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摘    要 

本文要介紹一可應用於非結構不可壓縮流場的網格中心壓力基礎法，本方法已實行在一新的

二維/三維平行非結構網格計算流體力學程式來面對複雜幾何外型與邊界的物理問題，並同時

能維持其高計算效率的特性。本方法在空間上使用二階上風法，在時間準確度上採用二階背向

法。為了達到平行計算時的負載均衡，使用METIS來切割計算域。本文為了展示此法的準確性

與計算效率，二維/三維空穴流、二維流體通過圓柱等問題被選擇來作為測試。在實際問題的

應用上，汽車室內空調流場數值模擬的結果也在本文中展示，數值結果與實驗數據的比對也相

當吻合。 
關鍵詞：計算流體力學、壓力基礎法、不可壓縮、非結構格點、平行計算 
 

Abstract 
A cell-centered pressure based method for incompressible flow is presented in this paper, and it 

is implemented in a new two/three-dimensional parallel unstructured CFD code to meet the chal-
lenges of physical problems with complex geometries and complicated boundary conditions while 
maintaining high computational efficiency. The method uses a second order upwinding scheme in 
space and a second order backward scheme for time accuracy. The code is parallelized using METIS 
for domain decomposition with good load balancing across computational nodes. In order to demon-
strate the accuracy and performance of current cell-centered pressure based method, two/three- di-
mensional driven cavity flow and two-dimensional flow over a circular cylinder are chosen for vali-
dation. In practical case, the simulated results of air-conditioned flow field in an automobile cabin are 
presented. All these test cases yielded good agreements in comparison with previous computational or 
experimental results. 

Keyword：CFD, pressure based, incompressible, unstructured grid, parallel computing 
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1. Introduction 
Over the past several decades, computational 

fluid dynamics (CFD) code has become a useful 
tool for fundamental research or industrial applica-
tions. As a result of continual improvements in 
computer technologies and CFD algorithms, nu-
merical simulation with huge grid sizes and com-
plex geometries are feasible. To deal with increas-
ing grid sizes and demands for faster output, par-
allel computation of CFD has become a standard 
approach. Meanwhile, the challenges presented by 
some physical problems with complex geometries 
and complicated boundary conditions are now ap-
proached through unstructured CFD grids due to 
their ability to smoothly conform to complicated 
boundaries. However, combining unstructured 
grids with a parallel code presents still other chal-
lenges, such as achieving well-balanced grid de-
composition on a distributed system and efficient 
parallel performance.  

In order to meet these challenges, a 
cell-centered pressure based method has been im-
plemented into a new parallel unstructured CFD 
code which is designed to meet the challenges of 
using unstructured grid codes. It is a 
two/three-dimensional finite volume incompressi-
ble Navier-Stokes solver. The code is second-order 
accurate in both time and space. To increase flexi-
bility in complex geometries, a cell-centered pres-
sure-based method is extended to use a variety of 
grid types, such as triangular, quadrilateral, tetra-
hedral, and hexahedral meshes. To obtain good 
load balancing across computational nodes, 
METIS [1] is applied for domain decomposition. 
METIS is a set of programs for partitioning graphs 
and finite element meshes, and for producing 
fill-reducing orderings for sparse matrices. The 
algorithms implemented in METIS are based on 
multilevel graph partitioning schemes. The parallel 
construction is based on message passing interface 
(MPI) protocols and has worked successfully on 
systems ranging from commodity PC clusters up 
to traditional supercomputers. In order to demon-
strate the accuracy and performance of the 
cell-centered pressure-based method, several test 
cases are presented for validation. 

 

2. Numerical Methods 
A cell-centered pressure based method for   

two/three-dimensional finite volume unstructured 

incompressible Navier-Stokes solver for 
steady/unsteady flow fields is presented in this 
paper. The method described herein is based on 
SIMPLE algorithm with second order accuracy in 
both time and space. In order to compute numeri-
cal flux on interfaces, a second order upwind 
scheme is adopted to compute advection terms and 
second order central difference scheme is used for 
diffusion terms. A collocated grid system with the 
Rhie and Chow momentum interpolation method 
[2] is employed to avoid the checkerboard solution 
of the pressure based scheme.  
 
