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Abstract. This paper addresses the current situation of huge amounts of data transmission and computing in 
the edge computing strategy of Internet of Vehicles. Firstly, an edge computing network model is constructed, 
which consists of two parts: vehicles and roadside units. Then, a communication model among multiple vehi-
cles and a perception model among multiple vehicles are built. Based on these models, the motion state of the 
vehicle end, the operation state of the local computer, the transmission state of the wireless communication 
network, and the operation state of the edge server are combined into a Markov process, and the quality of 
the decision-making process is evaluated by reward values. This facilitates the solution of the optimal task 
offloading strategy through reinforcement learning theory in the subsequent text. In the process of solving the 
optimal parameters, a federated learning algorithm with joint auxiliary training and adaptive sparsity is used 
to ensure that important devices can continuously participate in multiple rounds of federated training and 
model solving. Finally, experiments are conducted to compare the algorithm in this paper with the previous 
method. The comparison shows that the offloading strategy in this paper can achieve smaller delays. By set-
ting different vehicle scales, the improvement of the perception coverage area through the collaborative con-
trol among different vehicles is verified.

Keywords: cooperative perception, edge computing, Markov, federated learning algorithm

1   Introduction

With the rapid development of wireless communication technology and the significant increase in the number of 
new energy vehicles, vehicular networks has become a hot technology of mobile ad hoc network [1]. Around the 
on-board network [2], new energy vehicles equipped with wireless communication equipment can realize data 
transmission between driving vehicles, and can also communicate with roadside infrastructure, such as road end 
cameras and on-board routes of parked vehicles [3]. On the other hand, the driver’s demand for real-time road in-
formation and entertainment information is increasing during driving and passengers’ riding, and the application 
scenario of the Internet of vehicles is broader. The Internet of vehicles is a new network form of mobile ad hoc 
network applied in the field of road traffic. One of its important applications is to provide information services 
to users. However, the data information of network content service providers is generally stored in the remote 
cloud, while the on-board users are at the edge of the network, which will cause large network delay when re-
questing cloud data. When a large number of users request the content of cloud data at the same time, it will have 
a large computing burden on the cloud, which will lead to network congestion and affect the user experience in 
extreme cases. For these applications that provide media and entertainment information, the primary concern is 
the quality of service of users. In general, the content or services requested by most vehicles are locally relevant. 
Storing them on the edge side can make better use of network resources, so the network structure of mobile edge 
computing can just adapt to the current driving needs [4].

The future development direction of automobiles is assisted driving and autonomous driving. The realization 
of the above driving scenarios cannot be separated from the functional modules of the vehicle’s environmental 
perception module, path planning and decision-making module, and motion control module. The environmental 
perception module is the foundation of path planning and decision-making and motion control. By obtaining 
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precise, reliable, and comprehensive environmental perception information through computing, autonomous 
behavior decisions and safe driving behaviors of unmanned vehicles can be achieved, reducing road traffic acci-
dents. Cooperative perception technology expands the perception range and improves the accuracy and reliability 
of target detection by establishing network communication with neighboring vehicles and roadside base stations 
to share perception information. However, with the increase in vehicle density, cooperative perception technol-
ogy not only enhances the vehicle’s perception capability but also brings a large amount of data redundancy and 
computational load. Although existing cooperative perception strategies have reduced information redundancy to 
a certain extent, they have ignored the key factor of target detectability. Moreover, these strategies have not fully 
considered the dynamic cooperative perception requirements in mixed traffic environments. Therefore, based on 
the current research on cooperative perception technology for unmanned vehicles, this paper studies the problem 
of cooperative perception information redundancy and cooperative perception information sharing strategies by 
leveraging neural networks, deep reinforcement learning, and other technologies, aiming to design a more effi-
cient and reliable cooperative perception solution for unmanned vehicles [5].

The current deficiencies of cooperative perception in autonomous driving in terms of environmental percep-
tion and computational latency are analyzed and summarized as follows:

1) In terms of computational latency, first, cooperative perception relies on the fusion of data from multi-
ple sensors (cameras, lidars, etc.) and vehicle-to-vehicle (V2V)/vehicle-to-everything (V2X) communication. 
However, the data collection frequencies and communication delays of different sensors vary, making time syn-
chronization difficult and affecting real-time decision-making. Second, edge computing resources are limited. 
Although edge computing (such as roadside units, RSUs) can reduce the reliance on the cloud, the computing 
power of on-board computing units (ECUs) and edge nodes is limited, making it difficult to efficiently process 
high-precision perception models (such as 3D object detection), which may increase inference latency. Finally, 
the instability of communication networks, 5G/V2X communication may experience signal attenuation or con-
gestion in complex environments (such as tunnels, urban canyons), leading to transmission delays of critical 
perception data (such as the position information of adjacent vehicles), affecting the timeliness of cooperative 
decision-making.

