
BBQ - A Simple and Effective Approach to
Backward Branch Predictions for Embedded Processors

Lei Wang＊ and Qiong-Xian Zeng

 Department of Electrical Engineering,

Feng Chia University,

Taichung 407, Taiwan, ROC

{leiwang, M9301474}@fcu.edu.tw

Received 1 March 2009; Revised 21 May 2009; Accepted 3 June 2009

Abstract. The problem of control hazard induced by branch instructions is important for the modern proces-
sors. Although there are many solutions been proposed for the problem, most of these solutions may not suit-
able for the embedded processors. Our research tries to find a smart way to provide a cost-effective function
of branch prediction for embedded processors. By classifying branch behaviors into forward and backward
branches, this paper first focuses on backward branches to develop a favorable solution for the instructions. A
novel approach named Backward Branch prediction Queue, or BBQ is proposed to predict the outcomes of
backward branches efficiently. This study shows that BBQ is able to retain good prediction accuracies at a
small fraction of the hardware costs and complexities. Although a hardware-frugal approach like BBQ is in-
evitably less accurate than the luxurious prediction mechanisms, it nevertheless creates new tradeoff points of
costs and performance that best suit the application domains of embedded processors. Moreover, the predic-
tion mechanism will trace the execution flow to identify the current position in a nested loop. The informa-
tion of current position will be contributive to the prediction of forward branches.

Keywords: branch prediction, embedded processor, pipeline, loop prediction

1 Introduction

Since the introduction of pipelined instruction executions, branch predictions have been critical to reduce the
penalty of control hazards. There are many different methods to implement the prediction of branch instructions.
Most solutions to the problem achieved by hardware enhancement use some form of special-purpose associative
memory as caches to keep track of past branch behaviors, including, but not limited to, the most likely outcomes
of branch conditions and the associated target addresses. The most popular solution of this type of methods is
called as Branch Target Buffers, or BTBs [1]. In modern processors, it is not uncommon to find 1K or more
entries in a BTB (in the case of multi-core processors, each core will have its own BTB of similar sizes). For
high performance processors, this can be considered a small price to pay for the sake of performance. The uses
of deep pipelines (from 10 up to more than 30 stages) and parallel execution among instructions demand highly
accurate branch predictions to avoid the costly penalties of wrong perdition, and performance is the most impor-
tant issue for the processor after all.

Departing from the high performance processors, we investigate in this research the branch prediction prob-
lem for primitive embedded processors, which find their applications in the microcontrollers of embedded con-
trol systems, personal mobile devices (cell phones, personal digital assistants, GPS navigation devices, etc.), and
many Internet appliances (802.11 access points, cable/DSL modem/gateways, and so on). Since the application
features of embedded systems, some critical design constraints of embedded processors distinguish them from
their mainstream counterparts: (1) Cost, measured in silicon areas and/or the numbers of transistors, is an impor-
tant factor for embedded processor design. Applications of embedded processors mandate low-cost, high-yield
designs, inevitably limiting the hardware resources available to branch prediction mechanisms; (2) Power con-
sumption is another issue that will affect the design. Processors in mobile devices rely on batteries as the energy
source and must be as energy efficient as possible to prolong battery life [2]. BTBs and other sophisticated
branch predictors, if used, could be a major power drain for embedded processors.

It is really required by embedded processors a more smart solution to handle the branch prediction problem
cost-effectively. In this work, we take on the challenge of devising extremely simple, low-cost and yet effective
branch prediction solutions. The solution should not only be suitable for the use of a primitive embedded proc-

＊ Correspondence author

Wang and Zeng: BBQ - An Effective Approach for Embedded Processors

27

essor individually, but also can be used to cooperate with other prediction schemes to achieve satisfactory pre-
diction accuracy with lower hardware cost. Not surprisingly, the research path that we follow is a return to the
RISC philosophy: Focus on the most common cases that have the biggest impact on performance, and use sim-
ple solutions to support the common cases well.

We classify the behaviors of instructions that will cause control penalty into three types: they are Backward
Branches, Forward Branches, and Call/Return instructions. Each type has its own character and corresponding
solutions. For example, the address of the next instruction that following a Call instruction is always the target
address of a Return. For Call/Return instruction pairs which may also induce the pipeline delays in the execution,
there is a hardware mechanism called Return Buffer been proposed in a simple and effective way [3]. Unlike
Call/Return instructions, the behavior of conditional branch instructions that jump forward is most unpredictable
since most of them are controlled by an uncertain condition. Predicated instructions are then been proposed to be
scheduled by the compiler technique named If-Conversion to reduce the appearance of this type of branches [4].
Furthermore, several local/global prediction strategies that have been proved can predict the behavior of this
type of branches effectively by using the past history of branches.