2.1 Governing equations 

The governing equations for unsteady in-
compressible viscous flow under the assumption of 
no body force and heat transfer are as below. 

 
Conservation of Mass 

∫∫ −=
∂
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dSnudV
t
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Conservation of Momentum 
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Conservation of Energy 
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where ρ is density, p is pressure, ui is component 
of velocity vector, ni is unit normal vector of the 
interface, τij is tensor of shear stress, and specific 
internal energy )( 222

2
1 wvueE +++= .  

 
 
2.2 Center pressure based SIMPLE algorithm 

By using an initial pressure field, PP

n, we can 
obtain un, vn, and wn by solving the momentum 
equations in an sequential manner.  The solution 
method is based on the 1st order delta form on the 
L.H.S and the momentum equations can be written 
in the form as Eq. (4). 
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where the coefficients anb and ac are  
Annnma zyxffnb )()0,max( 321 ξξξμ +++−= & , 
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and the RHS term can be written as 
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where μ is dynamic viscosity, subscript c denotes 
the cell value to be solved, subscript nb denotes 
the neighbor cells, and A denotes the interfacial 
area. In this paper, Eq. (4) can be solved by using 
Gauss-Seidel point substitution. Then, we can ob-
tain u*, v*, and w* by Eq. (5). 
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Although at this stage u*, v*, and w* satisfy 
the momentum equations, they do not necessarily 
satisfy the continuity equation. In order to satisfy 
the mass conservation, one has to interpolate the 
velocity to the interface. In order to avoid the 
checkerboard solutions, one has to allow the inter-
facial velocity to be driven solely by the pressure 
difference evaluated directly at the interfaces. To 
achieve this aim without sacrificing the accuracy, 
one can divide the interpolated interfacial velocity 
into two components: one is the velocity compo-
nent without the pressure contribution and the 
other is solely the pressure contribution. The for-
mer is first evaluated at the cell center as: 
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and then interpolated into the cell faces. The latter 
is obtained directly from the pressure difference of 
the two adjacent nodal points, P1 and P2 such that 
the interfacial velocity can be expressed as: 
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where Vf/af is obtained by interpolation from the 
cell center to the interface. 

We further assume that there are corrections 
to uf

* , vf
*, and wf

*, such that the continuity equa-
tion can be satisfied: 
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We can rewrite Eq. (8) as 

AnwnvnuAnwnvnu ff

N

i
fff

N

i
f

faceface

][][ 3
*

2
*

1
1

*
32

1
1 ++−=′+′Δ+′Δ ∑∑

==

ρρ

(9) 
where the right-hand side in Eq. (9) represents the 
mass imbalance in the control volume cell. One 
assumes there is a corresponding pressure correc-
tion field, p′, which drives the velocity corrections 
according to: 
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By substituting the velocity correction equations 
into the equation for the mass imbalance, we can 
obtain the equations of the pressure correction: 

∑ +′=′
nb

nbnbcc bpapa                        (11) 

were anb and ac in the continuity equation are 
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Once the pressure correction is obtained, one can 
update the pressure field by: 

ppp p
nn ′+=+ α1                          (12) 

where αp is the under-relaxation factor for pressure 
and is generally with a value of 0.5-0.8. Then the 
velocity correction on the interfaces as well as 
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nodal points will be updated according to Eq. (7). 
 
2.3 Partitioning approach 

Figure 1 shows the schematic diagram of 
partitioning approach for cell-centered pressure 
based method. In Fig. 1, blue points (light points) 
indicate vertices, red points (dark points) indicate 
nodal points, and white points indicate the bound-
ary points. By using this approach, the control 
volumes on the boundary are not split. Only com-
munication of nodal values is needed for parallel 
computation which makes the implement of MPI 
in an unstructured grid more straightforward.  

Excellent load balancing between the sub-
grids on each node is achieved through using 
METIS for domain decomposition. METIS can 
partition an unstructured grid into any integer 
number of zones without losing load balance. It is 
compatible with many platforms, convenient for 
running CFD codes on a variety of supercomputer 
to cluster architectures. Present partitioning ap-
proach has been tested by a number of 
two/three-dimensional geometries. All results 
show good load balances. The definition of 
load-imbalance rate LIMB and load-balance rate LB 
in this paper is defined as Eq. (13) and (14). 