2) In terms of environmental perception, first, regarding occlusion and blind spots, single-vehicle sensors have 
limited field of view (such as being occluded by large vehicles). Although cooperative perception can partially 
compensate for blind spots through multi-vehicle data sharing, in sparse traffic scenarios (such as single-vehicle 
driving) or when communication is interrupted, it may still miss detecting key obstacles. Second, cross-modal 
perception inconsistency, the perception results of different vehicles or sensors may conflict due to differences in 
perspective and algorithms (such as cameras misjudging shadows as obstacles, while lidars do not detect them), 
requiring complex fusion strategies, increasing computational burden and uncertainty. Finally, insufficient adapt-
ability to extreme environments, in adverse weather conditions (such as heavy rain, heavy snow) or strong light 
interference, sensor performance declines (such as sparse lidar point clouds, camera overexposure), and the ro-
bustness of cooperative perception still needs to be improved.

The work done in this paper on the integration of edge computing and cooperative perception during vehicle 
driving is as follows: 

1)	 An edge computing network model was constructed, which consists of two parts: vehicles and roadside 
units. Then, a communication model among multiple vehicles and a perception model among multiple 
vehicles were built;

2)	 The adaptive sparse federated learning algorithm was used to solve the Markov process, and the algo-
rithm design process was completed;

3)	 A simulation experiment platform was built, and the effectiveness of the method proposed in this paper 
was verified through comparative experiments.

2   Related Work

Drawing on a large number of research results and summarizing the current achievements in edge computing and 
collaborative perception provides a more scientific approach for the overall framework of this article. Both do-
mestic and foreign scholars have achieved corresponding results in edge computing and collaborative perception. 
In edge computing, this article mainly summarizes the achievements of edge computing in new energy vehicles.

Wenwang Li from the National University of defense technology, the research scheme is to unload the edge 
computing tasks to the edge server in the roadside unit. At the same time, the problem of resource preemption 
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and task processing delay will be considered when multiple vehicles send unloading requests at the same time. 
From the perspective of multi-objective optimization, the delay and energy consumption of unloading are ana-
lyzed and calculated in detail to minimize the delay and cost, and a task unloading algorithm based on improved 
non dominated sorting genetic algorithm is proposed. Finally, by reasonably balancing the delay and energy 
consumption, the algorithm can further improve the performance and efficiency of the Internet of vehicles sys-
tem and provide users with a safer and more convenient travel experience [6]. This approach demonstrates the 
potential of edge computing in reducing latency and optimizing resources in real-time vehicular networks.

Bin Qiu from Guilin University of Technology proposed a computing offloading and power allocation method 
based on deep reinforcement learning for the problems of vehicle mobility-induced time-varying channels and 
random task arrivals in the vehicular edge computing environment. The offloading model adopted a three-layer 
“end-edge-cloud” offloading model based on non-orthogonal multiple access in a two-lane scenario. Considering 
the communication, computing, and caching resources of this model as well as the mobility of vehicles, a joint 
optimization problem was further established to minimize the long-term cumulative total cost of power and cach-
ing delay for vehicular users. Finally, considering the dynamic, time-varying, and random characteristics of ve-
hicular edge computing networks, a distributed intelligent algorithm based on deep deterministic policy gradient 
was proposed to obtain the optimal power allocation mechanism [7].

Hongwei Zhao from Shenyang University proposed a vehicle-road-side collaborative scenario model in re-
sponse to the issues and challenges of vehicle edge computing. Taking vehicle density as the entry point, he 
defined the problem of minimizing the probability of communication link interruption and established a com-
munication rate model based on traffic density. By integrating three strategies - vehicle offloading, pricing, and 
resource allocation - the system optimization objective was described as minimizing the cost on the vehicle side 
while maximizing the utility value on the RSU side. The idea of problem decomposition was introduced to re-
duce the coupling degree of the problem, converting the original optimization objective into a balance problem 
between offloading and pricing as well as a resource allocation problem. The existence of the Nash equilibrium 
point in the offloading and pricing game was verified, and a distributed algorithm based on Stackelberg game 
(SDA) was proposed to solve the optimization problem. Finally, simulation experiments verified the impact of 
traffic density on transmission rate and demonstrated that SDA reduced the offloading cost of vehicles by 24% 
and increased the revenue of RSUs by 11% [8].

In terms of vehicle perception collaboration, Daxin Tian from Beihang University developed a two-dimen-
sional robust control method for mixed platoons in vehicle wireless networks. This method involves a leading 
CAV and multiple following HDVs, integrating robust information sensing and platoon control. To effectively 
detect and locate unknown obstacles in front of the leading CAV, a collaborative vehicle-infrastructure sensing 
scheme was proposed and integrated with the adaptive model predictive control scheme of the leading CAV. 
Finally, extensive simulations were conducted to verify our method. The simulation results show that the pro-
posed method can filter out the misleading perception information from malicious attackers, significantly reduce 
the mean square error of obstacle perception, and approach the theoretical error lower bound [9].

