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Abstract. Multimodal emotion recognition presents two major challenges: the limited capacity to 
model higher-order interactions among modalities, and the difficulty of achieving effective fusion due 
to imbalanced data quality across modalities. To address these issues, this paper proposes a novel model 
based on hierarchical feature fusion. The model adopts a three-level fusion framework. First, it integrates 
static fusion with a dynamic weighting mechanism informed by Bayesian uncertainty estimation to achieve 
initial alignment and importance modeling of modality-specific features. Second, a multi-head cross-modal 
attention mechanism is introduced to capture contextual dependencies and complementary information across 
modalities. Finally, gated recurrent units are employed to model temporal dynamics, thereby enhancing the 
semantic-level fusion representation. Experimental results demonstrate that the proposed method achieves 
84.6% accuracy on binary classification tasks using the MOSEI dataset and a weighted F1 score of 69.7% 
on the IEMOCAP dataset—representing a 2.1% improvement over the representative baseline, COGMEN. 
Ablation studies further validate the essential contributions of the multi-head attention mechanism, dynamic 
weighting strategy, and gated fusion module to the overall performance gains.

Keywords: multimodal emotion recognition, hierarchical feature fusion, dynamic emotion modeling, 
bayesian uncertainty estimation, multi-head attention mechanism

1   Introduction

The widespread application of artificial intelligence technologies has driven the rapid growth of demand for 
emotion recognition in natural interaction scenarios. The core task of emotion recognition is to accurately de-
termine an individual’s emotional state by comprehensively analyzing multiple signal sources, such as speech, 
text, and video. Among these, multimodal emotion recognition, which integrates information from multiple mo-
dalities, is regarded as a key technology for achieving high-performance emotion recognition due to its ability 
to significantly enhance recognition accuracy [1]. However, the complexity of emotion recognition, such as the 
dynamic changes in emotional states, the cross-modal misalignment, and individual differences, poses signifi-
cant challenges in the design of emotion recognition systems. In this context, multimodal information fusion has 
emerged as an effective strategy that, by exploiting the complementary information from multiple data sources, is 
expected to alleviate the aforementioned issues and significantly improve the accuracy and robustness of emotion 
recognition.

Existing multimodal emotion recognition methods often employ simple concatenation or static weight distri-
bution strategies during feature fusion. While these methods enable basic integration of different modality fea-
tures, they overlook the potential dynamic interactions between modalities, making it difficult to fully capture the 
complex emotional features. Furthermore, multimodal data often exhibit significant differences in quality, with 
certain modalities potentially being affected by noise or data missingness, thereby weakening the contribution 
of specific modalities to the emotion recognition task. In such cases, the model needs the ability to dynamically 
adjust the modality weights to accommodate inputs with varying data quality. However, current research in this 
area remains insufficient, causing existing methods to be vulnerable to data noise and modality missingness, re-
sulting in inadequate robustness in practical applications.
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To address these issues, this paper proposes a multimodal emotion recognition model based on Hierarchical 
Feature Fusion (HFF). The model employs a progressive feature fusion strategy, gradually extracting high-
er-order interaction information between modalities from low-level features [2], thereby enabling the model to 
capture more complex and expressive emotional patterns. In addition, the model incorporates a Bayesian uncer-
tainty-based dynamic weighting mechanism that adjusts modality contributions based on confidence estimates, 
significantly enhancing robustness under conditions of imbalanced data quality. To further improve the expres-
sive power and interaction efficiency of modality features, we introduce a multihead cross-modal attention mech-
anism and a gated adaptive fusion module. This architecture not only strengthens the model’s focus on salient 
modality information but also provides a more flexible and adaptive framework for multimodal feature fusion, 
ultimately improving both recognition accuracy and system stability.

The main contributions of this paper are summarized as follows:
(1) Proposed Hierarchical Feature Fusion Model: We designed a primary modality alignment module based on 

a dynamic weighting mechanism, an interaction learning module based on multi-head cross-modal attention, and 
a higher-order semantic fusion module combining a gated mechanism, which progressively explores higher-order 
interaction characteristics between modalities, significantly enhancing emotion recognition performance.

(2) Introduced Uncertainty Assessment Mechanism: We employ a Bayesian neural network to dynamically 
assess the confidence of modality features and adjust the modality weight distribution based on confidence, effec-
tively addressing modality data noise and missingness issues, thereby enhancing the model’s robustness.

(3) Validated Method Effectiveness on IEMOCAP and MOSEI Datasets: Through systematic experiments, we 
validated the superior performance of the method in emotion classification tasks, and ablation experiments con-
firmed the rationality of the model design and the contributions of key modules.

2   Related Work

2.1   Multimodal Feature Fusion Methods

Research in multimodal emotion recognition primarily focuses on feature extraction [3] and feature fusion [4]. 
As the core process determining the ability to capture interaction information between modalities, feature fusion 
methods have evolved from static to dynamic fusion, with recent trends in deep fusion, multi-level interactions, 
and cross-modal modeling.

