
Visualizing Phylogenetic Trees by Spring-Embedder Models

Yaw-Ling Lin* and Po-Shun Yu

Department of Computer Science and Information Engineering

Providence University

Taichung 433, Taiwan, ROC

yllin@pu.edu.tw peteryu@cs.pu.edu.tw

Received 26 April 2006; Revised 26 October 2006 and 23 January 2007; Accepted 12 March 2006

Abstract. A phylogenetic tree is a graphical representation of the evolutionary relationship between taxo-

nomic groups. The term phylogeny refers to the evolution or historical development of a plant or animal spe-

cies, or even a human tribe or similar group. In order to make ourself to understand the structure of phyloge-

netic tree. We present a spring-embedder model for drawing rooted and unrooted phylogenetic trees with

straight edges. Our heuristic strives for uniform edge lengths, and we develop it in analogy to forces in natu-

ral systems, for a simple, elegant, conceptually intuitive, and efficient algorithm. These algorithms are imple-

mented on a web-based phylogeny visualization system that interoperates with existing tools developed for

phylogenetic processing including CLUSTAL W, PHYLIP, PAUP. The molecular biologists can also manu-

ally construct their phylogenetic tree via existing system in, e.g., the Phylip format produced by CLUSTAL

W as input format of the web system to which this data is to be fed.

Keywords: algorithm, phylogenetic trees, trees drawing, computational biology, force-directed placement,

computational geometry

1 Introduction

Trees are widely used to represent evolutionary, historical, or hierarchical relationships in various fields of classi-

fication. Biologists use the information contained in the DNA sequences of a collection of organisms, or taxa, to

infer the evolutionary relationships among those taxa. Phylogenetic trees typically represent the evolutionary

history of a collection of extant species or the line of descent of some genes, and may also be used to classify

individuals (or populations) of the same species. Numerous phylogenetic inference methods, e.g. maximum par-

simony, maximum likelihood, distance matrix fitting, subtrees consistency, and quartet based methods have been

proposed over the years [1,2,3,4,5,6,7].

Furthermore, it is rather common to compare the same set of species w.r.t. different biological sequences or

different genes, hence obtaining various trees. The resulting trees may agree in some parts and differ in others. In

general, one is interested in finding the largest set of items on which the trees agree. This fact motivates the com-

pelling need to compare different trees in order to achieve consensus or extract partial agreements. For measuring

the similarity / difference between trees, several distance measures have been proposed [8], e.g. the symmetric

difference metric [9], the nearest-neighbor interchange metric [10], the subtree transfer distance [11], the Robin-

son and Foulds (RF) metric [12], and the quartet metric [13,14].

The descendent subtree of a phylogenetic tree T is the subtree composed by all edges and nodes of T descend-

ing from a vertex. In our previous works [15], we presented linear time algorithms for finding all leaf-agree de-

scendent subtrees as well as all isomorphic descendent subtrees. We also showed that computing all pairs normal-

ized cluster distances between descendent subtrees of two phylogenetic trees can be done in linear time. Further-

more, we showed that finding nearest subtrees for a collection of pairwise disjointed subsets of leaves can be

done in Ο n() time.

1.1 Graph Drawing

Information visualization has become a large field and sub fields are beginning to emerge. The abstract combina-

torial relation among objects is usually represented by a graph; thus 1Information visualization has become a

large field and sub fields are beginning to emerge. The abstract combinatorial relation among objects is usually

* Correspondence author

Journal of Computers Vol.18, No.2, July 2007

88

represented by a graph; thus the handling of graphs is considered with respect to information visualization. The

visualization of graphs is one of the most important subjects in the field of the information visualization. Excel-

lent bibliographic surveys [17,18,19,20,21] exist for graph drawing.

The basic graph drawing problem can be put simply: given a set of nodes with a set of edges (relations), calcu-

late the position of the nodes and the curve to be drawn for each edge. Of course, this problem has always existed,

for the simple reason that a graph is often defined by its drawing. The annotated bibliography by Battista et al.