Jin Zheng from Beihang University, in response to the fact that the accuracy of existing 3D object detection 
algorithms based on pseudo point clouds is far lower than that of those based on real LiDAR (Light Detection 
and Ranging) point clouds, has studied pseudo point cloud reconstruction and proposed a 3D object detection 
network suitable for pseudo point clouds. Considering that the pseudo point clouds obtained from image depth 
conversion are dense and gradually sparse with increasing depth, a depth-related pseudo point cloud sparsifica-
tion method has been proposed, which reduces the subsequent computational load while retaining more effective 
pseudo point clouds at medium and long distances, achieving pseudo point cloud reconstruction. This paper 
proposes a 3D object detection network guided by LiDAR point clouds for feature distribution convergence and 
semantic association. During network training, a LiDAR point cloud branch is introduced to guide the generation 
of pseudo point cloud object features, making the generated pseudo point cloud feature distribution converge to 
that of LiDAR point clouds, thereby reducing the detection performance loss caused by inconsistent data sourc-
es. Experimental results show that the accuracy of 3D object detection based on pseudo point clouds has been 
improved by 0.57% [10]. This contribution enhances the feasibility of using pseudo point clouds in 3D object 
detection, a critical aspect of autonomous vehicle perception.

Bing Zhu from Jilin University, in response to the issue that abnormal vehicles and malicious attack informa-
tion in cooperative networks can affect the authenticity and effectiveness of cooperative perception results, pro-
posed a dynamic aggregation evaluation method for the trustworthiness of intelligent connected vehicles based 
on occlusion state discrimination and detection effectiveness recognition strategies, in combination with the 
detection results in vehicle cooperative networks. Simulation results show that the cooperative perception trust 
evaluation method proposed in this paper enhances the credibility of the detection results for cooperative percep-
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tion vehicles, strengthens the robustness of the cooperative perception process of intelligent connected vehicles, 
and realizes the dynamic identification of the trust management model in the face of sudden malicious attacks 
from high-trust vehicles [11].

The main content of this article is developed based on the overall framework of mobile edge computing, en-
hancing the vehicle’s obstacle avoidance and environmental adaptability through the collaborative perception 
of the vehicle end and the road end. This collaborative perception framework not only improves the safety of 
autonomous driving but also optimizes resource usage in vehicular networks, contributing to the advancement of 
intelligent transportation systems. 

3   The Construction of the Edge Computing Network System Architecture

The Internet of Vehicles is a highly complex network environment with huge amounts of data transmission and 
computing. It requires efficient data processing and management methods. In a network composed of multiple 
mobile edge computing nodes, users need to comprehensively consider factors such as the idle status of server 
resources and transmission distance, and determine the optimal mobile edge computing node for data offloading 
by balancing the weights of various parameters [12].

Mobile Edge Computing (MEC) architecture is a technical framework that shifts computing power from tra-
ditional centralized cloud to the network edge, aiming to meet the demands of emerging applications by reducing 
data transmission latency, improving bandwidth utilization, and enhancing privacy protection. This architecture 
mainly consists of three layers: network layer, host layer, and system layer.

The network layer is the fundamental part of the MEC architecture, responsible for defining and managing 
the network composition of the entire system. This layer elaborates on the network structure within the MEC ar-
chitecture, including but not limited to 3GPP networks, local networks, and external networks. Among them, the 
3GPP network, as one of the core standards for mobile communication, provides MEC with seamless integration 
capabilities with cellular networks, enabling mobile devices to quickly access edge nodes and enjoy low-latency 
services.

The host layer is the core component of the MEC architecture. It abstracts physical hardware resources 
through virtualization technology, thereby supporting multiple virtual machine or container instances to run on 
the same physical device. This approach significantly improves resource utilization and provides isolated exe-
cution environments for different applications. Additionally, the host management system plays a crucial role in 
this layer, mainly including two functional modules: MEC platform management and virtualization infrastructure 
management.

The system layer is located at the top of the entire architecture and mainly focuses on the management of 
global resources and the behavioral norms of applications. This layer clarifies the management rules for available 
resources in the MEC architecture and stipulates the verification requirements for applications to ensure that all 
programs running on edge nodes comply with the established security and performance standards. To further 
enhance system efficiency, the system layer dynamically adjusts, allocates, and releases the virtualization infra-
structure based on the specific needs of applications.