Static fusion methods primarily use rule-driven strategies such as feature-level concatenation and weighted 
averaging, which offer advantages in simplicity and computational efficiency [5]. However, since these methods 
cannot dynamically adjust the fusion weights based on the semantic or contextual relevance between modali-
ties, their performance is often limited when facing significant heterogeneity or nonlinear interactions between 
modalities. With the widespread use of deep learning technologies, more and more researchers have turned to 
learning-based dynamic fusion methods to enhance the model’s ability to capture complex associations between 
modalities and improve generalization.

Dynamic fusion mechanisms often incorporate attention mechanisms [6] to achieve adaptive weight distri-
bution between modalities. Chen et al. proposed a staged fusion strategy, using cross-modal dynamic correla-
tion coefficients to integrate high-level local features and enhance semantic consistency [7]. Hu et al. modeled 
the dynamic evolution of context across multiple semantic spaces, effectively enhancing the complementarity 
between modalities [8]. In the task of fusion between facial and speech features, attention weight calculation 
strategies have been proven to optimize the alignment and interaction of multimodal features, improving fusion 
performance [9]. For the fusion of acoustic and text modalities, a cross-attention mechanism combined with deep 
neural network architecture further achieves more refined feature extraction and semantic enhancement [10]. In 
three-modal fusion tasks, a bidirectional multi-head cross-attention architecture effectively mitigated the impact 
of information redundancy or missingness between modalities by constructing multi-granularity, multi-direction-
al mappings between modalities [11]. Furthermore, to further improve the modeling of complex cross-modal de-
pendencies, some studies have introduced gating mechanisms (such as group gating [12]) to selectively enhance 
and dynamically control the contribution of different modalities.

Although the aforementioned fusion strategies have achieved significant results in modeling first-order mo-
dality interaction relationships, they still fall short when it comes to modeling higher-order structural relation-
ships [13]. In recent years, graph neural networks (GNNs) have gradually become important tools for handling 
complex structural and long-range dependency relationships between modalities [14]. For instance, Shirian et 
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al. transformed speech emotion recognition tasks into a graph classification problem and used graph convolu-
tion operations to model both intra-modal and cross-modal structural information, thereby strengthening feature 
associations [15]; Liu et al. designed a non-Euclidean space modeling framework based on Graph Isomorphism 
Networks (GIN) and demonstrated the potential of graph structures to maintain global consistency in emotion 
representations [16]. However, despite the advantages of graph models in terms of expressiveness, issues such as 
high computational complexity and training instability still limit their practical application in large-scale systems.

In addition to fusion strategies, the temporal synchronization and feature density matching between modali-
ties are also crucial factors influencing fusion performance. To address the multimodal alignment problem, some 
studies have introduced strategies such as sliding time windows, timestamp reconstruction, and feature re-projec-
tion to alleviate information misalignment between modalities. For example, by introducing temporal alignment 
networks or attention alignment modules, dynamic mapping between modalities with different temporal resolu-
tions can be achieved, thereby enhancing consistency and accuracy during the feature fusion process. However, 
in extreme scenarios involving modality missingness or significant delays, such alignment mechanisms still face 
challenges in generalization.

It is worth noting that current multimodal fusion methods often focus on local interaction modeling and lack 
a systematic, hierarchical fusion mechanism. In this context, hierarchical fusion architectures have gradually 
attracted the attention of researchers. These methods integrate multimodal features at different granularities and 
semantic levels, not only enhancing the expression capability of high-dimensional semantic information but also 
providing more stable and discriminative fusion representations for subsequent context modeling and classifica-
tion tasks.

2.2   Multimodal Uncertainty Modeling and Evaluation

In multimodal emotion recognition tasks, different modalities are often influenced by noise, information loss, 
and signal delay during data collection, leading to significant differences in modality quality. This imbalance not 
only interferes with the effectiveness of feature fusion but also reduces the overall robustness and reliability of 
the model. Therefore, modeling and leveraging modality uncertainty during fusion has become a key issue for 
improving recognition accuracy and credibility.

Early research primarily focused on enhancing the robustness of multimodal fusion strategies, yet the con-
cept of uncertainty was not explicitly introduced for modeling the contributions of modalities, which made it 
difficult to address scenarios with large fluctuations in modality quality. With the development of deep learning 
and Bayesian methods, uncertainty evaluation has gradually become an important approach to address issues of 
modality quality imbalance and model prediction confidence in multimodal emotion recognition [17]. The pri-
mary functions of uncertainty modeling can be summarized in two aspects: first, by quantifying the uncertainty 
of modality features, it effectively adjusts the influence weights of low-quality modalities, thereby enhancing the 
robustness of fusion results; second, by measuring the confidence level of the model’s output, it assists in risk 
control, reducing the negative impact of incorrect predictions.

