(b) Training curves of lightweight model with dynamic layer aggregation 

Fig. 10. Comparison of training curves of the baseline model and ours
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5   Conclusion

Aiming at the problem that multi-UAV objects are small and difficult to detect in aerial images when UAV faces 
complex interference background at low altitudes, we focus on the feature extraction problem of multi-small 
targets under complex interference backgrounds and propose a lightweight YOLO of multi-UAV small target 
detection algorithm with dynamic layer aggregation is proposed. First, the original convolutional layer of the 
neck network is improved to an omni-dimensional dynamic convolutional layer, which improves the feature ex-
traction ability of the model for small targets. Secondly, a lightweight backbone network with dynamic efficient 
layer aggregation is proposed, and the convolutional layer and pooling layer are modified to further improve the 
feature extraction capability of small targets under complex backgrounds. Thirdly, the loss function of the model 
is modified, the Angle cost function is introduced, and the SIoU loss function is used to accelerate the conver-
gence of the model and improve the robustness of the model. Finally, the channel pruning of the model is carried 
out to reduce the number of model parameters and the amount of calculation while reducing the model detection 
performance. Through experiments, the lightweight YOLO multi-UAV small target detection algorithm proposed 
in this paper is compared with the benchmark YOLOv5 model that mAP@0.5 improved by 49.2%, mAP@.5:.95 
improved by 29.4%, accuracy improved by 15.7%, recall rate improved by 48.8%, FPS improved by 2.9%. The 
proposed model effectively improves the detection ability of multi-UAV small objects in complex backgrounds, 
and verifies that the model has good real-time performance.

Although the proposed algorithm performs well in the task of detecting small targets of UAVs, its performance 
in detecting multi-scale targets in this environment needs to be improved. The multi-scale target detection task 
will be further studied in the future.
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