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Abstract. Since the preferred multi-objective optimization solution set is a local optimal solution with de-
cision maker’s preferences. To improve the performance of its, this paper proposes the angular preference 
multi-objective optimization algorithms with inverse initialization (AP-MOA). AP-MOA proposes three 
new strategies. The first is the target initialization strategy. There are two types of cases. For a bi-objective 
optimization problem, a better initial population is generated in the specified region on the preference infor-
mation. For the tri-objective optimization problem, a tent mapping is used to generate uniform individuals in 
the specified region on the preference information. The second is two stage mutation, which is using genetic 
and differential mutation to produce excellent and stable offspring. The third is the angular preference guiding 
strategy. Two rays are drawn from the origin of the coordinates based on preference information to delineate a 
preferred solution region. According to experimental comparison, AP-MOA can converge quickly and obtain 
a satisfactory set of preference solutions.

Keywords: angular preference, inverse initialization, preference-based multi-objective optimization, two-
stage mutation

1   Introduction

Preference Multi-Objective Optimization Problems (PMOP) is a prominent problem in the current field of opti-
mization. Different from general multi-objective optimization, PMOP focuses on exploring local objective pareto 
regions determined based on preference information. Driven by social and technological progress, PMOP is be-
ing increasingly used in various fields. For instance, production of an assortment of commodities while optimiz-
ing profitability with restricted resources [1], calculating an appropriate range of time periods for the illumination 
of traffic signals [2], as well as in research [3], journey [4], generator start-up problem [5], et al..

Many algorithms of PMOP are proposed, categorized into three groups: convergence based on preference 
points, convergence based on preference vectors, and convergence based on individual preference points. The 
first category, as described in literature [6-8], redefines the optimal individual priority by using the g-dominance 
strategy that is based on preference points. The second category, as defined in literature [9, 10], posits that op-
timal individuals are preferentially selected from the preference region based on preference points and vectors, 
increasing individual selection pressure. The third category, as outlined in literature [11], establishes a dominance 
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relation within the same pareto dominance rank by considering the proximity of individuals to the preference 
point.

However, current algorithms fail to consider the impact of the initial population on POMP and angular conver-
gence optimization. This paper proposes target initialization strategy, two stage mutation and angular preference 
guiding strategy. It can produce better initial solutions and quickly obtain preferred solution sets.

The paper includes five sections. Section I supplies an overview of AP-MOA, PMOP, and related algorithms. 
Section II outlines concept of PMOP, preference region and mutation methods. Section III explains the target 
initialization strategy and angle preference domination strategy. Section IV conducts a comparison of the algo-
rithms, performance analysis and summarizes the algorithm of this paper.

2   Related Concepts

2.1   PMOP

PMOP is deciding the decision maker’s area of interest based on the preference information (preference point 
P) supplied by the decision maker, getting it to a smaller subset of the entire pareto region [12, 13]. Eventually, 
PMOP can be simplified to a simpler problem.
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Where x = (x1, x2, … xn) ∈ Q is an N-dimensional decision variable. Q is the decision space. fi(x) is the ith ob-
jective vector in the target space Q, i = 1, 2, …m, and m denotes the number of objective vectors. The q linear 
equality constraints are denoted by gj(x), and the p linear inequality constraints are denoted by hi(x).

The pareto definition of PMOP
Pareto dominate. xy and xz are individual solutions. xy pareto dominates xz if the equation 2 are satisfied.
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Pareto optimal solution. xz is a solution of PMOP. Once equation 3 has been satisfied, xz is the pareto optimal 
solution.

, zx R x x∃ ∈ ┐                                                                            (3)

Pareto optimal solution set. Individuals of the set do not dominate each other.

{ , }z zF x R x R x x= ∈ ∃ ∈ ┐                                                                 (4)

2.2   Region of Preference

Preference vector [14]. vector of directions from the coordinate origin to the P, displayed in Fig. 1.
Preference area. Euclidean distance for an individual to reach the preference vector, which does not exceed 

the range R (specified by the decision maker), displayed in Fig. 1. the Euclidean distance formula:
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Where A is an individual and OP is a preference vector.
Preference dominate. Individuals of the same rank, individuals in the region of preference dominate indi-

viduals outside the region of preference. Individuals in the same region determine dominance relationships by 
crowding degree [10].

Fig. 1. Preference area information

3   AP-MOA

This section first proposes target initialization strategy, followed by angle preference dominance strategy, then 
two stage mutation, and finally AP-MOA structure.