Bayesian Neural Networks (BNNs) serve as a representative method for modeling prediction uncertainty. 
By representing network weights as probability distributions, BNNs explicitly model uncertainty in the param-
eter space of the model [18]. BNNs can dynamically allocate modality weights during inference, allowing for 
adaptive adjustment of decision paths based on feature quality and prediction confidence, thereby improving the 
model’s robustness in multimodal information fusion [19]. For instance, Tellamekala et al. introduced a modali-
ty-level uncertainty measurement mechanism, effectively quantifying the randomness and instability of modality 
performance in emotion prediction, providing a suppression mechanism for low-quality modalities [20]. Chen et 
al. further proposed a hierarchical uncertainty modeling framework, where, in the context of dialogue emotion 
recognition, adaptive noise perturbations were introduced to adjust context attention, modeling context-level 
uncertainty, while Bayesian Capsule Networks were used to model modality-level uncertainty, thus achieving 
multi-level uncertainty perception and fusion optimization [21].

However, although these methods theoretically enhance the model’s ability to perceive uncertainty, their prac-
tical deployment still faces challenges such as high computational complexity and training instability. Especially 
in large-scale multimodal systems, the high demands of Bayesian Neural Networks on resources and inference 
time limit their widespread application. Moreover, current uncertainty modeling methods mainly focus on mo-
dality-level or context-level uncertainty estimation, and the ability to model collaborative uncertainty between 
different modalities remains insufficient, with a lack of fine-grained cross-modal uncertainty complementarity 
mechanisms.
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Based on this, this paper proposes a hierarchical fusion framework that combines cross-modal interaction 
mechanisms with uncertainty weighting strategies, building upon previous work. This approach not only retains 
the advantages of Bayesian methods in expressing model confidence but also reduces model complexity through 
structural fusion mechanisms, thereby improving deployability while ensuring performance.

3   Proposed Method

The HFF method proposed in this chapter includes the single-modality feature extraction module, hierarchical 
feature fusion module, cross-modal dynamic weight adjustment module, and classifier design module, as shown 
in Fig. 1. The model employs a progressively layered feature fusion strategy to fully explore the complex high-
er-order interactions between modalities, and dynamically adjusts weights to enhance robustness against uncer-
tainty and the imbalance in data quality.

Fig. 1. Hierarchical Feature Fusion (HFF) framework

3.1   Uni-modal Feature Extraction Module

To ensure the quality and adaptability of input features, different feature extraction methods are applied to the 
speech (Speech), text (Text), and vision (Vision) modalities in this chapter.

(1) Speech Feature Extraction
For the speech modality, Mel-frequency cepstral coefficients (MFCCs) and deep convolutional neural 

networks (CNNs) are utilized to obtain effective and discriminative audio features. In multimodal emotion 
recognition tasks, speech signals are typically provided as time-domain waveforms. However, raw time-domain 
signals do not explicitly convey emotional characteristics. Therefore, it is necessary to convert them into the 
time-frequency domain to extract more informative representations. The Short-Time Fourier Transform (STFT) is 
applied to analyze the spectral content of the speech signal across sequential time windows. It is mathematically 
defined as:

2( , ) ( ) ( ) j fn
s

n
X t f x n w n t e π−= −∑                                                               (1)

Where xs(n) denotes the original speech signal, w(n) is the window function, and X(t, f ) represents the time-
frequency spectrum. Although STFT provides detailed spectral information, the resulting high-dimensional 
representation may introduce excessive computational complexity. To better align with the nonlinear 
characteristics of human auditory perception, a Mel-frequency filter bank is applied to transform the linear 
frequency spectrum into the Mel scale. The conversion is computed as:
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Where f is the linear frequency and M(f ) is the corresponding Mel frequency. After weighting the time-
frequency spectrum with the Mel filter bank, the Mel spectrogram energy is computed as:

2| ( , ) | ( )m k m k
k

S X t f H f= ∑                                                            (3)

Where Hm( f k) denotes the filter response of the m-th Mel filter, and Sm represents the energy in the Mel 
spectrogram. While this representation captures perceptually relevant frequency information, it may still contain 
redundant data unsuitable for direct use in classification tasks. Therefore, MFCCs are computed to further refine 
the features. First, a logarithmic transformation is applied to the Mel spectrogram:

log | |m mS S′ =                                                                              (4)
 
Then, a Discrete Cosine Transform (DCT) is applied to remove the correlation between features and improve 

their discriminative ability:
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Where cn denotes the n-th coefficient and M is the number of Mel filters. These MFCC features serve as 
compact and robust inputs for downstream learning models. To extract higher-order features from the MFCCs, a 
Convolutional Neural Network (CNN) is employed. CNNs are particularly effective in capturing local temporal 
patterns in audio spectrograms. Given an MFCC feature matrix Xmfcc, the CNN computes feature maps as follows:
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Where ( )i
kh  is the feature map of the k-th channel in the i-th layer, ( )k

iW  and ( )kb  denote the convolution 
kernel and bias, with a nonlinear activation function applied after the convolution. To reduce dimensionality and 
improve computational efficiency, pooling layers are introduced:

( )( )max k
j jp h=                                                                            (7)

Where pj denotes the pooled feature. Finally, the high-level features extracted by the CNN are passed through 
a fully connected layer to obtain a fixed-dimensional representation:

CNN( )s mfccf X=                                                                           (8)

Where fs is the final speech feature vector. The entire process is visually summarized in Fig. 2, illustrating 
each stage of the speech feature extraction pipeline.
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Fig. 2. Speech feature extraction process

(2) Text Feature Extraction
Text feature extraction is performed using the pre-trained BERT model [22], which is based on the 

Transformer architecture [23]. BERT utilizes a bidirectional self-attention mechanism to capture rich contextual 
dependencies within the text and generates word-level embedding vectors that effectively represent semantic 
information. Given an input text sequence x = {x1, x2, ..., xn}, BERT computes a contextualized embedding vector 
for each token as follows:

BERT( ), {1,2,..., }i ih x i n= ∈                                                                (9)

Where hi denotes the embedding vector corresponding to the i-th token. These vectors collectively form the 
word-level embedding representation for the text modality.

