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Abstract

A cell-centered pressure based method for incompressible flow is presented in this paper, and it
is implemented in a new two/three-dimensional parallel unstructured CFD code to meet the chal-
lenges of physical problems with complex geometries and complicated boundary conditions while
maintaining high computational efficiency. The method uses a second order upwinding scheme in
space and a second order backward scheme for time accuracy. The code is parallelized using METIS
for domain decomposition with good load balancing across computational nodes. In order to demon-
strate the accuracy and performance of current cell-centered pressure based method, two/three- di-
mensional driven cavity flow and two-dimensional flow over a circular cylinder are chosen for vali-
dation. In practical case, the simulated results of air-conditioned flow field in an automobile cabin are
presented. All these test cases yielded good agreements in comparison with previous computational or
experimental results.
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1. Introduction

Over the past several decades, computational
fluid dynamics (CFD) code has become a useful
tool for fundamental research or industrial applica-
tions. As a result of continual improvements in
computer technologies and CFD algorithms, nu-
merical simulation with huge grid sizes and com-
plex geometries are feasible. To deal with increas-
ing grid sizes and demands for faster output, par-
allel computation of CFD has become a standard
approach. Meanwhile, the challenges presented by
some physical problems with complex geometries
and complicated boundary conditions are now ap-
proached through unstructured CFD grids due to
their ability to smoothly conform to complicated
boundaries. However, combining unstructured
grids with a parallel code presents still other chal-
lenges, such as achieving well-balanced grid de-
composition on a distributed system and efficient
parallel performance.

In order to meet these challenges, a
cell-centered pressure based method has been im-
plemented into a new parallel unstructured CFD
code which is designed to meet the challenges of
using unstructured grid codes. It is a
two/three-dimensional finite volume incompressi-
ble Navier-Stokes solver. The code is second-order
accurate in both time and space. To increase flexi-
bility in complex geometries, a cell-centered pres-
sure-based method is extended to use a variety of
grid types, such as triangular, quadrilateral, tetra-
hedral, and hexahedral meshes. To obtain good
load balancing across computational nodes,
METIS [1] is applied for domain decomposition.
METIS is a set of programs for partitioning graphs
and finite element meshes, and for producing
fill-reducing orderings for sparse matrices. The
algorithms implemented in METIS are based on
multilevel graph partitioning schemes. The parallel
construction is based on message passing interface
(MPI) protocols and has worked successfully on
systems ranging from commaodity PC clusters up
to traditional supercomputers. In order to demon-
strate the accuracy and performance of the
cell-centered pressure-based method, several test
cases are presented for validation.

2. Numerical Methods

A cell-centered pressure based method for
two/three-dimensional finite volume unstructured
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incompressible  Navier-Stokes  solver  for
steady/unsteady flow fields is presented in this
paper. The method described herein is based on
SIMPLE algorithm with second order accuracy in
both time and space. In order to compute numeri-
cal flux on interfaces, a second order upwind
scheme is adopted to compute advection terms and
second order central difference scheme is used for
diffusion terms. A collocated grid system with the
Rhie and Chow momentum interpolation method
[2] is employed to avoid the checkerboard solution
of the pressure based scheme.

2.1 Governing equations

The governing equations for unsteady in-
compressible viscous flow under the assumption of
no body force and heat transfer are as below.

Conservation of Mass

0

adev = —i pU;NdS
Conservation of Momentum
0 _ 2
a\J/'pujdv _—i;spuini ude—§S pnjd8+§srij n,ds (2

(1)

Conservation of Energy

0 3
aJpEdV:—ipuini Ed8—§S pujnjds+£uj ;n, dS ©)
where p is density, p is pressure, u; is component
of velocity vector, n; is unit normal vector of the
interface, j; is tensor of shear stress, and specific

i 2 .2 2
internal energy E=e+1(u?+v?+w?)-

2.2 Center pressure based SIMPLE algorithm
By using an initial pressure field, P", we can
obtain u", v", and w" by solving the momentum
equations in an sequential manner. The solution
method is based on the 1% order delta form on the
L.H.S and the momentum equations can be written
in the form as Eq. (4).
a,Au=>Y a,Au+RHS,
nb

(4)

a,Av=>"a,Av+RHS,
nb

a,Aw=>"a, Aw+RHS,
nb

where the coefficients a,, and a. are
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nb

and the RHS term can be written as
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where p is dynamic viscosity, subscript ¢ denotes
the cell value to be solved, subscript nb denotes
the neighbor cells, and A denotes the interfacial
area. In this paper, Eg. (4) can be solved by using
Gauss-Seidel point substitution. Then, we can ob-
tainu’, v', and w" by Eq. (5).