[22] gathers hundreds of papers studying what a good drawing of a graph is. That is where the problem becomes

more intricate: it requires the definition of properties and a classification of layouts according to the type of

graphs to which they can be applied.

Many constraints in use are also expressed in terms of aesthetic rules imposed on the final layout. Nodes and

edges must be evenly distributed, edges should all have the same length, edges must be straight lines, isomorphic

sub-structures should be displayed in the same manner, edge-crossings should be kept to a minimum, etc. Trees

have received the most attention in the literature. Consequently, additional aesthetics rules have also been formu-

lated for them. For example, nodes with equal depth should be placed on a same horizontal line; distance be-

tween sibling’s nodes is usually fixed, etc. The Reingold and Tilford algorithm for trees [23] is a good example

of a layout algorithm achieving these aesthetics goals. Isomorphic subtrees are laid out in exactly the same way,

and distance between nodes is a parameter of the algorithm. On the other hand, the more straightforward and

naive algorithm for displaying a tree, consisting of distributing the available horizontal space to subtrees accord-

ing to their number of leaves, actually fails to achieve some of the aesthetic rules listed above. Although the ad-

jective “aesthetic” is used, some rules were originally motivated by more practical issues. For instance, minimiza-

tion of the full graph area might be an important criterion in applications. Some of the rules clearly apply to a

certain category of graphs or layouts only; others have a more “absolute” character.

 2 Force-directed Placement

Spring embedding is a local optimization technique, which starts with an initial (usually random) layout and then

iteratively improves this layout by viewing edges between nodes as springs, thus leading to attractive and repul-

sive forces based on the desired distance between the nodes. Spring embedding [24,25,26,27] uses the physical

metaphor of springs.

According to Hooke’s law, there are attractive and repulsive forces based on the desired distance between the

nodes. The spring embedding algorithm starts with a random layout and then computes for a number of iterations

the forces for each object and moves it into the direction of the overall force until a state of minimal energy is

reached. Nodes are usually not moved by the full amount of the force, but are limited by a maximum amount

known as temperature. In a technique known as temperature scheduling the temperature is reduced per iteration,

so nodes are more and more limited in their movement.

A number of algorithms have been developed based upon the spring embedding idea; an influential algorithm

extended later in various ways is Eades’ algorithm [28]. Besides springs of logarithmic strength governed by

Hook’s law it views nodes and non-adjacent vertices as electrically charged particles repelling each other.

Fruchterman and Reingold [24] presented a modification of the force directed, spring-embedder model of Eades

[28] for drawing undirected graphs with straight edges. In analogy to forces in natural systems, the heuristic

method computes attractive and repulsive forces and simultaneously moves all nodes according to these forces,

where the moved distance is bounded by a temperature t. This process is iterated for some rounds. The algorithm

terminates if either the maximal force acting at a node falls below a user defined threshold or if the maximal

number of iterations is exceeded.

Kamada and Kawai’s algorithm [26] is based on graph-theoretic distances between pairs of vertices. There the

graph nodes are considered as particles that are all connected by springs whose ideal lengths are equal to the

graph-theoretic distances between their two endpoint particles multiplied by the desirable length of one edge. The

goal of the algorithm is to find a balanced spring system. The major drawback of this method is its high computa-

tional cost as partial differential equations need to be solved.

Davidson and Harel’s algorithm [29] uses simulated annealing. In each step, the layout is improved by com-

paring the current position of a node to one randomly selected with the neighborhood of the node. Step by step,

the temperature is reduced and the neighborhood gets smaller. The comparison of current to randomly selected

position involves weighted factors for a number of criteria such as overall stress, edge crossings, etc.

Lin and Yu: Visualizing Phylogenetic Trees by Spring-Embedder Models

89

2.1 Hook’s Law

The behavior of the spring is usually governed by the Hook’s law. Assume A and B are two mass points con-

nected with a spring. Let L be the vector pointing from B to A . Let R be the spring rest length. Then, the

elastic force exerted on is:

(1)

2.2 Coulomb’s law

The precise magnitude of the electric force that a charged particle exerts on another is given by Coulomb’s law.