BERT’s architecture consists of multiple stacked Transformer layers. Each layer comprises a multi-head self-
attention mechanism followed by position-wise feedforward neural networks, enabling the model to encode 
deep semantic relationships in both forward and backward directions. This hierarchical structure allows BERT to 
model long-range dependencies and generate high-dimensional embeddings for each token in the sequence. To 
derive a sentence-level representation from the token embeddings, two common strategies are employed:

[CLS] Token Representation: The embedding at the [CLS] token position, which is designed to capture the 
overall semantic meaning of the entire input sequence, is directly used as a global sentence feature:

CLS CLSf h=                                                                               (10)

Mean Pooling (Mean-Pooling): The mean of all token embeddings (excluding special tokens if desired) is 
computed to form a general-purpose sentence representation:

mean
1

1 n

i
i

f h
n =

= ∑                                                                            (11)

where n is the number of tokens in the input sequence.
To further enrich the sentence-level representation, the final text feature vector is constructed by concatenating 

the [CLS] embedding and the mean-pooled embedding:

Concat(CLS( ),Mean - Pooling( ))tf h h=                                                       (12)

Where ft denotes the final text feature representation used in downstream tasks such as classification or 
multimodal fusion. The entire process of text feature extraction using the BERT model is illustrated in Fig. 3, 
highlighting each stage from input tokenization to the generation of the final sentence-level feature.
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Fig. 3. Text feature extraction process

(3) Visual Feature Extraction
Visual feature extraction is conducted using a pre-trained ResNet model to obtain deep representations from 

input video frames. Given an input video sequence V = {v1, v2, ..., vT}, where vi denotes the i-th frame and T is 
the total number of frames, the original frames may vary in resolution and color format. Therefore, normalization 
and resizing operations are applied to ensure consistency in the input data format prior to feature extraction.

Each frame v '
i is individually processed by the ResNet model to extract deep visual features. ResNet employs 

a hierarchical convolutional architecture augmented with residual connections, which address the vanishing 
gradient problem by enabling gradient flow across multiple layers. This enhances the stability and efficiency of 
model training. The forward computation in a residual block is formulated as:

( )y f x x= +                                                                               (13)

where x is the input feature, f (x) denotes the residual mapping function consisting of convolutional layers, batch 
normalization, and ReLU activation. The residual connection x allows the network to learn identity mappings 
more effectively and accelerates convergence.

For each video frame, ResNet computes a high-dimensional visual feature representation:

ResNet( )v if v′ ′=                                                                           (14)

where f '
v represents the high-dimensional feature representation computed by ResNet. To reduce the feature 

dimensionality and enhance discriminative power, Global Average Pooling (GAP) is used to extract a global 
feature representation. Let N represent the number of feature channels in the ResNet model. The GAP calculation 
is as follows:

,

1

1 N
j

v v
j

f f
N

′ ′

=

= ∑                                                                            (15)

where , j
vf
′  denotes the activation value in the j-th channel. This operation reduces the number of parameters, 

enhances the model’s generalization ability, and retains global spatial information.
This fusion method helps reduce random noise between frames, resulting in more stable final features. In 

multimodal emotion recognition tasks, the extracted visual features serve as one of the model inputs, which 
are jointly learned with other modality data (speech and text) to enhance the overall emotion recognition 
performance. The visual feature extraction process is illustrated in Fig. 4.
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Fig. 4. Visual feature extraction process

3.2   Hierarchical Feature Fusion Module

To fully exploit high-order interactions between modalities and address inconsistencies among multimodal 
features, this study proposes a hierarchical feature fusion module composed of a three-layer progressive archi-
tecture. The module enhances the representation of salient information by dynamically adjusting the weights as-
signed to each modality. The implementation details are as follows:

(1) Preliminary Fusion and Modality Feature Weighting
The first fusion layer focuses on dimensionality reduction and the initial alignment of modality features. 