3.1   The Construction of An Edge Computing Network Framework	

The multi-vehicle edge computing network architecture is a network architecture oriented to the Internet of 
Vehicles. The network framework is shown in Fig. 1. The network is composed of two parts: vehicles and road-
side units. Vehicles represent mobile nodes in vehicles, which are usually equipped with various types of sensors 
and communication devices and can collect and transmit various types of data. Roadside units refer to edge com-
puting devices placed on the roadside, typically including edge computing servers, base stations, and vehicles 
parked on the roadside carrying communication devices, etc. Roadside units have edge computing capabilities 
and data storage capabilities to support various application services in the Internet of Vehicles. In a multi-vehicle 
edge computing network, a specified length of traffic section is set, and this specified length of road section is di-
vided into several distance intervals. A roadside unit is placed in each interval, and each roadside unit is a mobile 
edge computing node used to provide edge computing services and storage services [13].

Suppose that vehicles are traveling at a constant speed on the road, and during the offloading decision-making 
process, each vehicle will choose the nearest roadside unit for transmission and communication. Each vehicle 
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user needs to handle a computationally intensive task. Vehicles and roadside units can communicate and collab-
orate with each other to achieve efficient and reliable operation of various application services. By leveraging 
the communication and computing resources between vehicles and roadside units, multi-vehicle edge computing 
networks can significantly enhance the efficiency and performance of the Internet of Vehicles.

Fig. 1. Overall architecture of vehicle edge computing

The parameters included in the network architecture are shown in Table 1.

Table 1. Parameter list in network architecture

Parameter symbol Parameter symbol description

{ }1,2, ,C x x n= =  Vehicle matrix

{ }1,2, ,R y y m= =  Roadside unit matrix

( ), ,x x x xT α β γ= Intensive task matrix

xα Data volume of tasks

xβ Task execution cycle

xγ Task delay

nd User offloading decision
d System offloading decision

localf Local working frequency of device CPU

cdT Device computing latency

xe Energy consumption coefficient of local devices

tη , eη
Calculate the corresponding weights of computing delay 
and computing energy consumption.

.S powerC The computing power of the server

iyn The number of users offloading computing tasks to the 
same edge computing server
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3.2   The Construction of Communication Models

When a certain vehicle in the vehicle matrix, namely vehicle x, performs an offloading operation, the offloading 
decision is denoted as dx = d m

x , and the vehicle selects an edge computing server for computing offloading. In the 
Internet of Vehicles, due to the constantly changing positional relationship between vehicles and roadside units, 
this paper assumes that the arrival rate of vehicles in motion follows a Poisson distribution [14]. Therefore, the 
distance between vehicles and roadside units is constantly changing. The vehicle distance information is ex-
pressed as:

2
2

2 i
Dd L vt = + − 

 
(1)

Here, L represents the vertical distance between the roadside unit server and the horizontal road surface, D 
represents the coverage range of each roadside server, and ti is the time it takes for the vehicle to pass through 
this roadside area. According to the Shannon formula, the information transmission rate between the vehicle and 
the roadside unit at a certain moment is expressed as:

2
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In the formula, VC&R represents the information transmission rate between the vehicle and the roadside unit, Bw 
stands for the channel bandwidth during the wireless transmission process, Pc represents the transmission pow-
er of the vehicle equipment, pathl δ−  represents the path loss during the transmission between the vehicle and the 
roadside equipment, δ represents the path loss factor,  fchannel indicates the channel fading coefficient of the uplink, 
and σ2 represents the power of Gaussian white noise. Then, the delay and energy generated by local computing at 
time t are expressed as:

.
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The total cost of edge computing tasks executed locally is represented by the weighted sum of computing de-
lay and computing energy consumption, as shown below:

.x t x cd e xC T Eη η= + (5)

In the formula, the sum of the weights of the delay coefficient ηt and the energy coefficient ηe is 1. Assuming 
that all vehicles are treated fairly when allocating computing resources, when the vehicle’s computing tasks are 
offloaded to the edge computing server for execution, the server’s computing capacity CS·power will be evenly dis-
tributed to the vehicle x based on the resource usage. The allocation process is expressed as follows:

( )
.

. .
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iyi v n n

C
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∈ =
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Then the total cost of task offloading to the edge server is expressed as:
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η η= + (7)
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3.3   The Network Model of Edge Computing

Combining the delay and energy consumption formulas provided in the previous text, the mathematical expres-
sion for the total cost of computing offloading in the vehicle edge computing system can be obtained as:

( ) ( )( ) ( ) ( )( )0 0
. .min m

total t x x cd x r cd e x x r
x C x C

C d T t d T t d E t dE tη η
∈ ∈

= + + +∑ ∑ (8)

When dx = d 0
x occurs, the vehicle selects the edge computing server for computing offloading. When dx = d m

x 
happens, the vehicle user opts to offload the task to the nearest edge computing server.