u =u"+Au
v =v"+Av )
W =w"+Aw

Although at this stage u*, v*, and w" satisfy
the momentum equations, they do not necessarily
satisfy the continuity equation. In order to satisfy
the mass conservation, one has to interpolate the
velocity to the interface. In order to avoid the
checkerboard solutions, one has to allow the inter-
facial velocity to be driven solely by the pressure
difference evaluated directly at the interfaces. To
achieve this aim without sacrificing the accuracy,
one can divide the interpolated interfacial velocity
into two components: one is the velocity compo-
nent without the pressure contribution and the
other is solely the pressure contribution. The for-
mer is first evaluated at the cell center as:
e Ve
oX a,
A
o a,
op" VvV,
0z a,

~% *

u

(6)

=v
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and then interpolated into the cell faces. The latter
is obtained directly from the pressure difference of
the two adjacent nodal points, P; and P, such that
the interfacial velocity can be expressed as:
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where Vi/as is obtained by interpolation from the
cell center to the interface.

We further assume that there are corrections
to ui , vi, and wy, such that the continuity equa-
tion can be satisfied:

Niaee
> pl(uy + AU N, +(v; + AV )N, + (W + AW, )n,JA=0

®)

We can rewrite Eq. (8) as
Nface Nface
D plAutn AV N, +Win JA==" pluin, +vin, + Win,]A

i=1 i=1

(9)

where the right-hand side in Eqg. (9) represents the
mass imbalance in the control volume cell. One
assumes there is a corresponding pressure correc-
tion field, p; which drives the velocity corrections
according to:
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By substituting the velocity correction equations

f af
into the equation for the mass imbalance, we can
obtain the equations of the pressure correction:

ac p(’: = Zanb pr’1b +b
nb
were an, and a. in the continuity equation are
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Once the pressure correction is obtained, one can
update the pressure field by:

pn+1 — pn +ap pr (12)
where ¢ is the under-relaxation factor for pressure
and is generally with a value of 0.5-0.8. Then the
velocity correction on the interfaces as well as
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nodal points will be updated according to Eqg. (7).

2.3 Partitioning approach

Figure 1 shows the schematic diagram of
partitioning approach for cell-centered pressure
based method. In Fig. 1, blue points (light points)
indicate vertices, red points (dark points) indicate
nodal points, and white points indicate the bound-
ary points. By using this approach, the control
volumes on the boundary are not split. Only com-
munication of nodal values is needed for parallel
computation which makes the implement of MPI
in an unstructured grid more straightforward.

Excellent load balancing between the sub-
grids on each node is achieved through using
METIS for domain decomposition. METIS can
partition an unstructured grid into any integer
number of zones without losing load balance. It is
compatible with many platforms, convenient for
running CFD codes on a variety of supercomputer
to cluster architectures. Present partitioning ap-
proach has been tested by a number of
two/three-dimensional geometries. All results
show good load balances. The definition of
load-imbalance rate L;ys and load-balance rate Lg
in this paper is defined as Eq. (13) and (14).

node ~ ' Yavg

x100% (13)

Live =
avg

L, =1L, (14)
where Npoge 1S grid size of the node and N,y is the
average grid size. By using load balance rate, we
can compare the load balance quantitatively.
Figure 2(a) shows the partitioned grid for 2D flow
over a circular cylinder in triangular mesh. The
number of total grid points is 51,363 and the
number of total cells is approximately 0.1M. The
grid is partitioned to 16 zones for parallel compu-
tation. The cell distribution is not uniform, denser
near the cylinder and coarser away. The
load-balance distribution on each node is shown in
Fig. 2(b). The x-axis indicates the node number
and the y-axis indicates load-balance rate. The re-
sulting load-balance rates are very close to 100%
on every node with an average load balance rate of
98.37%. Various test cases have been made to
prove the identical load balance. Our test results
show that present partitioning approach has excel-
lent load balance in two/three-dimensional grids
with various types of meshes by using METIS for
domain decomposition.
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3. Results

3.1 Two-dimensional driven cavity flow

In this section, two-dimensional incom-
pressible flow in a square cavity at a Reynolds
number of 400 is simulated. The fluid in the cavity
is driven by a moving top with constant speed.
Because driven cavity flow lacks an exact solution,
an existing accurate numerical solution for this
problem is used as a benchmark for comparing our
results. Ghia et al. [3] presented numerical studies
using the vorticity-stream function formulation for
solutions up to Re=10,000 with 257x257 grid
points, and these simulation results have been
widely used as a benchmark for the driven cavity
problem. The schematic diagram of this case with
geometry and boundary conditions is shown in Fig.
3. The initial condition for the entire computa-
tional domain is stationary everywhere. In order to
compare Ghia’s results, the number of grid points
used is 257x257 or 66,049 and 65,536 cells are
used in a quadrilateral mesh. For a triangular mesh,
66,546 cells, which is approximately the same as
quadrilateral mesh, and 33,618 grid points are used
in our computation. Figure 4(a) shows the
u-velocity profile along the horizontal center line
for both present results with quadrilateral and tri-
angular mesh and Ghia’s result. Both present re-
sults are in good agreement with Ghia’s result. It
also shows the present solution is identical and is
independent of mesh types. Figure 4(b) shows the
u-velocity profile along the horizontal center line;
again, the results match. Figure 5 presents the
streamline plot from the present results on the
quadrilateral mesh. The flow structures including
the location of the major vortex center, the bubble
in the right bottom corner, and a small bubble in
the left bottom corner are shown clearly in Fig. 5,
and are in good agreement with the results of Ghia.