%100×
−

=
avg

avgnode
IMB N

NN
L                   (13) 

IMBB LL −= 1                             (14)  
where Nnode is grid size of the node and Navg is the 
average grid size. By using load balance rate, we 
can compare the load balance quantitatively. 
Figure 2(a) shows the partitioned grid for 2D flow 
over a circular cylinder in triangular mesh. The 
number of total grid points is 51,363 and the 
number of total cells is approximately 0.1M. The 
grid is partitioned to 16 zones for parallel compu-
tation. The cell distribution is not uniform, denser 
near the cylinder and coarser away. The 
load-balance distribution on each node is shown in 
Fig. 2(b). The x-axis indicates the node number 
and the y-axis indicates load-balance rate. The re-
sulting load-balance rates are very close to 100% 
on every node with an average load balance rate of 
98.37%. Various test cases have been made to 
prove the identical load balance. Our test results 
show that present partitioning approach has excel-
lent load balance in two/three-dimensional grids 
with various types of meshes by using METIS for 
domain decomposition.  
 

3. Results 
 
3.1 Two-dimensional driven cavity flow 

In this section, two-dimensional incom-
pressible flow in a square cavity at a Reynolds 
number of 400 is simulated. The fluid in the cavity 
is driven by a moving top with constant speed. 
Because driven cavity flow lacks an exact solution, 
an existing accurate numerical solution for this 
problem is used as a benchmark for comparing our 
results. Ghia et al. [3] presented numerical studies 
using the vorticity-stream function formulation for 
solutions up to Re=10,000 with 257x257 grid 
points, and these simulation results have been 
widely used as a benchmark for the driven cavity 
problem. The schematic diagram of this case with 
geometry and boundary conditions is shown in Fig. 
3. The initial condition for the entire computa-
tional domain is stationary everywhere. In order to 
compare Ghia’s results, the number of grid points 
used is 257x257 or 66,049 and 65,536 cells are 
used in a quadrilateral mesh. For a triangular mesh, 
66,546 cells, which is approximately the same as 
quadrilateral mesh, and 33,618 grid points are used 
in our computation. Figure 4(a) shows the 
u-velocity profile along the horizontal center line 
for both present results with quadrilateral and tri-
angular mesh and Ghia’s result. Both present re-
sults are in good agreement with Ghia’s result. It 
also shows the present solution is identical and is 
independent of mesh types. Figure 4(b) shows the 
u-velocity profile along the horizontal center line; 
again, the results match. Figure 5 presents the 
streamline plot from the present results on the 
quadrilateral mesh. The flow structures including 
the location of the major vortex center, the bubble 
in the right bottom corner, and a small bubble in 
the left bottom corner are shown clearly in Fig. 5, 
and are in good agreement with the results of Ghia. 
 
3.2 Three-dimensional driven cavity flow 

The three-dimensional version of the pre-
ceding problem is also a standard case for a new 
flow solver. In 1987, Ku et al. [4] simulated 
three-dimensional flow in a cubic cavity by using 
pseudospectral methods to solve the Navier-Stokes 
equations for Re = 100, 400, and 1000. In 2003, 
Shu et al. [5] repeated this problem by using the 
SIMPLE algorithm with the differential quadrature 
(DQ) method. They simulated the 
three-dimensional driven cavity flow at Re = 100, 
200, 400 and 1000 and compared their results with 
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Ku’s results. In this section, we simulated this 
problem at Re = 400 and compared our results 
with those of Ku and Shu. In order to validate the 
results with different meshes, two grids are used to 
study this problem. One is a hexahedral mesh with 
67x67x67 grid points and 287,496 cells, and the 
other is a tetrahedral mesh with 79,951 grid points 
and 446,953 cells. The geometry of this problem is 
a unit cube. The boundary condition at the y = 1 
plane is uniform flow with u=1, v=0, and w=0, and 
all other boundary conditions are no-slip walls. 
The initial condition for the entire computational 
domain is stationary. Figure 6(a) shows the 
u-velocity profile at the horizontal centerline of the 
z = 0.5 plane for the present hexahedral and tetra-
hedral mesh results as well as those of Ku and Shu. 
Figure 6(b) shows the v-velocity profile at the ver-
tical centerline of z = 0.5 for the same set of simu-
lations. Both present simulations show essentially 
identical solutions and both are in good agreement 
with Ku and Shu. 
 