3.4   Establishment of Multi-Vehicle Perception Model

In the process of multi-vehicle cooperative control in edge computing, each vehicle not only relies on its own 
on-board sensor system to collect environmental data, but also acquires additional environmental information 
through communication with cooperative vehicles [15]. This information sharing mechanism significantly ex-
pands the perception range and accuracy of environmental perception of individual vehicles. As mentioned 
in Section 3.3, the vehicle in this paper is denoted as C = {x| x = 1, 2, ..., n}. When vehicles are cooperatively 
controlled, they can communicate with each other, and the control objective is to achieve better detection of 
surrounding environmental targets during driving by sharing deep features among multiple vehicles. Since each 
driving vehicle is equipped with sensors necessary for autonomous driving, such as linear radar, laser scanning 
radar, and high-definition cameras, these devices can capture high-precision environmental data around the vehi-
cle in real time. Through real-time data sharing among vehicles, a comprehensive perception of the surrounding 
environment is achieved.

For the i-th cooperative vehicle xi, its raw sensing data and detection output are represented by Datai and 
Outi respectively. Cooperative vehicle xi uses an encoder to extract features Featurei from its raw sensing data 
Datai . The extraction process requires effective processing of the sensor data obtained from the vehicle’s lidar, 
high-definition cameras, and other sensors, thereby obtaining features that are rich in information and deeply 
compressed. The feature representation method is as follows:

( )i iFeature Encoder Data= (9)

In the formula, Encoder represents the encoder extraction process. After the extraction is completed, the coop-
erative vehicle xi fuses its own features with the features of the data obtained from other vehicles to form a fused 
feature Ffeature(i). Through time synchronization and spatial calibration, it ensures that the features from different 
vehicles can be effectively fused [16].

( ) 1
n

feature x iF i Feature== ∪ ⋅ (10)

Then, the collaborative fusion model Fmodel is used to process Ffeature(i), obtaining the fused feature iM . This 
model is responsible for handling and optimizing the heterogeneous features transmitted from different driving 
vehicles to enhance the accuracy and reliability of the target detection results of the surrounding environment.

( )( )modeli featureM F F i= (11)

Finally, the cooperative vehicle xi uses the decoder Decoder to parse the detection results iOut  of the environ-
mental detection targets from the fused features Mi .

( )i iOut Decoder M= (12)

The environmental target detection result Outi of the cooperative vehicle xi is represented by a three-dimen-
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sional bounding box, and the representation method is as follows:

( )1, , K
i i iOut o o=  (13)

The bounding box contains the coordinate and shape information of the detected object, which is represented 
as follows:

( ), , , , , ,k
io x y z w l h α= (14)

In the formula, (x, y, z) represents the center position of the object’s bounding box, (w, l, h) represents the 
length, width and height of the bounding box, and α represents the angle indicating the tilt degree of the bound-
ing box.

Based on the above-mentioned edge computing and collaborative perception model, a Markov process model 
is further established to solve the optimal resource allocation and target solution for edge computing and collabo-
rative perception.

4   Modeling of Markov Decision Process in Edge Computing

Throughout the entire edge computing collaborative driving process, the motion state of the vehicle, the opera-
tion state of the local computer, the transmission state of the wireless communication network, and the operation 
state of the edge server can be modeled as a Markov process [17]. Therefore, the quality of the decision-making 
process can be evaluated by defining reward values, which provides convenience for further solving the optimal 
task offloading strategy based on the reinforcement learning theory [18]. 

Computational task offloading refers to the process of transferring local computing tasks from a local comput-
er to an edge server for processing via wireless data transmission. Once the tasks are completed, the results are 
sent back to the local computer through wireless data transmission. In this study, the local computer specifically 
refers to the computing unit on board a vehicle or the computing unit of a roadside device. The decision-making 
process of task offloading involves an agent generating the decision results for task offloading based on a certain 
mapping relationship. Different task offloading strategies have a significant impact on the overall performance 
of a mobile edge computing system. Moreover, the design of task offloading strategies highly depends on the 
specific parameters of the edge computing system and the set optimization goals. For instance, when the wireless 
transmission rate is high and the edge server has sufficient computing power, if the goal is to optimize system 
latency, offloading as many tasks as possible to the edge server is a better strategy. However, for a system aiming 
to minimize energy consumption, since both data transmission and edge server operations bring additional ener-
gy costs, offloading more tasks to the edge server may not be the optimal choice [19]. 