That is, the magnitude of the electric force that a particle exerts on another particle is directly proportional to the

product of their charges and inversely proportional to the square of the distance between them. The direction of

the force is along the line joining the particles. Let 1q and 2q be the charges of particle 1 and particle 2, respec-

tively; r is the vector joining particle 1 to particle 2. Let 0ε be the permittivity constant

))/(1085.8(2212

0 mNC ⋅×= −ε . Then we have:

(2)

This formula applies to elementary particles and small charged objects as long as their sizes are much less than

the distance between them.

2.3 Force Equilibrium

Consider the following analogy: the leaf nodes behave as atomic particles exerting repulsive forces on one an-

other; the forces induce movement. Our algorithm will resemble molecular simulations, sometimes called n-body

problems. Following Eades and Fruchterman et al, however, we can apply unrealistic forces in an unrealistic

manner. For example, we can make only vertices that are neighbors attract each other, but all vertices repel each

other. Though inspired by natural systems such as springs or macro-cosmic gravity, it must be pointed out that

the “forces” may not be correctly named. Forces are used to calculate velocity for every time quantum (and thus

displacement, since the time of a quantum is unity), whereas true forces induce acceleration. The distinction is

important, because the real definition leads to dynamic equilibria (pendulums, orbits), and we seek static equilib-

ria.

Pseudo-code for the algorithm is given in Figure 4. We have not said anything about the initial configuration,

the input, or the output. The initial configuration could be all or partly specified, but normally vertices are placed

randomly in the frame. Different functions might have been chosen for FL and FR .

The ideas behind the algorithm is as following. First the initial displacement routine layouts the leaf nodes on a

circle as their natural ordering in the topological tree (depth first) searching order. In the following, we layout the

vertices with level 1, 1V , in a smaller circle. The subsequent vertices of 2V , 3V ,…, 1−lV are then set up in simi-

lar manner; finally the centers
l

V are placed around the origin. Now the problem comes to simulate the force-

directed placement as shown in Figure 4. Note that the REPLACE (i) routines are scheduled in the order from

level 0 to level 1−l in their adjacent ordering, while the centers are fixed at the origin as the anchor points.

In the aesthetic viewpoint, symmetry and homogenized are very important elements and we try to find some

way to make our graph more smooth and good looking for these two reasons. Hook’s law and coulomb’s law are

very useful when we draw a tree graph. When tree’s edge becomes too long or the length’s variation too high, the

hook’s law will reduce it variation. When tree’s leaf becomes high density or sparseness, the coulomb’s law will

make it regularly distribution. According to these two constraints the graph will better than before.

Journal of Computers Vol.18, No.2, July 2007

90

2.4 Changing the Looks

In a phylogenetic tree, every leaf node represents a species, each edge denotes a relationship between two

neighboring species, and the length of an edge indicates the evolutionary distance between species. The distance

of a path in a phylogenetic tree must be as close as the evolutionary distance between two species. It is desirable

for the phylogenetic viewing system to be capable of supporting various types of drawings: unrooted tree, radial

tree, rooted tree, slanted cladogram, rectangle cladogram, and phylogram. Because there are many kinds of phy-

logenetic tree formats, supportability for various types of input data and interactive editing are major concerns in

evaluating drawing software.

Fig. 1. Different drawings of a same tree. Diagram (A) draws the usual radial style tree; diagram

 (B) shows a rooted tree by placing a single strong pole near the root; diagram

(C) shows another rooted tree by placing a fixed unidirectional force field from the top.

2.5 Input and Format

The phylogeny visualization system can interoperate with existing tools developed for phylogenetic processing,

e.g., CLUSTAL W [30], BLAST [31], PHYLIP [32], PAUP [33]. These existing tools are treated as software

components. The molecular biologists can also manually construct their phylogenetic tree via existing system in,

e.g., the Phylip format produced by CLUSTAL W or Nexus format for PAUP, as input format of the web system

to which this data is to be fed. It will read tree data in Phylip format, and then display graphical views of the

phylogenetic tree. It also provides several editing functions to give a user-friendly interface. By using several

control parameters, users can easily and interactively manipulate the shape of phylogenetic trees. There are vari-

ous options allow you to modify.