3.2 Three-dimensional driven cavity flow

The three-dimensional version of the pre-
ceding problem is also a standard case for a new
flow solver. In 1987, Ku et al. [4] simulated
three-dimensional flow in a cubic cavity by using
pseudospectral methods to solve the Navier-Stokes
equations for Re = 100, 400, and 1000. In 2003,
Shu et al. [5] repeated this problem by using the
SIMPLE algorithm with the differential quadrature
(DQ) method. They simulated the
three-dimensional driven cavity flow at Re = 100,
200, 400 and 1000 and compared their results with
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Ku’s results. In this section, we simulated this
problem at Re = 400 and compared our results
with those of Ku and Shu. In order to validate the
results with different meshes, two grids are used to
study this problem. One is a hexahedral mesh with
67x67x67 grid points and 287,496 cells, and the
other is a tetrahedral mesh with 79,951 grid points
and 446,953 cells. The geometry of this problem is
a unit cube. The boundary condition at the y = 1
plane is uniform flow with u=1, v=0, and w=0, and
all other boundary conditions are no-slip walls.
The initial condition for the entire computational
domain is stationary. Figure 6(a) shows the
u-velocity profile at the horizontal centerline of the
z = 0.5 plane for the present hexahedral and tetra-
hedral mesh results as well as those of Ku and Shu.
Figure 6(b) shows the v-velocity profile at the ver-
tical centerline of z = 0.5 for the same set of simu-
lations. Both present simulations show essentially
identical solutions and both are in good agreement
with Ku and Shu.

3.3 Two-dimensional flow over a cylinder

Flow over a circular cylinder is a standard
unsteady test problem. Figure 7 shows a schematic
diagram for flow over a circular cylinder with di-
mensions and boundary conditions. The initial
condition for the entire domain is uniform flow as
inflow for all simulations and the time step is
0.005 for all cases. The grid for two-dimensional
simulations is a quadrilateral mesh with 22705
cells and 22925 grid points and is densely distrib-
uted near the cylinder and wake region and coarser
near the outer region. The Strouhal number (Sy) is
derived from the frequency of coefficient of lift
(CL). The Strouhal number obtained from our re-
sults are 0.165 and 0.239 for Re=100 and 1000
respectively, which are in good agreement with
other computational results. Fig. 8 shows the
two-dimensional vorticity contours for Re = 100
and 1000. In Fig. 8, the contours are range from
-0.3t00.3.

3.4 Air-conditioned flow field in an automobile
cabin

As a result of the improvement of technology,
the cabin equipments of automobiles are improved
day by day. The thermal comfort in the automobile
cabin has become important factor while consum-
ers choosing new automobiles. Although computa-
tional fluid dynamics (CFD) has been developed to
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be a powerful design tool for industrial applica-
tions, there are only few papers about
air-conditioned flow field in the automobile cabin.
In order to quantify the thermal comfort, Fanger [6,
7, 8] empirically established the well known PMV
(predicted mean vote) equation by using parame-
ters relevant to thermal comfort. The thermal
comfort that a human feels in indoor environment
has been known to be influenced mostly by six
parameters: air temperature, radiation, air flow,
humidity, activity level and clothing thermal resis-
tance. This section will focus on the air flow in the
automobile cabin which is one of the six parame-
ters of thermal comfort.

In this study, the experiment is made by us-
ing an available automobile Nissan SENTRA 2000.
Figure 9 shows the cabin geometry with the air
inlet and outlet, and the positions of experimental
measuring points. The unit of length in Fig. 9 is
meter, and the dimension is based on the real
model. In this experiment, there are five points
from x = 0.4 to 1.2m with 0.2m interval along the
horizontal line and also five points from y = 0.4 to
0.8m with 0.1m interval along the vertical line at z
= 0.71m plane as shown in Fig. 9. The measure-
ment of velocity is implemented by using digital
anemometer model DA30 with measuring range
from 0.3 MPS to 35 MPS and accuracy +2.5%.
The summary of the experiments and numerical
simulations is listed in Table 1. Figure 10 shows
the partitioned grid for parallel computation. As
shown in Fig. 10, tetrahedron mesh is used in our
simulation and the computational domain is parti-
tioned into 6 zones.