3.1   Target Initialization Strategy

The NSGAII typically uses random initialization when initializing populations, resulting in an unstable and 
inherently random starting point [15, 16]. However, it is important to note that the initial population’s quality 
significantly affects the optimization outcomes. To address it, this paper proposes implementing a targeted initial-
ization strategy. 

For problems with bi-objectives, start by initializing the population within the area that is dominated by the 
preference point, subsequently constraining the decision variables of each individual to a practical range. By ran-
domly generating populations in a specific region, this paper demonstrates the ability to steer and maintain popu-
lation diversity, a is rand(*) that is random function. 

( )1 (1) (1)1dec P P a= + − ∗                                                                      (6)
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Where P(1) is the first value of the preference point, dec denotes individual solution vector. 
As the number of objectives increases is difficult to control the scope of individual solutions. This paper pro-

poses the inverse function construction method to solve this problem.
Inverse function construction method 
For problems with tri-objectives, it uses a tent mapping initial strategy [17] to set the initial values of the ob-

jective function within the designated area. Subsequently, inverse function construction method is used to invert 
the decision variable values of the relevant individuals. This approach ensures the effective population initializa-
tion within the specified region. 

Fig. 2. Inverse tectonic diagram

Objective function values for individuals were produced in the spatial region. Getting inverse functions by 
using tri-objective inverse constructor formula, then calculating the values of x1, x2, and g(X). The decision vari-
ables of individuals xi (i = 1, …, N) are calculated based on g(X) and the objective function, resulting in a pop-
ulation for a specific region. Inverse function sets, in Table 1. The process is shown in Fig. 2. Algorithm 1 is an 
algorithmic implementation of target initialization strategy.

Table 1. Tri-objective inverse constructor formula

Test function Inverse formula
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Algorithm 1. Target initialization strategy
Input:
Preference point P
Population size pop
Decision variables x_num
Upper and lower limits of decision variables x_max, x_min
Output:
Chromo

Procedures:
 // tri-objectives
Step 1: tent mapping initialize objective values
Step 2: for i from 1 to pop
Step 3:     using the formulae from Table 1, compute the decision 
variables x1, x2, and g(X), using the g(X) to compute the decision 
variables
Step 4: end for
 // bi-objectives
Step 5: for i from 1 to pop
Step 6:      calculate dec, according to equation (6)(7)(8), using the 
dec to get individual
Step 7:      chromo U individual //merge
Step 8: end for

3.2   Angle Preference Dominance Strategy

Definition 1 (Individual preference angle). Hypothetically, preference vector L, a vector M from the coordi-
nate origin O to an individual xz, the angle between the vector L and the vector M is defined as the preference 
angle of the individual xz, denoted as angle_xz|p.

( )
( )

,
_ cos

( )
z

z
z
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                                                   (9)

Where acos(*) is the cos(*) inverse function, dot(*) function is used to calculate the dot product of two vectors. 
norm(*) is Calculate the distance between two points as a function of the difference between the elements of the 
vector.

Definition 2 (Angle preference area). The vector OP intersects at preference point P and is perpendicular to the 
line segment, which is R long. The shaded area is the angle preference area, shown in Fig. 3.

Definition 3 (Preference angle). In Fig. 3, the angle of the gray section corresponding to the origin is the angle 
preference region. 
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Where asin(*) is the sin(*) inverse function. In two-dimensional coordinates, for example, P is denoted as P(1, 
2), P(1) is the first value of P and P(2) is the second value of P.

Fig. 3. Angle preference information

As PMOP is not an entire region for optimization. Consequently, this paper suggests using the concepts of 
priority search. Individuals within the region of angular preference are selected with preference as superior off-
spring. The specific principles are as follows: individuals within the angular preference region dominant over 
external individuals, individuals within the same angular region are ordered using pareto non-dominance, indi-
viduals within the same level of preference region dominate individuals outside the preference region, and indi-
viduals within the same region are prioritized based on the degree of crowding. Defining it as angle preference 
dominance strategy (Ap-dominate). Algorithm 2 is division of angle preference area. Algorithm 3 is an algorith-
mic implementation of Ap-dominate.