3 The Tree Drawing Algorithm

The degree of a vertex v in G , written)(deg vG , is the size of its neighborhood. A vertex v is a leaf (or end-

point) of a graph G if 1)(deg =vG . The longest distance among all vertices of a graph is called its diameter.

A tree with diameter less than or equal to 2 is called a star. Given a tree T , we can delete all the leaves of T

resulting in a smaller tree 'T . This trimming operation defines a function ')(TTtrim =). The trimming opera-

tion can be repeated until the remaining subgraph 'T is empty. Since each vertex v in T will eventually be

trimmed, we can associate an integer with v specifying the number of trimming operations taken before v be-

comes a leaf. This level function from)(TV to []2/)1(0 −nK is recursively defined as follow:

Thus, whenever we traverse nodes of a phylogenetic tree T in their increasing levels ordering, we ensure that

the “outer” nodes have already been visited before “inter” nodes. The reader can easily check that the algorithm

CALC-LEV(T) shown in Figure 2 correctly computes the level of each vertex within an unrooted tree in linear

time.

Lin and Yu: Visualizing Phylogenetic Trees by Spring-Embedder Models

91

Given a (rooted or unrooted)),(EVT = , the general approach of our algorithm first partitions the vertices in

terms of their levels. Let })(|{ ivlevelVvVi =∈= denote the set of vertices with level i . Let

}|)(max{ Vvvlevel ∈=l denote the the largest level of the given tree. Note that a vertex v with level l

is the center of the tree; it is easily seen that a tree has at least one and at most two centers.

Theorem 1 Given an unrooted treeT with n vertices, the algorithm CALC-LEV(T) correctly computes lev-

els of vertices of T in Ο n() time.

Proof. Let u be the starting leave, and let c be the center of T whose distance to u is larger. Recall that the

number of centers in T is either one or two. Furthermore, let P denote the path from u to c in T . It is readily

verified that the procedure UB-LEV finds the correct level value for each vertex v in T unless v is a vertex

lies upon the path P . The situation is illustrated at Figure 3.

Fig. 2. A linear time algorithm for calculating the node levels of an unrooted tree. It is used to make our tree graph drawing

easier.

Fig. 3. The procedure UB-LEV),(vu over estimates levels of vertices in T .

Journal of Computers Vol.18, No.2, July 2007

92

In the following, we show that procedure FN-LEV),(vu correctly identifies vertices of P and reset each

vertex to the correct level. It is not hard to verify that the correct level of v ,][vlevel , that was over estimated in

UB-LEV),(vu , shall just be one plus the second highest level of neighbors of v , as illustrated in Figure 3. Thus

Step 1 of FN-LEV),(vu refines][vlevel accordingly.

To further refine the level of each vertex x on P , FN-LEV),(vu recursively calls upon itself on Step 3

when the correct followed vertex x is identified by the condition that x was over estimated with condition

][vlevel being greater than 1][+vlevel as being tested at Step 3.

For the time-complexity analysis, it is easily observed that both procedures UB-LEV),(vu and FN-

LEV),(vu are basically the typical post-ordered tree traversal algorithm; thus the time complexity is exactly

Ο n(), where n denote the number of vertices on T . □

The algorithm produces it’s drawing in three distinct stages: partition of vertices, initial placement, and re-

finement. First, after the level partition of vertices into },,,{ 10 l
K VVV , we pin point the centers)(

l
V of T at

the origin. Then, we add the vertices of 1−lV by placing them initially at the positions determined by their graph

distances to a subset of the elements of
l

V . The positions of the vertices in 1−lV are modified using a force-

directed layout method. This process of adding new vertices and refining their positions is repeated for

012 ,,, VVV K
l− . The refined positions of the elements of 0V constitute the final layout of the vertices of T .

Note that we only draw vertices of T up to this point. When all the vertices have been placed we draw the edges

of T as straight-line segments connecting their endpoints.