In this context, the modeling process selects the vehicle coordinates and vehicle speed to represent the motion 
state at the vehicle end; describes the state of the computing task by calculating the data size of the task and the 
number of CPU cycles required per bit of data; and represents the execution state of the task by calculating the 
execution location of the task. Additionally, the aforementioned Markov process is also used to depict the com-
puting states of the local computer and edge server. To simplify the modeling process, the following assumptions 
are made in this paper:

1) Within the wireless communication coverage range of each cellular base station, the wireless transmission 
state of data is approximately considered consistent and unchanged, not related to the vehicle’s motion state, and 
the same cellular base station can simultaneously access multiple computing tasks;

2) In this mobile edge computing system, whether it is the local computer or the edge server, once a comput-
ing task is executed on the CPU, all computing power is released, that is, the scheduling of hardware resources 
only depends on the computing task offloading strategy.
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4.1   State Space Representation

The entire mobile edge computing system consists of multiple cellular base stations. Taking the base station y of 
a certain cellular network as the center, for a specific computing task j, the system state can be expressed as:

{ }, , , ,k
i j j j j js o p v ε (15)

In the formula, pj represents the initial position coordinates generated by the computing task, vj represents the 
movement speed of the vehicle, and εj represents the execution position of the computing task. Specifically, when 
εj = 0 occurs, it indicates that the task is executed on the local computer, and when εj = 1 occurs, it indicates that 
the task is executed on the edge server.

4.2   Representation of Action Space

Based on the modeling results of the system state space in the previous subsection, if the system action is to off-
load to the edge server, the task execution state εj will be set to 1, and if the system action is to arrange for execu-
tion on the local computer, εj will be set to 0. The expression of the action space is as follows:

[ ]{ }, , , 0,1i j i j i ja a a= ∈ (16)

In the formula, ai, j = 0 represents the execution of the computing task on the local computer, and ai, j = 1 indi-
cates that the computing task is offloaded to the edge server for execution.

4.3   The Reward Function Represents

After obtaining the cost function formula of a specific computing task Outi in the system, the formula is ex-
pressed as follows:

( )( ) ( ). .( ), ( ) (1 )x cd x x cd xO T t E t T t E tβ β= + − (17)

For the entire system, considering the overall cost generated by the system at a certain moment to complete all 
the computing tasks within it, the cost for the action strategy that changes the system’s state space from si, j(n) to 
si, j(n+1), with the involved task queue list represented as {o1

j, o
2
j, ..., o

n
j}, the total cost value of the entire process 

is expressed as follows:

( )( ) ( )( ), .1
, ( ),n

n i j x cd xj
O a s n O T t E t

=
= ∑ ∑ ∑ (18)

To achieve the optimal performance of the system and minimize the system’s cost during the task offloading 
process, the calculation results of the reward function and the cost function should be in a complementary rela-
tionship. The expression is as follows:

( ) ( )( ) ( )( ). , ,, , 1 ,i j n i j n i jR s n a s n O a s nϕ+  (18)

In the equation, A is the balance coefficient, set to a negative value. This coefficient is also used to balance the 
relative magnitudes of the reward function value and the cost value. Clearly, from the equation of the total sys-
tem cost value, the cost value is a non-negative number, so the reward value will be a non-positive number. The 
objective of solving the optimal task offloading strategy is to maximize this non-positive number.
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The above process completes the construction of the Markov model for the edge computing collaborative per-
ception task in this paper. This paper uses the joint auxiliary training adaptive sparse federated learning algorithm 
to ensure that important devices can continuously participate in multiple rounds of federated training and model 
solving [20]. The algorithm comprehensively considers the computing power, energy, and federated model train-
ing process of each device, and adaptively adjusts the model sparsity within each communication round, dynami-
cally deciding the auxiliary training devices and the allocation of auxiliary resources [21].

The pseudo-code of the algorithm is represented as follows:

Initialize global model parameters θ_global
Initialize local model parameters θ_local for each client
Initialize sparsity mask M for each client
Initialize learning rate η
Initialize number of communication rounds T
Initialize number of local epochs E
for t in range(T):
    selected_clients = select_clients(clients, fraction=C)
        for client in selected_clients:
         θ_local = θ_global
        for e in range(E):
         θ_local, M = adaptive_sparse_training(θ_local, M, client.data, η)
         upload_update(client, θ_local)
         θ_global = aggregate_updates(selected_clients)
        M_global = update_global_sparsity_mask(selected_clients)
        η = update_learning_rate(η, t)
return θ_global
def adaptive_sparse_training(θ_local, M, data, η):
    for batch in data:
               gradients = compute_gradients(θ_local, batch)
                  gradients = apply_sparsity_mask(gradients, M)
                  θ_local = θ_local - η * gradients
                  M = update_sparsity_mask(M, gradients)
        return θ_local, M
def update_sparsity_mask(M, gradients):
       M = apply_sparsity_criteria(M, gradients)
    return M
def aggregate_updates(selected_clients):
   θ_global = weighted_average([client.θ_local for client in selected_cli-

ents])
    return θ_global
def update_global_sparsity_mask(selected_clients):
      M_global = aggregate_sparsity_masks([client.M for client in select-

ed_clients])
    return M_global
def update_learning_rate(η, t):
    η = η * (1 / (1 + decay_rate * t))
    return η