Features from different modalities are projected into a unified low-dimensional space through linear 
transformations. A dynamic weighting mechanism [24] is then applied to achieve preliminary modality alignment 
and fusion. Let {fs, ft, fv} denote the features extracted from modality, the dimensionally reduced features {fˆs, f

ˆ
t, 

fˆv} are obtained via:

ˆ Linear( ), { , , }m mf f m s t v= ∈                                                                (16)

Next, the features from all modalities are concatenated to generate fusion weights:

dyn
ˆ=Soft max( [ sW fα ˆ, tf ˆ, ])vf                                                                 (17)

Here, Wdyn is the parameter matrix used to generate dynamic weights, and α = [αs, αt, αv] represents the weight 
allocation for the audio, text, and visual modalities. The preliminary fused feature representation is computed as:

(0)
fused

ˆ
s sf fα= ˆ

t tfα+ ˆ
v vfα+                                                                    (18)

To account for the inherent uncertainty and variability of modality features, an uncertainty estimation mecha-
nism is introduced. Using a Bayesian Neural Network, the distribution of each modality feature is modeled, and 
its variance is calculated to estimate uncertainty:

2

1
i

i

w
σ

=
+ 

                                                                              (19)

Where   is a small constant added to prevent numerical instability. During final fusion, the confidence 
(inverse of uncertainty) serves as a weighting factor: modalities with higher confidence contribute more to the 
fused representation, while those with lower confidence are suppressed. The final uncertainty-aware fusion 
representation is given by:
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(1) , ~ (0, I)fusedf µ σ= + ⋅                                                                  (20)

(2) Cross-Modality Interaction and Multi-Head Attention Mechanism
The second fusion layer captures deep inter-modal interactions through a multi-head cross-modal attention 

mechanism [25]. For the preliminarily fused features (0)
fusedf , the Query (Q), Key (K), and Value (V) matrices are 

defined as:

(0)
fused

(0)
fused
(0)

fused

Q

K

V

Q f W

K f W

V f W

=

=

=

                                                                            (21)

Where WQ , WK, and WV are learnable transformation matrices. The attention weights are calculated as:

Attention( , , ) Softmax
T

k

QKQ K V V
d

 
=   

 
                                                       (22)

This process ensures that the model can adaptively focus on the key information from different modalities 
when processing the input. To further enhance the expressive power of the features, the multi-head attention 
mechanism is used for fusion, specifically represented as:

(2) (1)
fused fusedMultiHead( , , )f Q K V f= +                                                            (23)

By introducing the multi-head mechanism, the model can learn in parallel across different subspaces, thereby 
enhancing its ability to capture features. The fused features (2)

fusedf  will provide rich contextual information for 
subsequent tasks, improving the model’s performance in various applications.

(3) Temporal Modeling and Dynamic Weight Adjustment
The third-level fusion utilizes Gated Recurrent Units (GRUs) for modeling temporal dependencies, further 

enhancing the expressive power of the fused features. GRUs are particularly effective in capturing long-term 
dependencies in sequential data, making them well-suited for handling dynamic changes in time-series data. The 
update rules for the GRU are as follows:

1( [ , ])t z t tz W h xσ −= ⋅                                                                        (24)

1( [ , ])t r t tr W h xσ −= ⋅                                                                         (25)

1tanh( [ , ])t h t t th W r h x−= ⋅

                                                                  (26)

1(1 )t t t t th z h z h−= − + 

                                                                    (27)

Where zt and rt are the update and reset gates, respectively, h̃t and ht are the candidate hidden state and the final 
hidden state, respectively.

By employing GRUs for modeling the temporal features, the model effectively captures the dynamic 
interaction information between modalities as they evolve over time and passes this information to the next 
layer for further processing. Ultimately, the outputs from all time steps are aggregated into a global feature 
representation:

final t t
t

f hβ= ∑                                                                             (28)
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This final feature representation ffinal is used as the input for the emotion classification task.

3.3   Classifier

The classifier plays a crucial role in multimodal emotion recognition tasks, as its design directly impacts the final 
prediction performance of the model. The primary function of the classifier is to map the high-level semantic rep-
resentations extracted through the hierarchical feature fusion module to specific emotional categories. To achieve 
this, the classifier typically consists of an input layer, multiple hidden layers, and an output layer. In the input 
layer, the fused multimodal features are passed as input data to the hidden layers. The hidden layers, through 
multiple nonlinear activation processes, further extract more complex features, and ultimately, in the output layer, 
the representations from the hidden layers are mapped to a probability distribution over the emotional categories 
using the Softmax function.

The hidden layers extract higher-level representations by applying linear transformations followed by 
nonlinear activation to the input features. Let F denote the fused input features; the output zi of the i-th hidden 
layer is computed as:

Re ( )i i iz LU W F b= +                                                                       (29)

Where Wi and bi are the weight matrix and bias vector of the i-th layer.
In the final layer of the classifier, the output layer is responsible for mapping the output of the hidden layers 

to a probability distribution over the emotional categories. Let the output of the last hidden layer be finalz  , the 
output layer computes the predicted probabilities for each emotional category using the Softmax function:

1

( )

( )

out final out
j C

out final out
k

exp W z b
p

exp W z b
=

+
=

+∑                                                                  (30)

Where C denotes the total number of emotion categories, pj represents the predicted probability of class j. 
The Softmax function ensures that the classifier selects the class with the highest predicted probability, thereby 
determining the emotional label for the input sample.