Algorithm 2. Division of angle preference area 
Input: 
mixed population input_chromo
Output: 
chromo1
chromo2

Procedures:
Step 1: Calculate pre_angle
Step 2: for each xj ∈ input_chromo, do 	
Step 3:     calculate the angle_xj|p.
Step 4:     if angle_xj|p <= pre_angle
Step 5:        chromo1 ∪ { chromo(xj)} // add individual
Step 6:     else
Step 7:        chromo2 ∪ { chromo(xj)}
Step 8:     end if
Step 9: end for
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Algorithm 3. Ap-dominate
Input:
Population size pop
Population in_chromo
Output:
Chromo

Procedures:
Step 1: Algorithm2 to in_chromo, get chromo1, chromo2
Step 2: non domination sort
Step 3: if num(chromo1)<=pop then       
Step 4:      num1=pop-num(chromo1)
Step 5:      algorithm1 sort chromo2, the first num1 from chromo2 
saves in temp1
Step 6:      chromo = temp1 U chromo1  //merge
Step 7: else
Step 8:      use Algorithm1 sort chromo1, then the first N from chro-
mo1 saves in chromo
Step 9: end if

3.3   Two-stage Mutation

This paper proposes a two-stage mutation strategy to maintain algorithm optimality and diversity. Due to the high 
prominence of binary crossover and mutation in generating diverse solutions and the effectiveness of differential 
mutation in achieving optimal solutions, a creative integration of both methods can significantly enhance the per-
formance of algorithmic optimization searches.

Difference mutation
Difference mutation operators are able to maintain the good genes of their parents during algorithmic itera-

tions and have good algorithmic stability [18]. The formula is as follows:
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Where F0 is the original mutation factor, F represents the mutation factor, x(g) is parent population. The individu-
al V (g + 1) is variant.

Crossover of the gth generation population x(g) and its mutant individuals V (g + 1):
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where the probability of crossover is represented as cr and jr is a random integer, a is rand(*).
Binary crossings and mutation 
Binary crossover mutations use random numbers to generate genetic individuals that can maintain population 

diversity [19]. The formula is as follows:
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where C1, C2 are the offspring, while P1 and P2 represent the parents, yita1 is a parameter. yita2 is a parameter, a is rand(*). 
Algorithm 4 is two-stage mutation.

Algorithm 4. Two-stage mutation
Input:
Population chromo3
F0=0.5, pop
Output:
off_spring

Procedures:
Step 1: algorithm 3 to chromo3, chromo getting it a half 
Step 2: binary crossings and mutation gets offspring
Step 3: chromo4 = chromo U offspring      //merge
Step 4: using chromo4 to difference mutation get off_spring

3.4   AP-MOA Algorithm

AP-MOA utilizes a novel initialization approach, incorporating two stage mutation to enhance the variety of de-
sired individuals. This is followed by preference convergence through population employing an angular prefer-
ence strategy. Algorithm 5 is AP-MOA.

Algorithm 5. AP-MOA
Input: 
gen, P, R
Populations pop
Output:
Chromo

Procedures:
Step 1: initialize with algorithm 1 to get chromo
Step 2: for i from 1 to gen            //start iteration
Step 3:       preference dominate to chromo
Step 4:       chromo = first pop/2 of chromo
Step 5:       Algorithm 4 to get off_spring
Step 6:       combine_chromo = off_spring U chromo   //merge
Step 7: end for
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4   Experiments and Analysis

This section first describes the comparison algorithms, parameter settings and performance evaluation metrics. 
Then compare the GD, IGD and SP performance of the algorithms. Lastly analyzes target initialization strategies 
and parameter sensitivity.

4.1   Preparations

The paper focuses on preference multi-objective optimization algorithms. it chooses g-NASGAII guided by 
preference points, r-NSGAII established a dominance relation and AP-MOA to participate in the comparison. 
The parameters are set with reference to the algorithmic optimal parameters of most papers. r-NSGAII have been 
assigned average weights and a non-domination threshold δ of 0.1 [20]. The AP-MOA algorithm sets the prefer-
ence radius R to 0.1, F0 is 0.5, cr is 0.3. The binary crossover parameter yita1 is 2 and the polynomial variation 
parameter yita2 is 5. The crossover and mutation probabilities are set uniformly at 0.99 and 0.1, respectively. The 
experimental environment is really matlab environment carried out.

We have set three types of preference points for each test function. These preference points, selected respec-
tively from the feasible domain, real pareto frontier and infeasible domain, comprehensively evaluate the perfor-
mance of the algorithms. With reference to the preference point setting of most papers, the preference points for 
test functions in Table 2.