The network parameters are updated using the deterministic policy gradient, which is effectively applied in the 
reinforcement learning decision-making of continuous action spaces. The overall network structure is shown in 
Fig. 2.
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Fig. 2. Schematic diagram of algorithm structure

The optimization objective is ( )( ),,n i jO a s n  and is defined as the cumulative discounted reward. The gradient 
formula of the value network sampling estimation is expressed as follows:

( )( )( ) ( ) ( )( ) ( )( )( ), , , ,1 , 1 , ,i j x i j i j i jL R s n E s n s n R s nβ φ µ θ ∇ = + + +  (19)

In the formula, ϕ and μ represent the weights of the target policy network and the target value network respec-
tively. By adding random noise to the action space, the interaction with the environment is increased, making the 
exploration of the policy more thorough. Meanwhile, the experience replay mechanism stores the training data 
and randomly samples it to update the model, reducing the correlation of sample data. Within multiple communi-
cation rounds of federated learning, fixing the model sparsity ratio is not conducive to the training of an accurate 
federated model. In the early stage of federated learning, the model parameters are far from the optimal values, 
and reducing the sparsity ratio at this time helps the model converge in the right direction; as the aggregation of 
multiple communication rounds progresses, the model parameters tend to stabilize, and increasing the sparsity 
ratio at this time helps reduce redundant communication and computation. Therefore, within each communica-
tion round, the central server aggregates the local models returned by the devices and edge servers and adaptively 
calculates the current global model’s sparsity ratio. Performing a Hadamard product operation between the mask 
matrix and the global model yields the global sparse model. Then, the central server sends the global sparse mod-
el and the corresponding mask matrix to the devices and edge servers participating in the training for the next 
round of training. The gradients of the local models are calculated with the Hadamard [22] product of the mask 
matrix of this round, meaning that only the remaining weight parameters need to be updated in the next round of 
training.

5   Experimental Results and Analysis

This paper first conducts simulation experiments on different auxiliary training optimization algorithms. The 
code is implemented through Python 3.9.10 and runs on a computer equipped with an NVIDIA GeForce RTX 
2060 GPU. The overall framework of vehicle-end collaborative perception is shown in Fig. 3.
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Fig. 3. Overall framework structure of vehicle-end perception

To compare the ability of the method proposed in this paper for edge computing task offloading, real simu-
lation tasks were set up, which included object detection algorithms and roadside pedestrian positioning algo-
rithms. As the training process of neural network parameters progresses, the cumulative reward value change 
curve of each sampled trajectory is shown in Fig. 4. As can be seen from the figure, the cumulative reward value 
increases sharply at the beginning of the training, indicating that the model performance is improving at a rapid 
speed. The reason for the early improvement is likely due to the optimization of edge computing task offloading, 
which makes calculation speed higher and processing more accurate. As training continues, the curve becomes 
more stable, indicating that the model has converged to a state where further significant improvements no longer 
occur on a regular basis. This can be the realization of diminishing returns of optimization when the system is 
nearing an almost optimal task offloading policy.

Fig. 4. The cumulative reward value change curve of the sampling trajectory

There was some jitter in the initial training stage. When the training process reached around the 75th genera-
tion, the curve tended to stabilize, and the parameters gradually updated to the optimal ones. The task offloading 
delay was compared for the tasks set in this paper using the strategy before and after improvement. The compari-
son results are shown in Fig. 5. As seen from the chart, the percentage of tasks with computation latency less than 
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or equal to 20ms greatly improved after the improvement, improving from 12% prior to improvement to 54% 
following improvement. The percentage for latency between 20ms-40ms was 41% prior to improvement and 
improved slightly to 43% after improvement. However, for tasks with latency higher than 40ms, the percentage 
dropped drastically from 45% before improvement to only 5% after improvement. These results manifest the 
tremendous drop in the number of high-latency tasks, which indicates the accomplishment of the proposed 
method in minimizing task offloading latency and optimizing computation efficiency.

Fig. 5. Delay comparison effect

To verify the performance of cooperative perception, a MATLAB simulator is used to plan the driving scenari-
os of a fleet. The size of the fleet is set to 5 to 15 vehicles, and the trajectory of each vehicle is randomly planned. 
Therefore, the number of neighbors for each vehicle is dynamic. Moreover, in this section, the Mathematic sim-
ulation tool is adopted to simulate the perception coverage area of vehicles during dynamic driving. It enables 
the visualization of dynamic coverage areas. The communication coverage range of the leading vehicle is 100 
meters. Thus, this section focuses on a four-lane road that is 1000 meters long and 20 meters wide. The fleet sizes 
are set to 5, 10, and 15 vehicles respectively.