During training, the classifier’s objective is to minimize the discrepancy between the predicted probabilities 
and the true labels. To achieve this, this paper adopts the cross-entropy loss function as the optimization objec-
tive. The cross-entropy loss measures the difference between the model’s predicted probability distribution and 
the actual distribution of the labels, and its computation is given by:

N C

n, j n, j
n=1 c=1

1L=  - y log(p )
N∑∑                                                                   (31)

Where N is the number of training samples, yn, j is the ground truth label of the n-th sample for class j (encod-
ed as a one-hot vector), and pn, j is the predicted probability of that sample belonging to class j. The cross-entropy 
loss function ensures that the model continuously adjusts its parameters to bring the predicted probabilities closer 
to the true labels, thereby improving classification accuracy.

4   Experiments and Analysis

4.1   Experimental Setup

Datasets and Splits. To validate the effectiveness of the proposed multimodal emotion recognition method, this 
study employs two widely used multimodal emotion recognition datasets: MOSEI and IEMOCAP. Detailed data-
set splits are shown in Table 1.
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Table 1. Dataset splits for MOSEI and IEMOCAP

Dataset Training set Validation set Test set Total
MOSEI 16327 1871 4662 22860

IEMOCAP (6-way) 5146 664 1623 7433

The MOSEI dataset [26], composed of 22,860 video clips sourced from YouTube, is widely used in multimod-
al sentiment and emotion recognition tasks. It provides both a 7-point continuous emotion annotation scale (rang-
ing from -3 [strongly negative] to +3 [strongly positive]) and six categorical emotion labels: happy, sad, angry, 
fearful, disgusted, and surprised.

The IEMOCAP dataset [27] comprises 7,433 samples and adopts a six-class categorical emotion classification 
scheme, including happy, sad, neutral, angry, excited, and frustrated. It is primarily used to evaluate the 
generalization capability of the proposed model.

Experimental Configuration and Evaluation Metrics. All experiments were implemented using the 
PyTorch deep learning framework [28]. The dimensionalities of the input features were set to 128 for audio, 768 
for text, and 512 for visual modalities. These were projected into a unified 128-dimensional feature space via a 
feature dimensionality reduction module.

The core model employs a Transformer-based encoder architecture consisting of 4 layers, each with 8 
attention heads. The hidden size is set to four times the embedding dimension. Dropout regularization is applied 
throughout the network: a dropout rate of 0.3 is used in the classifier, while a rate of 0.1 is applied to the 
remaining modules. Layer Normalization is incorporated to facilitate faster convergence and improve model 
stability.

During optimization, the initial learning rate is set to 0.0003, and dynamic learning rate adjustment is 
performed using the ReduceLROnPlateau strategy. AdamW is adopted as the optimizer, with weight decay 
employed to mitigate overfitting. Gradient clipping is applied to prevent gradient explosion. The batch size is set 
to 64, and the maximum number of training epochs is capped at 50. An early stopping mechanism is adopted, 
terminating training if no significant improvement is observed on the validation set for five consecutive epochs.

For evaluation, binary accuracy (ACC-2) and 7-class accuracy (ACC-7) are used as metrics on the MOSEI 
dataset. On the IEMOCAP dataset, overall accuracy (ACC) and weighted F1 score (WF1) are employed as the 
primary evaluation criteria.

Baseline Models. To comprehensively assess the effectiveness of the proposed approach, we compare it 
against several classical baseline models commonly used in the field of emotion recognition. For the MOSEI 
dataset, detailed evaluation results are presented in Table 2. The selected baselines include Tensor Fusion 
Network (TFN) [29], Low-rank Multimodal Fusion (LMF) [30], Multimodal Factorization Model (MFM) [31], 
and Interpretable Cross-modal Correlation Network (ICCN) [32]. For the IEMOCAP dataset, the corresponding 
performance comparisons are shown in Table 3 and Table 4. The baselines evaluated include TFN, Memory 
Fusion Network (MFN) [33], DialogueRNN [34], DialogueGCN [35], and COGMEN [36].

4.2   Comparative Experimental Analysis

We conducted a systematic performance comparison between the proposed HFF model and the aforementioned 
baseline models. As shown in the results presented in Table 2 and Table 3, the proposed HFF model 
consistently outperforms most baseline methods on both the MOSEI and IEMOCAP datasets, achieving notable 
improvements across key evaluation metrics.

On the MOSEI dataset, the HFF model achieved an accuracy of 52.8% in the ACC-7 task and 84.6% in the 
ACC-2 task, surpassing the performance of all baseline models. For the ACC-7 task, the classification accuracy 
of HFF is comparable to that of MFM and ICCN, indicating its ability to effectively model multimodal features 
and maintain robust performance in complex emotion classification scenarios. In the ACC-2 task, the HFF model 
outperforms all baseline methods, with an accuracy improvement of over 2% compared to TFN and LMF. This 
demonstrates the model’s superior stability in binary classification tasks and its effectiveness in handling senti-
ment polarity classification.