3.3 Two-dimensional flow over a cylinder 

Flow over a circular cylinder is a standard 
unsteady test problem. Figure 7 shows a schematic 
diagram for flow over a circular cylinder with di-
mensions and boundary conditions. The initial 
condition for the entire domain is uniform flow as 
inflow for all simulations and the time step is 
0.005 for all cases. The grid for two-dimensional 
simulations is a quadrilateral mesh with 22705 
cells and 22925 grid points and is densely distrib-
uted near the cylinder and wake region and coarser 
near the outer region. The Strouhal number (St) is 
derived from the frequency of coefficient of lift 
(CL). The Strouhal number obtained from our re-
sults are 0.165 and 0.239 for Re=100 and 1000 
respectively, which are in good agreement with 
other computational results. Fig. 8 shows the 
two-dimensional vorticity contours for Re = 100 
and 1000. In Fig. 8, the contours are range from 
-0.3 to 0.3.  
  
 
3.4 Air-conditioned flow field in an automobile 
cabin 

As a result of the improvement of technology, 
the cabin equipments of automobiles are improved 
day by day. The thermal comfort in the automobile 
cabin has become important factor while consum-
ers choosing new automobiles. Although computa-
tional fluid dynamics (CFD) has been developed to 

be a powerful design tool for industrial applica-
tions, there are only few papers about 
air-conditioned flow field in the automobile cabin. 
In order to quantify the thermal comfort, Fanger [6, 
7, 8] empirically established the well known PMV 
(predicted mean vote) equation by using parame-
ters relevant to thermal comfort. The thermal 
comfort that a human feels in indoor environment 
has been known to be influenced mostly by six 
parameters: air temperature, radiation, air flow, 
humidity, activity level and clothing thermal resis-
tance. This section will focus on the air flow in the 
automobile cabin which is one of the six parame-
ters of thermal comfort. 

In this study, the experiment is made by us-
ing an available automobile Nissan SENTRA 2000. 
Figure 9 shows the cabin geometry with the air 
inlet and outlet, and the positions of experimental 
measuring points. The unit of length in Fig. 9 is 
meter, and the dimension is based on the real 
model. In this experiment, there are five points 
from x = 0.4 to 1.2m with 0.2m interval along the 
horizontal line and also five points from y = 0.4 to 
0.8m with 0.1m interval along the vertical line at z 
= 0.71m plane as shown in Fig. 9. The measure-
ment of velocity is implemented by using digital 
anemometer model DA30 with measuring range 
from 0.3 MPS to 35 MPS and accuracy ±2.5%. 
The summary of the experiments and numerical 
simulations is listed in Table 1. Figure 10 shows 
the partitioned grid for parallel computation. As 
shown in Fig. 10, tetrahedron mesh is used in our 
simulation and the computational domain is parti-
tioned into 6 zones. 