Fig. 6. Comparison of coverage areas of perception range

Multiple simulations were conducted for each scale to eliminate the error caused by a single experiment. The 
efficiency of the sensing coverage is shown in Fig. 6. As the number of selected vehicles increases, the cooper-
ative sensing coverage area also enhances. When the number of vehicles reaches a certain quantity, it will cause 
a certain degree of redundant coverage. Since the sensing ranges of the first few vehicles do not overlap, as the 
number of selected vehicles increases, the overlapping situation also increases. When the vehicle scale is 5, this 
algorithm can ensure the maximum coverage area of cooperative sensing by considering the current vehicle’s po-
sition and corresponding sensing capability, and giving priority to selecting vehicles with a larger sensing range 
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to perform sensing operations. When the fleet scale increases to 15, the maximum sensing coverage area can be 
guaranteed when the number of selected vehicles reaches 12. This indicates that in the process of vehicle number 
selection, this algorithm takes into account the sensing overlap between vehicles, ensuring that the redundancy of 
sensing coverage is reduced during the vehicle selection process and improving the performance of cooperative 
sensing.

6   Conclusion

This paper designs a mobile edge computing method suitable for cooperative perception of intelligent driving ve-
hicles, which can effectively expand the computing power and perception ability of intelligent driving vehicles. 
Through reinforcement learning methods, the optimal resource scheduling strategy of the cooperative control 
system is obtained, which saves the energy consumption of the system and optimizes the computing delay. A 
multi-vehicle cooperative perception fusion strategy is designed, which fuses the perception information of cam-
eras and lidars, and describes the method of extracting target features through other vehicle-end networks. The 
final research method is verified in the simulation experiment scene. The simulation scene uses Matlab to build a 
multi-vehicle cooperative control environment. By comparing with the results of the control experiment group, 
it is shown that the vehicle-road cooperative perception strategy based on mobile edge computing proposed in 
this paper has significantly improved the perception range and computing performance of multi-vehicle percep-
tion tasks. Further research mainly includes the following two points: First, 5G communication equipment is in 
the process of large-scale commercial preparation, and the improvement effect of the communication network 
model under the 5G background can be further studied; second, the perception of actual intelligent vehicles is a 
large and complex process, and the vehicle-road cooperative perception of multiple targets needs to be further 
explored.

Firstly, 5G communication infrastructure is currently undergoing large-scale commercial deployment prepara-
tion. Further investigation into the performance enhancement of communication network models within the 5G 
framework is warranted. 5G technology facilitates highly efficient vehicle-to-everything (V2X) communication, 
enabling real-time transmission of high-precision sensor data such as LiDAR, camera, and millimeter-wave 
radar information. This capability effectively mitigates the limitations of single-vehicle perception in complex 
scenarios. Moreover, 5G edge computing supports rapid fusion and processing of distributed perception data, 
thereby improving the system’s responsiveness to dynamic obstacles and emergency events. Additionally, the 
collaborative perception architecture for vehicular networking based on 5G networks promotes multi-vehicle 
data sharing, enabling the construction of a global perception model that enhances both the safety and robustness 
of autonomous driving systems. Future research should focus on optimizing 5G-enabled real-time perception al-
gorithms, designing vehicle-cloud-edge collaborative computing frameworks, and developing novel communica-
tion-perception integrated network protocols, all of which are critical for supporting the large-scale deployment 
of advanced autonomous driving technologies.

Second, in terms of the lightweighting of the cooperative perception model, the lightweighting of the autono-
mous driving cooperative perception model is mainly achieved through multi-dimensional optimization. At the 
model level, lightweight network architectures (such as MobileNet and EfficientNet) and knowledge distillation 
techniques are adopted, reducing computational load through depthwise separable convolutions and channel 
attention mechanisms. At the data level, feature compression and sparsification are implemented, using auto-
encoders to compress key features and performing spatial/channel sparsification based on importance scores. 
Communication optimization involves adaptive bandwidth allocation and edge collaborative computing, off-
loading some tasks to roadside units to achieve joint optimization of computing and communication. In terms of 
hardware adaptation, 8/4-bit quantization, mixed precision, and hardware-specific optimizations are employed to 
significantly reduce storage and computing costs. Dynamic inference techniques utilize early exit mechanisms 
and input adaptive strategies to flexibly adjust computing resources based on scene complexity. These methods 
need to balance accuracy and efficiency, maintain critical safety redundancies, and consider the overall optimi-
zation effect of multi-vehicle collaboration. Current advanced solutions such as CoBEVT have demonstrated 
feasibility. In the future, by integrating neural architecture search technology, lightweighting will become more 
intelligent and efficient, laying the foundation for the large-scale deployment of autonomous driving.
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