On the IEMOCAP dataset, the HFF model achieved an F1-score of 69.7% and an accuracy of 69.2%, demon-
strating its strong overall performance. In particular, the model outperforms all competitors in classifying 
Neutral, Angry, and Excited emotions, reflecting its balanced learning capability across various emotional states. 
For the Happy category, HFF attained an F1-score of 51.0%, slightly below the 51.9% achieved by COGMEN. 
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This may be attributed to a more conservative feature weighting strategy in HFF for this category, limiting per-
formance gains. However, in the Sad category, HFF reached an F1-score of 81.4%, comparable to COGMEN, 
indicating stable classification capability for this emotion.

Table 2. Emotion classification performance on the MOSEI dataset

MOSEI dataset
Model TFN ICCN MFM LMF HFF

ACC - 7 ↑ 50.2 51.6 51.3 48.0 52.8
ACC - 2 ↑ 82.5 84.2 84.4 82.0 84.6

Table 3. Emotion classification performance on the IEMOCAP (6-way) dataset

Model / Emotion
IEMOCAP (6-way) dataset

Happy Sad Neutral Angry Excited Frustrated Avg
F1 F1 F1↑ F1↑ F1↑ F1 ACC↑ F1↑

TFN 33.7 68.6 55.1 64.2 62.4 61.2 58.8 58.5
MFN 34.1 70.5 52.1 66.8 62.1 62.5 60.1 59.9
DialogueRNN 32.8 78.0 59.1 63.3 73.6 59.4 63.3 62.8
DialogueGCN 42.7 84.5 63.5 64.1 63.1 66.9 65.2 64.2
COGMEN 51.9 81.7 68.6 66.0 75.3 58.2 68.2 67.6
HFF 51.0 81.4 71.0 67.0 75.8 62.4 69.2 69.7

To provide a more intuitive illustration of the HFF model’s performance on the IEMOCAP dataset, Fig. 5 
presents its confusion matrix. As shown, the model achieved high classification accuracy for the Sad and Excited 
categories, reaching 81% and 75%, respectively, indicating its effectiveness in capturing features associated with 
high-intensity emotions. Conversely, the Happy category shows relatively lower accuracy at 51%, likely due 
to greater emotional variability in its distribution. For the Neutral and Angry categories, the recognition rates 
are 71% and 67%, respectively, suggesting a balanced performance across both emotionally neutral and intense 
classes.

Fig. 5. Confusion matrix of the HFF model on the IEMOCAP dataset
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Fig. 5 further illustrates the HFF model’s classification performance across different emotional categories, 
showcasing its ability to learn in the six-way classification task on the IEMOCAP dataset. In conjunction with 
the results in Table 3, the model demonstrates a relatively balanced distribution of F1-scores across categories, 
indicating strong and generalized emotion recognition capabilities.

4.3   Ablation Study Analysis

To investigate the contribution of key components within the HFF model and evaluate the impact of different 
modality combinations on emotion classification performance, we conducted a series of ablation studies on the 
IEMOCAP (6-way) dataset. These experiments aimed to examine the role of each module in the context of mul-
timodal emotion recognition. The detailed results are presented in Table 4.

As shown in the table, the complete HFF model achieves the highest F1-score of 69.7% under the full multi-
modal configuration (S + T + V), demonstrating that the model can reach optimal performance when fully lever-
aging cross-modal interactions, dynamic weighting mechanisms, and temporal modeling components. In con-
trast, removing the cross-modal alignment module causes the F1-score to drop to 68.5%, indicating the critical 
role of this module in capturing deeper inter-modal interactions. The impact is particularly evident in unimodal 
and bimodal settings. For instance, under the S + T configuration, the F1-score drops from 67.6% to 66.3% after 
removing the cross-modal alignment module, validating its optimization role when modality quality varies.

Table 4. Ablation study results of the HFF model on the IEMOCAP (6-way) dataset

Module / Modality S T V S+T S+V T+V S+T+V
HFF (Full model) 62.8 65.5 60.4 67.6 66.2 68.1 69.7
Without attention mechanism 60.2 63.7 57.5 64.6 63.2 65.4 65.9
Without dynamic weighting 61.3 64.3 58.3 65.4 64.0 66.2 67.5
Without temporal modeling 61.5 65.0 59.8 66.8 65.5 67.2 67.5
Without cross-modality alignment 61.7 64.8 58.5 66.3 64.9 67.0 68.5

The removal of the attention mechanism results in a noticeable decline in overall model performance, espe-
cially in the full multimodal setting, where the F1-score drops to 65.9%. This highlights the mechanism’s crucial 
role in extracting salient modality-specific information and suppressing irrelevant signals. Similarly, ablation 
of the dynamic weighting mechanism leads to a reduction in performance to 67.5%, indicating its significance 
in optimizing the distribution of modality contributions. The removal of the temporal modeling module (GRU) 
also leads to a performance drop. Although the F1-score under the S+T+V configuration remains at 67.5%, the 
model’s ability to capture temporal dynamics is compromised, particularly in modality combinations involving 
speech (S), where performance degrades more substantially.

In unimodal settings, the text modality yields the best individual performance (F1 = 65.5%), whereas the vi-
sual and acoustic modalities show relatively lower standalone effectiveness. This further confirms the stability of 
textual information in emotion recognition tasks and underscores the necessity of multimodal fusion strategies in 
handling complex emotion classification scenarios.