In particular, we single out backward branches used in loops as the most important case of the branch predic-
tion problem. Our rational is threefold. First, loops typically make up a significant portion, if not the major
portion, of program execution times. Improving the performance of loops, especially nested ones, offers the best
potential of performance improvements. Second, although there are already some hardware mechanisms been
proposed such as Loop Predictor [5]or Loop Termination Buffer [6], the function of these mechanisms are work
based on the feature of associative memories and act as an extra enhancement hardware to help the prediction of
other mechanisms such as BTBs. It means that the efficiencies of this type of solutions are produced by increas-
ing more hardware overhead, they are not suitable to be used individually either. Third, nested loops have a clear
structure of program control flows. To illustrate this structure, we show in Figure 1(a) a nested loop structure.
The three branch target addresses X, Y and Z mark the ingress points of the three loops, respectively. In execu-
tion, address Z is computed first when the branch instruction BRz is executed, followed by Y when BRy is exe-
cuted, followed in turn by X when BRx is executed. The three addresses in this way form a queue (Z, Y, X),
where Z is at the front and X at the rear, according to the times at which they become known to the processor.
As shown in Figure 1(b), the later uses of the three branch addresses also reflect a similar pattern: inside the
inner most loop, address Z is most likely to be the next branch target. Once the program flow exits the inner
most loop, address Y becomes the most likely target of the next control flow branching. Once outside Loop Y,
address X becomes the most likely branch target. As we will show later, the BBQ approach takes advantages of
this simple, queue-structured behavior in effective branch predictions.

Fig. 1. A nested loop and its queue-structured branch targets

We acknowledge that not all loops are perfectly nested as the one in Figure 1. However, by taking into ac-
count the small number of exception cases which exist in applications (e.g., loops that are not perfectly nested,
loops that include forward branches, etc.), we show that it is possible to preserve the simple, queue-like behav-
iors for the majority of backward branches. The result is a novel approach to the branch prediction problem,
called Backward Branch prediction Queue, or BBQ. By using a standard benchmark suite for embedded proces-
sors, our performance results show that with merely 4 entries in the queue by always taken prediction strategy,
the BBQ gets 88.37% prediction rate for backward branches and then achieves 42% of the performance benefits
of a 128 entries, 4-way set-associative BTB by the hardware cost with less than 3.2% of the cost for the BTB.
Moreover, BBQ can not only be considered as a practice of BTFN prediction, but also can be used to work by
cooperating with other prediction mechanisms to achieve more accuracy with lower hardware cost. The simula-
tion shows the hybrid usage can achieve a higher improvement by combining the BBQ with a smaller BTB. For
a high-end embedded processor, the hybrid prediction mechanism can effectively reduce the hardware cost for
implementation and achieve a cost-effective design.

S 1
S 2
S 3
S 4
S 5

S 6

S 7
B R x

B R z

B R y

X :
Y :

Z :

(a)

Z (B R z)

t a k e n

t a k e n

t a k e n

S e q u e n t i a l
p a t h

S u c c e e d
p r o c e d u r e

Y (B R y) X (B R x)

u n t a k e n

t a k e n

(b)

Journal of Computers Vol. 20, No. 4, January 2010

28

The reminder of this paper is organized as follows. Previous approaches to branch prediction problem are
first reviewed in section 2. In Section 3, we present the basic concept of BBQ and its handling of forward
branches within nested loops that disrupt perfectly nested looping. We then describe in Section 4 one implemen-
tation (hardware circuit design) of BBQ that uses the popular ARM-9 micro-architecture as the reference plat-
form. The use of ARM9 as the reference platform reflects its wide popularity rather than any bias on the part of
BBQ for or against particular platforms. The reference platform also serves as a baseline for performance com-
parison between competing branch prediction technologies. In Section 5, we give the simulation results of our
performance study. Conclusion and future work are given in Section 6.

2 Related Work

With the constant, rapid progress in microprocessor designs, the problem of control hazard becomes increas-
ingly important. There are many methods for reducing the number of pipeline stalls caused by branch hazards.
Since the study focuses on the stalls introduced by branch instructions for embedded processors, the methods
proposed for predicting the execution of Call/Return instructions are not included in this paper. For general
conditional branch instructions, we can classify the prediction methods into two major categories as described in
the following subsections. The researches about branch prediction for the design considerations of embedded
processors are also introduced in the end of this section.