Table 2. Function preference points and experimental parameters

Test function Infeasible 
domains

Pareto 
surface

Feasible 
domains

Pop Iterations Decision 
dimension

ZDT1 (0.1, 0.2) (0.50, 0.30) (0.8, 0.8) 100 200 30
ZDT2 (0.2, 0.4) (0.60, 0.64) (0.9, 0.9) 100 200 30
ZDT3 (0.2, 0.2) (0.24, 0.28) (0.5, 0.6) 100 200 30
ZDT6 (0.3, 0.2) (0.60, 0.64) (0.7, 0.8) 100 200 10

DTLZ2 (0.2, 0.3, 0.4) (0.50, 0.70, 0.50) (0.7, 0.8, 0.8) 200 300 10
DTLZ4 (0.3, 0.4, 0.5) (0.50, 0.50, 0.70) (0.6, 0.6, 0.8) 200 300 10

This paper next describes the performance evaluation metrics GD, IGD and SP, respectively.
(1) GD: It measures how close the resulting pareto frontier P is to the optimal pareto frontier P*, for evaluat-

ing the convergence of the solution set [21]. The smaller its value, the better the algorithm performs

*
2

*
min ( , )

( , ) x Py P
d x y

GD P P
P
∈∈

=
∑                                                         (18)

Where P represents the optimal pareto solution set obtained via the algorithm, P* refers to the true pareto set of 
solutions, d(x,y) indicates the Euclidean distance between individuals x and y, and |P| denotes the number of in-
dividuals present in P.

(2) IGD: In contrast to GD, IGD can evaluate the convergence and distribution of solution sets. The smaller 
the IGD, the better the convergence and distribution of the solution set.

( )**
*

min ( , )
( , ) y Px P

d x y
IGD P P

P
∈∈= ∑                                                         (19)

where P* is the reference set and |P*| is the number of individuals in P*. min(d(x, y)) is the minimum Euclidean 
distance from the individual that connects P* to P.
(3) SP: SP measures the distributability of the solution set. It is the standard deviation of the minimum distance 
from each solution to the other solutions and is used as an important measure of the difference between neighbor-
ing solutions in each range. The smaller the value, the more uniform the solution set.
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where m represents the number of individuals in the solution set, di represents the minimum Euclidean distance 
from the ith solution to the other solutions, and d  represents the average of all di.

4.2   Performance Comparison

Taking the mean and standard deviation of 30 evaluations of the indicator as a measure. And this paper will be 
divided into three categories: feasible, fronts, and infeasible area, to conduct experiments. Optimal data is high-
lighted through bolding.

Table 3. Results (mean and standard deviation) of the GD in the feasible domain for the preference point

Test functions g-NSGAII r-NSGAII AP-MOA
Mean Std Mean Std Mean Std

ZDT1 1.936e-4 3.301e-5 1.262e-4 1.200e-4 2.486e-5 1.526e-6
ZDT2 2.097e-4 5.103e-5 1.813e-4 2.280e-4 2.227e-5 2.493e-6
ZDT3 5.814e-5 1.180e-5 1.675e-3 3.101e-3 2.704e-4 8.702e-6
ZDT6 2.743e-4 3.201e-4 1.624e-4 9.802e-5 1.617e-4 5.560e-6

DTLZ2 5.191e-4 2.800e-5 5.767e-4 6.409e-5 2.236e-4 7.378e-6
DTLZ4 4.515e-4 9.502e-6 5.379e-4 1.490e-5 3.696e-4 2.315e-5

Table 4. Results (mean and standard deviation) of the GD in the fronts for the preference point

Test functions g-NSGAII r-NSGAII AP-MOA
Mean Std Mean Std Mean Std

ZDT1 8.378e-5 1.945e-4 2.118e-5 2.223e-5 1.038e-5 3.237e-6
ZDT2 1.206e-3 2.845e-3 1.296e-5 7.158e-6 1.022e-5 3.139e-6
ZDT3 3.094e-4 1.200e-3 1.840e-5 9.645e-6 2.115e-4 8.602e-6
ZDT6 3.528e-2 6.667e-2 1.519e-4 8.501e-5 1.448e-4 6.065e-6

DTLZ2 6.461e-4 7.766e-4 4.630e-4 1.467e-5 2.398e-4 1.044e-5
DTLZ4 4.810e-4 1.201e-4 4.862e-4 1.401e-5 3.601e-4 2.382e-5