Fig. 4. Drawing phylogenetic trees using force-directed displacement.

3.1 Placements and Refinement of Vertices

The second and third phase of the algorithm is the placement and refinement stages, respectively. In the i-th

placement stage, the vertices of set iV are intelligently placed in are intelligently placed in
2R . In the i-th re-

finement stage a local force-directed method is used to obtain better positions for the vertices of iV . After the

Lin and Yu: Visualizing Phylogenetic Trees by Spring-Embedder Models

93

placement and refinement phases for iV have been completed, the process is repeated for 21, −− ii VV , all the way

to 0V . Consider the general placement case. Suppose the refinement and placement phases for iV have been

completed and we want to start the placement phase for 1−iV .

Note that vertices of 1−iV are adjacent to at least one vertex of iV and possibly some vertices of level > i .

The idea behind the intelligent placement is that every vertex v is placed “close” to its optimal position as de-
termined. The intuition is that if we can place the vertices close to their optimal positions from the very beginning,

then the refinement phases need only a few iterations of a local force-directed method to reach the minimal en-

ergy state.

For example, the following “three closest to x vertices” strategy starts by setting][xpos to the center of the

mass])[][][/(])[][][][][][(kmassjmassimasskposkmassjposjmassiposimass ++⋅+⋅+⋅ of ji, ,

and k , the three vertices closest to x . This is followed by a force-directed modification of the position vector of

x with the energy function E calculated only at the three points ji, , and k . This makes the procedure very

fast, and in our tests it produced good results. More details about the placement algorithm can be found in [24].

While the refinement is calculated using a force-directed method, it is important to note that the forces are cal-

culated locally. For each level of the filtration iV , we perform REPLACE(i) to update the vertex positions,

where REPLACE(i) is a scheduling function which can be specified at the beginning of the execution. The

scheduling routine REPLACE(i) and the tree drawing algorithm DRAW-PHYLO(T) are illustrated at Figure 4.

3.2 Speeding up the algorithm

An important technique in n-body simulations is to approximate the effect of distant bodies as a single pole.

Doing this reduces the n-body simulation from θ(n2)complexity toθ(nlogn). On the other hand, we need not
faithfully imitate a celestial, chemical, or atomic system – we desire only that the results be pleasing. This al-

lowed us to make one timesaving adjustment already described: vertices are only repulsive to their neighbors,

resulting an O(n) time complexity. Another possibility is to approximate the set of leaf nodes as a single large

pole. Doing so, the repulsive force of each leaf can be computed in constant time without scarifying the aesthetics

goals.

3 Experimental Results

The resulting phylogeny drawing / visualization routine is rather efficient. The implementation of the algorithm

Experimental Results the resulting phylogeny drawing / visualization routine is rather efficient. The implementa-

tion of the algorithm is written in Perl CGI scripts run under the FreeBSD 5.4 system with Apache web server

V1.3, while the experimental machine is equipped with dual Pentium-III CPU for 1000Mhz, 1000MB DRAM

and 480 GB disk using RAID 5. Our tested consists of a server and some random tree generators, which are sup-

ported by bioperl connected via a 100 Mb/sec fast Ethernet switch.

Just as an example of showing the efficiency of the force-directed displacement algorithm, we note that these

integrated Perl programs produce the embedding / layout of a given 500 nodes phylogenetic tree in the average of

about 0.0713 seconds; the experiment is done by randomly generating 1,000 trees and taking the average out of

these total drawing times. On the other hand, consumption of system resource only 6492k of memory and no I/O

operations.

Journal of Computers Vol.18, No.2, July 2007

94

The system is still under developed, and some of our preliminary results can be access via our phylogeny visu-

alization web site at http://bioinfo.cs.pu.eud.tw/drawtree/ [34]. Most of our drawing algorithms for
phylogenetic trees have been incorporated into the visualization system with easy Internet accessibility. It is

mostly built by using the conventional Perl CGI scripts, which has a long reputation of being easily integrated

with HTML and CGI programs.