In this study, the characteristic length is the 
height of the inlet, 7 cm. The working fluid is air. 
The inlet velocities range between 2.7 and 7 m/s. 
According to these conditions, the Reynolds num-
bers of the simulations can be calculated. The 
range of Reynolds numbers are from 14,470 to 
37,515. The turbulent model adopted in this study 
is F. R. Menter’s SST model [11]. Figure 11 shows 
the comparison of numerical and experimental 
results. The label, 1st Exp., denotes the case of ex-
periment with the 1st stage of wind speed. Simi-
larly, other labels are referenced in Table 1. Figure 
11(a) represents the comparisons of the velocity 
along the horizontal line. As shown in Fig. 11(a), 
current numerical results with laminar or turbulent 
models are in good agreement with the experi-
mental results. Notably, the turbulent model gives 
a better result than the laminar result. Figure 11(b) 
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shows the comparison of velocity along the verti-
cal line. As shown in Fig. 11(b), both results of 
laminar and turbulent models are unable to match 
the experimental data very well, especially the data 
on both ends. This is because the real air inlet has 
baffles which can help the flow to move further 
downstream and suppress diffusion of the flow, 
but current numerical simulation does not take this 
device into account. Therefore, the velocities 
measured from the experiment at y = 0.4m and 
0.8m (two ends) approximate to zero as shown in 
Fig. 11(b), but the numerical results are not. 
Though numerical results show slight inaccuracy 
as the flow moving far away from the centerline of 
the inlet, the trends of the numerical results are 
similar to experimental data. In a word, the results 
show that current numerical method can success-
fully simulate this problem. 

Comparing Figs. 12(a) with 12(b), turbulent 
flow seems to generate stronger circulation which 
causes the particles to move in spiral paths. As 
shown in Fig. 12(b), the circulations are observed 
both in the front seat and backseat, but this phe-
nomenon does not appear in the laminar flow. 
 
4. Conclusions 
 

A cell-centered pressure based method is 
presented in this paper, and which has been ap-
plied to simulate incompressible flow fields suc-
cessfully. Implementation of the cell-centered 
pressure based method into an unstructured CFD 
code is feasible and straightforward. In order to 
increase flexibility in complex geometries, 
cell-centered pressure based method has been ex-
tended to use a variety of grid types, such as tri-
angular, quadrilateral, tetrahedral, and hexahedral 
meshes. By using METIS for domain decomposi-
tion, excellent parallel load balance is achieved. In 
this paper, the steady two and three-dimensional 
driven cavity flow, and unsteady two-dimensional 
flow over a circular cylinder are chosen for valida-
tion. In practical case, the air-conditioned flow 
field in the automobile cabin has been successfully 
simulated by presented method with laminar and 
turbulent models. All these test cases yielded good 
agreements in comparison with previous computa-
tional or experimental results.  
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Table 1 The summary of the experimental measurements and numerical simulations 

Numerical simulationStage of 
wind speed Exp. 

Laminar Turbulent

1 2.7m/s √ √ √ 

2 4.32m/s √ √ √ 

3 6m/s √ √ √ 

4 7m/s √ √ √ 

 
 
 

 
Fig. 1 A schematic diagram of cell-centered partitioning approach. 

 
 

  
        (a)                            (b) 

Fig. 2(a) Partitioned triangular mesh for 2D flow over a circular cylinder; (b)Load-balance dis-
tribution on each node in parallel computation. 
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Fig. 3 The schematic diagram of two-dimensional driven cavity flow with boundary conditions. 
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(a)                        (b) 

Fig. 4(a) The u-velocity profile along the horizontal center line for present results and Ghia’s 
result;(b)The v-velocity profile along the vertical center line for present results and Ghia’s re-
sult. 
 
 
 

 
Fig. 5 Streamline plot for two-dimensional driven cavity flow at Re=400. 
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(a)                        (b) 

Figure 6(a) The u-velocity profile at the horizontal centerline of z=0.5 plane;(b) The v-velocity 
profile at the vertical centerline of z=0.5 plane with present results, Ku’s and Shu’s results. 
 
 

 
Fig. 7 Schematic diagram of flow over a circular cylinder with dimensions and boundary condi-
tions. 
 
 
 

 

 
(a)                          (b) 

Fig. 8 Vorticity contours for two-dimensional simulation. (a)Re=100 and (b)Re=1000. 
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Fig. 9 A schematic diagram of cabin geometry with the air inlet and outlet, and the positions of 

experimental measuring points. 

 

 

 
Fig. 10 The picture of partitioned computational domain. 
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(a)                                    (b) 

Fig. 11(a) The comparison between numerical and experimental results for velocity along the 

horizontal line; (b) The comparison for velocity along the vertical line. 

 

 

 

 
Fig. 12 The pictures of the particle paths of turbulent and laminar flow at 4st stage of wind speed, 

where (a) laminar flow and (b) turbulent flow. 
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