In this study, the characteristic length is the
height of the inlet, 7 cm. The working fluid is air.
The inlet velocities range between 2.7 and 7 m/s.
According to these conditions, the Reynolds num-
bers of the simulations can be calculated. The
range of Reynolds numbers are from 14,470 to
37,515. The turbulent model adopted in this study
is F. R. Menter’s SST model [11]. Figure 11 shows
the comparison of numerical and experimental
results. The label, 1% Exp., denotes the case of ex-
periment with the 1% stage of wind speed. Simi-
larly, other labels are referenced in Table 1. Figure
11(a) represents the comparisons of the velocity
along the horizontal line. As shown in Fig. 11(a),
current numerical results with laminar or turbulent
models are in good agreement with the experi-
mental results. Notably, the turbulent model gives
a better result than the laminar result. Figure 11(b)
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shows the comparison of velocity along the verti-
cal line. As shown in Fig. 11(b), both results of
laminar and turbulent models are unable to match
the experimental data very well, especially the data
on both ends. This is because the real air inlet has
baffles which can help the flow to move further
downstream and suppress diffusion of the flow,
but current numerical simulation does not take this
device into account. Therefore, the velocities
measured from the experiment at y = 0.4m and
0.8m (two ends) approximate to zero as shown in
Fig. 11(b), but the numerical results are not.
Though numerical results show slight inaccuracy
as the flow moving far away from the centerline of
the inlet, the trends of the numerical results are
similar to experimental data. In a word, the results
show that current numerical method can success-
fully simulate this problem.

Comparing Figs. 12(a) with 12(b), turbulent
flow seems to generate stronger circulation which
causes the particles to move in spiral paths. As
shown in Fig. 12(b), the circulations are observed
both in the front seat and backseat, but this phe-
nomenon does not appear in the laminar flow.

4. Conclusions

A cell-centered pressure based method is
presented in this paper, and which has been ap-
plied to simulate incompressible flow fields suc-
cessfully. Implementation of the cell-centered
pressure based method into an unstructured CFD
code is feasible and straightforward. In order to
increase flexibility in complex geometries,
cell-centered pressure based method has been ex-
tended to use a variety of grid types, such as tri-
angular, quadrilateral, tetrahedral, and hexahedral
meshes. By using METIS for domain decomposi-
tion, excellent parallel load balance is achieved. In
this paper, the steady two and three-dimensional
driven cavity flow, and unsteady two-dimensional
flow over a circular cylinder are chosen for valida-
tion. In practical case, the air-conditioned flow
field in the automobile cabin has been successfully
simulated by presented method with laminar and
turbulent models. All these test cases yielded good
agreements in comparison with previous computa-
tional or experimental results.
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Table 1 The summary of the experimental measurements and numerical simulations

Numerical simulation
Stage of Exp
wind speed Laminar | Turbulent
1 | 2.7mis v «l \
2 | 4.32m/s v «l \
3 6m/s v \ \
4 | 7mls v \ \

rate (%)

load balance

processor number

(b)
Fig. 2(a) Partitioned triangular mesh for 2D flow over a circular cylinder; (b)Load-balance dis-
tribution on each node in parallel computation.
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Fig. 3 The schematic diagram of two-dimensional driven cavity flow with boundary conditions.
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Fig. 4(a) The u-velocity profile along the horizontal center line for present results and Ghia’s

result;(b)The v-velocity profile along the vertical center line for present results and Ghia’s re-
sult.

Fig. 5 Streamline plot for two-dimensional driven cavity flow at Re=400.
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Figure 6(a) The u-velocity profile at the horizontal centerline of z=0.5 plane;(b) The v-velocity
profile at the vertical centerline of z=0.5 plane with present results, Ku’s and Shu’s results.

{-20,15) outflow {60 ,15)
¥ no-slip wall
inflow /
u=1,
v=0, X o utflow
w=0 D=1
{-20,-15) outflow (60,-15)

Fig. 7 Schematic diagram of flow over a circular cylinder with dimensions and boundary condi-
tions.

€) (b)

Fig. 8 Vorticity contours for two-dimensional simulation. (a)Re=100 and (b)Re=1000.
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Fig. 9 A schematic diagram of cabin geometry with the air inlet and outlet, and the positions of
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Fig. 10 The picture of partitioned computational domain.
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Fig. 11(a) The comparison between numerical and experimental results for velocity along the

horizontal line; (b) The comparison for velocity along the vertical line.

Fig. 12 The pictures of the particle paths of turbulent and laminar flow at 4" stage of wind speed,

where (a) laminar flow and (b) turbulent flow.
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