Our method is focus on the shape and executive speed. We do not use the real data because our graph will not

show the node information; maybe we complete it in the future. Another reason is that even if using the meaning-

ful data set the shape will very similar to the result by our program. We support another viewpoint of phyloge-

netic tree, and make it generate fast. Some of method may build the graph very slow, and the graph is hard to

identify. That is why we had to do.

Fig. 5. Visualizations of four random trees, each with four different views including two rooted views and the initialization

setting of the unrooted version of the tree and the force-displacement balanced final results produced by our phylog-

eny visualization system.

5 Concluding Remarks

For now, our method provides a linear time algorithm for tree drawing. It’s very fast and easy to implement using

any programming language. We change our tree drawing style to make it easy to identify all nodes; you can see it

very clearly.

Also we tried to distribute the whole species in a phylogenetic tree as uniformly as possible on the whole out-

put screen. Users can select the tree type (rectangular cladogram, slanted cladogram, phylogram, unrooted tree,

or radial tree), resize the tree, and change the branching patterns of the phylogenetic tree (rooted, unrooted, or

Lin and Yu: Visualizing Phylogenetic Trees by Spring-Embedder Models

95

half-rooted). In the future, we may try to make our program become a module of bioperl to make more people to

use.

6 Acknowledgement

The authors would like to thank Hsun-Chang Chang and Ying-Hung Lin for their assistance of building up the

Web system, and we thank many instructive discussions and information concerning the biologic phylogeny

visualization web system within the Providence University Bioinformatics Forum [35].

References

[1] A. V. Aho, Y. Sagiv, T. G. Szymanski, and J. D. Ullman, “Inferring a tree from lowest common ancestors with an appli-

cation to the optimization of relational expressions”, SIAM Journal on Computing, Vol.0 No.3, pp.405–421, 1981.

[2] V. Berry and O. Gascuel “Inferring evolutionary trees with strong combinatorial evidence”, Theoretical Computer Sci-

ence, Vol.240, No.2, pp.271–298, 2000.

[3] J. Felsenstein, “Numerical methods for inferring evolutionary trees”, Quarterly Review on Biology, Vol.57, No.4,

pp.379–404, 1982.

[4] W. M. Fitch, “Toward defining the course of evolution: Minimal change for a specific tree topology”, Systematic Zoology,

Vol.20, pp.406–441, 1971.

[5] D. Gusfield, “Efficient algorithms for inferring evolutionary trees”, Networks, Vol.21, pp.19–28, 1991.

[6] N. Saitou and M. Nei, “The neighbor-joining method: a new method for reconstructing phylogenetic trees”, Molecular

Biology Evolution, Vol.4, pp.406–425, 1987.

[7] K. Strimmer and A. von Haeseler, “Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree to-

pologies,” Molecular Biology and Evolution, Vol.13, No.7, pp.964–969, 1996.

[8] DasGupta, He, Jiang, Li, Tromp, and Zhang, “On distances between phylogenetic trees”, In Proceedings of the 8th ACM-

SIAM Symposium on Discrete Algorithms (SODA), pp.427–436, 1997.

[9] D. F. Robinson and L. R. Foulds, “Comparison of weighted labelled trees”, In Combinatorial mathematics, VI (Proc.

Sixth Austral. Conf., Univ. New England, Armidale), Lecture Notes in Mathematics 748, Springer-Verlag, Berlin,

pp.119–126, 1979.

[10] M. S. Waterman and T. F. Smith, “On the similarity of dendrograms,” Journal of Theoretical Biology, Vol.73, pp.789–

800, 1978.

[11] B. L. Allen and M. Steel, “Subtree transfer operations and their induced metrics on evolutionary trees”, Annals of Com-

binatorics, Vol.5, pp.1–13, 2001.

[12] D. F. Robinson and L. R. Foulds, “Comparison of phylogenetic trees”, Math. Biosci, Vol.53, No.1-2, 1981, pp.131–147.

[13] G. S. Brodal, R. Fagerberg, and C. N. Pedersen, “Computing the quartet distance between evolutionary trees in time O(n

log2 n)”, ISAAC, Lecture Notes in Computer Science 2223, Springer-Verlrg, Berlin, pp.731–742, 2001.