2.1 Static Methods

By identifying branch instructions as forward or backward in compile time, there are several compiler-based
optimization techniques have been proposed for eliminating the penalties produced by these branch instructions.
For forward branches, the compiler technique named If-conversion is proposed to eliminate the appearance of
this type of branches. If-conversion can convert conditional branches into predicate defining instructions, and
instructions along alternative paths of each branch into predicated instructions. The predicated instructions need
to be executed under the circumstance of special hardware support. It is noted that although the mainstream of
embedded processors, the Advanced RISC Machine(ARM), which instruction set architecture include all in-
structions with the fully predicated execution capability, yet the conditional control only adopts simple flags for
the control. Once if a condition becomes more complicated, the condition cannot be represented by a single
compared N, C, V, or Z flag, and thus the efficiency of predicated execution is still limited because of the hard-
ware constraint.

For backward branches, a static prediction scheme can be realized by software to reschedule the execution
sequence in binaries. The scheme named BTFN, Backward Taken Forward Non-taken, is a simple but reason-
able strategy for compiler to schedule instructions for branch prediction. By focusing on the feature of regular
loops, the most popular compiler scheduling technique named Software Pipelining was proposed and turn into
the basic feature of modern ILP compilers [7]. Software pipelining can reduce the number of iterations and cre-
ate more instructions for compiler to reschedule in one basic block by unrolling loop codes for several times.

The other popular scheduling method is called delayed branch [8]. In a delayed branch, compiler will move
one or more instructions that will be executed in the predicted execution path to the sequential successor(s) of
the branch instruction to fill the branch delay slot(s). The drawbacks on delayed branch arising from: (1) The
strict restrictions on the instructions that are scheduled into the delay slots. For example, the instructions that
cannot be compensated when the prediction is proved to be wrong will not allowed to be scheduled into the slot.
The instructions that may induce interrupt can not be scheduled either, or the instructions may make the proces-
sor to be interrupted by a situation that should be not happened. (2) The inability of processor architecture to
handle the different execution flows of branches. Processors always can flush the execution in pipeline for the
instructions that follow a branch. However, delayed branch make the situation be complicated because there will
be one or more instructions be scheduled into the delay slot(s) from the predicted execution path. It means that
the execution of these instructions should not be flushed when the branch is confirmed to be taken since the
instruction(s) is scheduled from the taken path. On the contrary, these instructions should be flushed in the pipe-
line if the branch is confirmed to be not taken. Delayed branch also makes many NOP instructions be inserted
into object codes and make the processor cannot be improved since any improvement that change the stages of
pipeline will lead the binaries be invalid.

Wang and Zeng: BBQ - An Effective Approach for Embedded Processors

29

2.2 Dynamic Methods

To allow instruction fetch to continue without stalling, each cycle a traditional branch prediction circuit must
determine: (1) the information stored about the fetched instruction if it is a branch instruction, (2) the direction
of the branch and the predict address to be fetched in the next cycle. We can classify the various prediction
mechanisms from two points of views as described below.

How to determine the information about the current branch instruction. The simplest dynamic branch-
prediction scheme is a Branch Prediction Buffer. The buffer contains one or several bits for each branch
instruction been executed recently to indicate whether the branch was recently taken or not. A branch prediction
buffer can be implemented as a special associative memory accessed with the instruction address during the IF
pipe stage. A branch prediction buffer that stores the predicted address for the next instruction after a branch is
called a branch target buffer, abbreviated as BTB. The buffer is accessed during the IF stage to offer the
predicted target address of the branch instruction if the address of fetched instruction cause a hit with an entry in
the buffer. BTB is the most popular technique for branch prediction that used in modern processors. Even in
modern high-end embedded processors, BTB acts as the standard equipment to improve the performance of
execution. For example, a BTB with 128 entries is equipped in the Xscale embedded processor. There are some
variances from the idea of branch prediction has been proposed in the studies of the elimination of control
hazard. Branch folding can be used to obtain zero-cycle unconditional branches, and sometimes zero-cycle
conditional branch [9]. The function of branch folding is somewhat like BTB except that it provides the machine
code of the predicted target instruction but not the address.