Table 5. Results (mean and standard deviation) of the GD in the infeasible domain for the preference point

Test functions g-NSGAII r-NSGAII AP-MOA
Mean Std Mean Std Mean Std

ZDT1 2.837e-4 2.867e-4 6.189e-5 1.123e-4 2.183e-5 3.190e-6
ZDT2 4.240e-4 4.689e-4 4.988e-5 4.978e-5 3.585e-5 3.290e-6
ZDT3 2.768e-4 1.000e-3 5.784e-5 7.545e-5 2.820e-4 7.821e-6
ZDT6 4.067e-4 2.334e-4 1.400e-4 7.867e-5 1.040e-4 6.169e-6

DTLZ2 3.035e-3 1.956e-3 4.858e-4 3.523e-5 2.535e-4 1.658e-5
DTLZ4 1.268e-3 7.434e-4 5.001e-4 1.112e-5 4.089e-4 2.314e-5

Table 6. Results (mean and standard deviation) of the IGD in the feasible domain for the preference point

Test functions g-NSGAII r-NSGAII AP-MOA
Mean Std Mean Std Mean Std

ZDT1 2.876e-2 2.088e-4 2.759e-1 2.506e-2 6.541e-4 1.687e-5
ZDT2 6.876e-2 5.434e-4 3.627e-1 3.876e-2 8.022e-4 3.000e-5
ZDT3 1.854e-1 3.378e-3 4.338e-1 4.067e-2 2.200e-3 8.150e-5
ZDT6 5.392e-1 2.429e-2 1.915e-1 1.378e-2 1.400e-3 5.880e-5

DTLZ2 2.513e-1 2.329e-3 4.930e-1 1.256e-2 3.000e-3 1.200e-4
DTLZ4 3.841e-1 5.249e-4 4.585e-1 9.289e-2 1.020e-3 2.490e-4
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Table 7. Results (mean and standard deviation) of the IGD in the fronts for the preference point

Test functions g-NSGAII r-NSGAII AP-MOA
Mean Std Mean Std Mean Std

ZDT1 3.146e-1 1.172e-3 3.107e-1 3.356e-3 6.175e-4 3.945e-5
ZDT2 3.698e-1 4.567e-3 3.672e-1 3.006e-3 7.952e-4 3.379e-5
ZDT3 4.772e-1 9.689e-3 4.690e-1 6.678e-3 2.500e-3 9.558e-5
ZDT6 2.840e-1 1.101e-2 2.167e-1 6.612e-3 1.200e-3 8.701e-5
DTLZ2 5.363e-1 1.810e-2 5.417e-1 2.800e-3 3.200e-3 1.448e-4
DTLZ4 5.413e-1 1.902e-2 4.925e-1 6.900e-3 1.110e-3 1.101e-4

Table 8. Results (mean and standard deviation) of the IGD in the infeasible domain for the preference point

Test functions g-NSGAII r-NSGAII AP-MOA
Mean Std Mean Std Mean Std

ZDT1 7.597e-2 1.145e-2 3.467e-1 2.503e-2 7.209e-4 2.700e-5
ZDT2 7.118e-2 1.400e-3 3.317e-1 2.579e-2 6.564e-4 3.706e-5
ZDT3 2.994e-1 3.304e-3 4.428e-1 1.667e-2 2.300e-3 1.201e-4
ZDT6 1.913e-2 1.000e-3 3.448e-1 1.001e-2 8.200e-4 3.700e-5

DTLZ2 1.970e-1 4.107e-3 5.184e-1 2.104e-2 3.500e-3 2.003e-4
DTLZ4 2.887e-1 2.801e-3 4.435e-1 1.106e-2 1.700e-3 3.105e-4

Table 9. Results (mean and standard deviation) of the SP in the feasible domain for the preference point

Test functions g-NSGAII r-NSGAII AP-MOA
Mean Std Mean Std Mean Std

ZDT1 6.092e-1 3.718e-2 1.030e+0 2.303e-2 3.396e-4 3.302e-5
ZDT2 6.717e-1 3.201e-2 1.034e+0 3.106e-2 4.935e-4 6.301e-5
ZDT3 8.214e-1 1.815e-2 1.053e+0 5.605e-2 4.828e-4 4.809e-5
ZDT6 8.518e-1 6.223e-2 9.067e-1 2.109e-2 8.364e-4 6.505e-5