[14] G. Estabrook, F. McMorris, and C. Meacham “Comparison of undirected phylogenetic trees based on subtrees of four

evolutionary units”, Systematic Zoology, Vol. 34, No.2, pp.193–200, 1985.

[15] Y. L. Lin and T. S. Hsu, “Efficient algorithms for descendent subtrees comparison of phylogenetic trees with applica-

tions to co-evolutionary classifications in bacterial genome”, In The 14th Annual International Symposium on Algo-

Journal of Computers Vol.18, No.2, July 2007

96

rithms and Computation (ISAAC’03), Lecture Notes in Computer Science 2906, Springer-Verlag, Berlin, pp. 339–351,

2003.

[16] G. di Battista, P. Eades, R. Tamassia, and I.G. Tollis, Graph Drawing: Algorithms for the Visualization of Graphs,

Prentice Hall, 1999.

[17] J. Diaz, J. Petit, and M. Serna, “A survey on graph layout problems” ACM Computing Surveys, Vol.4, 2002, pp.313–

356.

[18] F. Cruz and R. Tamassia, “Online tutorial on graph drawing”, http://www.cs.brown.edu/people/rt/papers/gd-tutorial/gd-

constraints.pdf.

[19] I. Herman, G. Melan, and M. S. Marshall, “Graph visualization and navigation in information visualization: A survey”,

IEEE Transactions on Visualization and Computer Graphics, Vol.6, No.1, pp.24–43, 2000.

[20] R. Tamassia, “Graph drawing,” In CRC Handbook of Discrete and Computational Geometry, Jacob E. Goodman and

Joseph O’Rourke, editors, CRC Press, 1997.

[21] R. Tamassia, “Advances in the theory and practice of graph drawing,” Theoretical Computer Science, Vol.217, No.2,

pp.235–254, 1999.

[22] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis, “Algorithms for drawing graphs: an annotated bibliography”,

Computational Geometry Theory and Applications, Vol.4, pp.235–282, 1994.

[23] E.M. Reingold and J.S. Tilford, “Tidier drawing of trees”, IEEE Transactions on Software Engineering, Vol.7, No.2,

pp,223–228, 1981.

[24] J. Fruchterman and M. Reingold, “Graph drawing by force-directed placement”, Software - Practice and Experience,

Vol.21, No.11, pp.1129–1164, 1991.

[25] G. d. Battista, P. Eades, R. Tamassia, and I. G. Tollis, Graph Drawing: Algorithms for the Visualization of Graphs,

Prentice Hall, 1999.

[26] T. Kamada and S. Kawai “An algorithm for drawing general undirected graphs” Information Processing Letter, Vol.31,

No.1, pp.7–15, 1989.

[27] J. Kruskal, “Multidimensional scaling by optimizing goodness to fit to non-metric hypotheses”, Psychometrika, Vol.29,

pp.1–27, 1964.

[28] P. Eades, “A heuristic for graph drawing”, Congressus Numerantium, Vol.42, pp.146–160, 1984.

[29] R. Davidson and D. Harel, “Drawing graphs nicely using simulated annealing”, ACM Transactions on Graphics, Vol.15,

No.4, PP.301–331, 1996.

[30] J.D. Thompson et al., “CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment,” Nucleic

Acids Research, Vol.22, pp.4673–4680, 1994.

[31] S.f. altschul and m.s. boguski and w. gish and j.c. wootton, “Issues in searching molecular sequence databases,” Nature

Genet., Vol.6, pp.119–129, 1994.

[32] J. Felsenstein, Phylip: Phylogeny inference package, Version 3.5c, 1993.

[33] D.L. Swofford et al., “Phylogenetic inference,” In Molecular Systematics, Sinauer Associates, Inc, 2nd edition, 1996.

[34] Providence University. Phylogeny visualization system. http://bioinfo.cs.pu.edu.tw/PHD/.

[35] Providence University. Bioinfo forum. http://bioinfo.cs.pu.edu.tw/.