These results collectively demonstrate the critical role of each component within the HFF model in enhancing 
multimodal emotion recognition. Notably, the integration of attention mechanisms, dynamic weight adjustment, 
and temporal modeling significantly enhances inter-modality information exchange and optimizes feature ex-
traction across different modality combinations, thereby contributing to improved overall emotion classification 
performance.

4.4   The Impact of Attention Head Count on Model Performance

The multi-head attention mechanism is a core component of the Transformer architecture and plays a vital role 
in multimodal emotion recognition tasks. Appropriately configuring the number of attention heads directly influ-
ences the model’s ability to represent features from different modalities and facilitates effective information ex-
change. To investigate how the number of attention heads affects model performance, we conducted experiments 
based on the HFF model. While keeping all other hyperparameters constant, we tested models with 4, 6, 8, and 
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10 attention heads. The evaluation metrics include accuracy (ACC) and weighted F1-score (WF1). The results 
are presented in Table 5.

As the number of attention heads increases, model performance improves within a certain range. When the 
number of heads reaches 8, the model achieves its peak performance. Specifically, on the MOSEI dataset, ACC 
increases from 81.3% to 84.4%, and the F1-score improves from 80.7% to 82.3%. On the IEMOCAP dataset, 
ACC rises from 67.6% to 69.0%, while the F1-score increases from 66.3% to 69.5%. These improvements indi-
cate that a moderate number of attention heads can enhance the model’s capacity for multimodal feature repre-
sentation and improve the accuracy of emotion classification.

However, when the number of attention heads is further increased to 10, a slight decline in performance is 
observed. On the MOSEI dataset, ACC drops to 83.0% and the F1-score to 82.1%, while on the IEMOCAP data-
set, ACC decreases to 68.9% and the F1-score to 69.2%. This degradation suggests that an excessive number of 
attention heads may introduce redundant information, diminishing the effectiveness of cross-modal interactions 
and adversely affecting training stability and generalization performance.

The trends observed across the MOSEI and IEMOCAP datasets are consistent, demonstrating that a well-cho-
sen number of attention heads can significantly enhance the model’s capability to model heterogeneous modal-
ity-specific features, thereby improving the stability and accuracy of emotion recognition. When the number of 
heads is set to 8, all performance metrics across both datasets reach optimal levels, indicating a favorable balance 
between computational complexity and performance improvement. These experimental results further validate 
the critical role of multi-head attention in multimodal emotion recognition and underscore the importance of ap-
propriately tuning model parameters to achieve optimal recognition performance.

Table 5. Performance of the HFF model under different attention head configurations

Number of 
attention heads MOSEI-ACC MOSEI-F1 IEMOCAP-ACC IEMOCAP-F1

4 81.3 80.7 67.6 66.3
6 82.0 81.3 68.2 67.1
8 84.4 82.3 69.0 69.5
10 83.0 82.1 68.9 69.2

5   Conclusion

This paper introduces the Hierarchical Feature Fusion (HFF) model, a novel approach for multimodal emotion 
recognition that addresses the inherent challenges of integrating textual, audio, and visual modality information. 
The HFF model employs a hierarchical fusion strategy, facilitating efficient interactions between different modal-
ities through a progressive integration mechanism. Additionally, the model incorporates uncertainty estimation, 
which dynamically adjusts the weighting of each modality, thereby enhancing the robustness and stability of 
emotion recognition. By independently assigning weights to each modality’s features and incorporating advanced 
mechanisms such as multi-head attention and gated recurrent units (GRUs), the model is able to capture the intri-
cate dependencies between modalities, leading to improved overall emotion recognition performance.

Experimental results validate the efficacy of the HFF model, demonstrating its powerful feature fusion capa-
bilities across multiple datasets. Notably, the HFF model outperforms other state-of-the-art methods in terms of 
accuracy and stability when evaluated on the MOSEI and IEMOCAP datasets. The model’s ability to effectively 
combine multimodal information and account for temporal dynamics allows it to handle modality heterogeneity 
and temporal variations with remarkable precision, enabling it to capture subtle nuances in emotional expres-
sions.

However, this study acknowledges several limitations. The introduction of the hierarchical feature fusion 
mechanism increases computational complexity, which may pose challenges in large-scale datasets or real-time 
applications due to the significant computational burden. Additionally, the imbalance in data distribution remains 
a concern, as it continues to affect the classification performance for specific emotion categories.

Future research could explore the incorporation of additional modality information, such as physiological 
signals or EEG data, to further enhance the model’s perceptual capabilities and improve emotion recognition 
accuracy. To mitigate the issue of computational complexity, it will be crucial to investigate lightweight fusion 
mechanisms, such as optimizing attention structures or applying model pruning techniques. Furthermore, inte-
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grating self-supervised learning and transfer learning approaches, particularly in resource-constrained environ-
ments, could enhance the model’s adaptability and performance. Future work will continue to refine multimodal 
emotion recognition technologies, aiming to provide more robust, accurate, and efficient solutions for practical 
applications.
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