DTLZ2 6.763e-1 3.100e-2 9.767e-1 1.902e-2 2.600e-3 1.505e-4
DTLZ4 8.241e-1 2.101e-2 8.725e-1 4.200e-2 3.000e-3 1.504e-4

Table 10. Results (mean and standard deviation) of the SP in the fronts for the preference point

Test functions g-NSGAII r-NSGAII AP-MOA
Mean Std Mean Std Mean Std

ZDT1 9.980e-1 1.521e-3 9.907e-1 4.101e-3 7.222e-4 8.510e-5
ZDT2 1.004e+0 6.690e-3 9.988e-1 3.204e-3 7.064e-4 7.240e-5
ZDT3 1.004e+0 1.660e-2 9.992e-1 4.902e-3 6.867e-4 7.080e-5
ZDT6 1.158e+0 2.770e-1 9.332e-1 1.501e-2 1.000e-3 7.420e-5

DTLZ2 9.925e-1 2.720e-2 9.756e-1 6.301e-3 3.400e-3 1.660e-4
DTLZ4 9.968e-1 1.160e-2 9.162e-1 1.507e-2 3.500e-3 1.580e-4

Table 11. Results (mean and standard deviation) of the SP in the infeasible domain for the preference point

Test functions g-NSGAII r-NSGAII AP-MOA
Mean Std Mean Std Mean Std

ZDT1 7.436e-1 3.414e-2 1.014e+0 1.526e-2 7.539e-4 1.314e-4
ZDT2 7.134e-1 2.227e-2 1.020e+0 2.317e-2 7.480e-4 9.114e-5
ZDT3 9.203e-1 1.526e-2 1.010e+0 1.711e-2 5.158e-4 5.413e-5
ZDT6 5.418e-1 4.413e-2 9.143e-1 1.014e-2 9.784e-4 9.226e-5

DTLZ2 6.744e-1 4.311e-2 1.001e+0 2.119e-2 3.300e-3 2.318e-4
DTLZ4 7.371e-1 2.619e-2 8.453e-1 2.524e-2 3.400e-3 1.824e-4
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For the convergence performance of the algorithm. From Table 3, on the feasible domain, AP-MOA exhibits 
superior convergence on ZDT1 and ZDT2 and marginally better performance than the other two algorithms on 
ZDT6, DTLZ2, and DTLZ4. However, it proves a weaker convergence effect than g-NSGAII on ZDT3. From 
Table 4, on the frontier, AP-MOA exhibits exceptional convergence performance on ZDT1 and ZDT2, and con-
vergence effect outperforms the other two algorithms on ZDT6, DTLZ2, and DTLZ4. However, on ZDT3, its 
convergence is inferior to that of r-NSGAII. From Table 5, in infeasible domain. AP-MOA exhibits significantly 
better convergence performance on both ZDT1 and ZDT2, and better on ZDT6, DTLZ2, and DTLZ4, but its 
convergence results are inferior to r-NSGAII’s on ZDT3.

Table 6 to Table 8 show the distributability and convergence performance of algorithms. The superior perfor-
mance of AP-MOA over other algorithms proves its exceptional distribution and convergence.

Table 9 to Table 11 display the distributability of the AP-MOA algorithm. Based on the table data, AP-MOA 
displays superior distributivity compared to the other algorithms, showing a high quality of the solution set.

By comparing the three indicators mentioned above, the robustness of AP-MOA is good. Based on the anal-
ysis and comparison of three indicators, AP-MOA demonstrates high distributability and convergence, yielding 
signal outcomes. The positioning of various preference points minimally affects AP-MOA, displaying its impres-
sive stability.

ZDT1 (0.8, 0.8)                                                                ZDT1 (0.5, 0.3)

ZDT1 (0.1, 0.2)                                                               ZDT2 (0.9, 0.9)
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ZDT2 (0.6, 0.64)                                                                ZDT2 (0.2, 0.4)

ZDT3 (0.5, 0.6)                                                            ZDT3 (0.24, 0.28)

ZDT3 (0.2, 0.2)                                                            ZDT6 (0.7, 0.8)
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ZDT6 (0.6, 0.64)                                                          ZDT6 (0.3, 0.2)

Fig. 4. The effect of the three algorithms on the ZDT function at each preference point

From Fig. 4, the AP-MOA algorithm can get a solution set that is of the right magnitude and coincides with a 
the pareto, thereby facilitating a prompt selection of the optimal solution by the decision-maker.

DTLZ2 (0.7, 0.8, 0.8)                                                                           Side view

DTLZ2 (0.5, 0.7, 0.5)                                                                              Side view
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DTLZ2 (0.2, 0.3, 0.4)                                                                             Side view

Fig. 5. Plot of the effect of the three algorithms on the DTLZ2 function for each preference point

From the diagram depicted in Fig. 5, the AP-MOA algorithm can procure a solution set that is uniformly distrib-
uted and coincides with pareto in DTLZ2, with well-represented preferences.

From Fig. 6, the AP-MOA algorithm can achieve a uniformly distributed set of solutions coinciding with a pa-
reto in DTLZ4, effectively representing the preference.

DTLZ4 (0.6, 0.6, 0.8)                                                                   Side view
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DTLZ4 (0.5, 0.5, 0.7)                                                                            Side view

DTLZ4 (0.3, 0.4, 0.5)                                                                         Side view

Fig. 6. Plot of the effect of the three algorithms on the DTLZ4 function for each preference point

4.3   Target Initialization Strategy Analysis

In the initialization of the classical NSGAII algorithm, the rand function is used to supply random initialization 
[22]. This initialization type is characterized by random uncertainty, instability, and a lack of goal-directedness.

The target initialization strategy and the angle preference dominance strategy are analyzed in this subsection. 
By control variable method, only the location (classification of dominant and non-dominant area by preference 
points) where the initial individuals are generated being altered, calculating the mean of 30 GDs. Using ZDT1 as 
an experimental function, and the reference point is (0.5, 0.3).
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Table 12. GD for initial strategy comparison (The top three figures are showed in the top right-hand corner)

Area where the initial indi-
vidual is located

Range of decision 
variables Mean Std

Dominated area (0,1) 2.2760e-05II 2.9779e-06II

Dominated area (0,0.5) 2.0397e-05I 1.1137e-06I

Randomly area (0,1) 2.5083e-05 6.6657e-06
Randomly area (0,0.5) 2.3014e-05III 4.4730e-06

Non-dominated area (0,1) 2.7023e-05 6.3740e-06
Non-dominated area (0,0.5) 2.4008e-05 3.5665e-06III

The initialization strategy presented in Table 12 can enhance performance, Fig. 7 shows a comparison of 
the effect. The analysis shows that initial targets clustered in the dominant region yield outstanding offspring. 
Additionally, restricting the range of decision variables can reduce the time required for offspring to reach the 
frontier. In conclusion, the target initialization strategy improves algorithm performance.

Fig. 7. Initial effect comparison chart

4.4   Parameter Sensitivity Analysis

The setting of R affects the size of the range of preference solution sets and the quality of optimization. This 
subsection analyses the effect of the range R of the preference region on the performance of the algorithm. The 
algorithm’s performance is influenced by the R, as the angular preference region is dependent on this value. 
Assess the performance of the algorithm with R increased in increments of 0.05 over a range of 0.05 to 0.35. The 
average of 30 GDs was used as the measurement parameter.

Table 13. Mean values of 30 GDs at ZDT1 (0.5, 0.3)

R 0.05 0.1 0.15 0.2 0.25 0.3 0.35

GD 2.0482e-5 2.0015e-5 2.1104e-5 2.0456e-5 2.0013e-5 2.2240e-5 2.1969e-5

From Table 13, the performance is better at R = 0.25 and 0.1, but R = 0.25 will make the solution distribution 
range too large, not conducive to decision-making, the comparison is shown in Fig. 8. So, R = 0.1 is more suit-
able.
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Fig. 8. Effect graphs for R=0.25 and 0.1

4.5   Summary

In this paper, AP-MOA has been proposed. Firstly, the target initialization strategy can produce a better initial 
population, then the two stage mutation can generate better offspring, lastly, the angular preference guiding strat-
egy can improve optimization and convergence. When facing a preference-based multi-objective optimization 
problem, AP-MOA is capable of accurately reflecting the decision maker’s preferences and obtaining the optimal 
solution set within the specified preference region. This significantly reduces the onerous selection pressure that 
decision makers typically face.

Regarding the application of AP-MOA for resource scheduling of mobile intelligence and mobile terminals 
at the edge, it can prioritize the latency objective and reduce the waiting time for user services, thus improving 
the user’s sense of experience. Consequently, PMOP is likely to be more widely applied in future social develop-
ment.
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