Most of the proposed prediction schemes such as BTB are work under the organization of associative mem-
ory to store the information about the executed branch instructions for predictions. The organization of associa-
tive memory represents higher hardware complexity and longer access time, thus several prediction methods
based on table lookup are proposed. A bimodal branch predictor has a table of two-bit entries, indexed with the
least significant bits of the instruction addresses [10]. Unlike the associative structures, a bimodal predictor entry
may be mapped to several branch instructions, in which case it is less accurate than the prediction methods made
by associative structures. For enhancing the prediction accuracy provided by table lookup method, global branch
predictors such as gselect is proposed to make use of the fact that the behavior of many branches is strongly
correlated with the history of other recently executed branches. A global shift register is adapt to record the
recent history of every branch executed, and the value of the register is used to index into the global table of
bimodal counters. The prediction accuracy created by the gselect is little better than the bimodal scheme for
large table sizes. A further improvement method that can do slightly better than gselect is gshare predictor which
XOR the branch instruction address with the global history, rather than concatenating [11]. The prediction accu-
racy is a little better than gselect when the size of table is large.

How to determine the direction of branch instruction. Although the execution history of a branch instruction
can be read out by the associative structure to make the prediction immediately, incorrect guesses of branches
incur sever performance penalty by collapsing the execution flow in the processor datapath, consequently
forcing the execution states to be flushed for re-warming the succeeding executions. Thus most of the researches
about branch predictions concentrate on the strategies of branch predictions.

The basic branch prediction strategies are characterized by extremely straightforward heuristics that make
“reasonable” predictions with very low hardware costs. The basic strategy, named Backward Taken, Forward
Not-Taken (BTFN) [1], takes branch directions into account: the target instructions of backward branches are
assumed “taken,” while those of the forward ones “not taken”. It is noted that this straightforward approach
always be made as the prediction strategy for software techniques as described above. The prediction accuracy
are also be created by simulation to be the comparison baseline for other prediction methods. There is no dedi-
cated hardware mechanism that is designed to achieve the prediction strategy in hardware. The most simple
prediction method introduced by hardware is to take advantages of the profiling of previous runs. A simple pre-
diction strategy modified by the simple strategy is ‘Two-Bits Counter’ that record the prediction history of each
with two bits like bimodal does, this elegant solution is able to handle effectively the common cases of “repeat
the loop body many times and leave the loop once” behaviors of backward branches. In terms of hardware sim-
plicity, the above solutions are generally acceptable to embedded processors [12]. However, the performance
gained by the hardware is relative disappointed by checking the cost paid for the hardware.

Sophisticated branch prediction solutions generally keep track of the outcomes of recent branch instructions
as the basis for predictions. In [13], the two-level adaptive branch prediction is proposed to use one or more
branch history register (BHR) at the first level of history to record the outcomes of k most recent branches. The
second level history is recorded in one or more pattern history tables (PHTs) of two bits saturating counters. In
essence, the BHR is used to index the PHT to select respective two-bit counters.

Journal of Computers Vol. 20, No. 4, January 2010

30

In general, large amounts of history and behavioral information need to be maintained to order achieve the
high prediction accuracies. Recent research of two-level predictions mainly focus on avoiding the exponential
growth of table sizes and/or new hashing function to eliminate the conflictions in the tables [14-15], or propose
some variants by acceding other dynamic states such as branch pattern probabilities to the hierarchical history
tables to facilitate prediction accuracy [16].

Neural-network based approaches to branch predictions give rise to interesting “learning” (from past) poten-
tialities stemming from the research in artificial intelligence. A dynamic branch predictor using neural networks,
called Learning Vector Quantization (LVQ) was proposed in [17]. In 2001, Jiménez and Lin introduced a per-
ceptron branch predictor [18], where neural networks are used as a more powerful alternative to the commonly
used two-bit counters. Later improvements and other variants of the perceptron predictor can be found in [19].

2.3 Power-Saving Branch Predictors

In summary, branch prediction solutions involving, large history caches, hierarchical tables, and/or neural net-
works achieve high prediction accuracies at the expense of hardware costs. They are suitable for mainstream
processors as the rapid advancements of VLSI technologies accommodate steadily increasing numbers of tran-
sistors per chip over time. The embedded processors however face drastically different design criteria, especially
in the areas of complexity and power consumption constraints. In order to save power dissipation by a power
hungry BTB, the most instinctive way is to reduce the accesses of BTB. A prediction probe detector (PPD) is
proposed to use predecode bits to eliminate unnecessary predictor and BTB accesses in [20]. By adding an in-
struction filter cache in [21], the same goal is achieved by reducing the fetching operations from the instruction
cache and the subsequent decoding. Some researches try to reduce the power consumption by modifying the
structure of predictors. For example, the study in [22] claims that by looking up two predictions at a time by
increasing the width of the PHT, and by accessing the PHT in advance. The reduction for the unnecessary BTB
accesses can be achieved. In [23], the reduction is made by utilizing the hardware to buffer the control-flow
structure of the executed program. It is noted that the related techniques focus the attention on the techniques of
power saving and achieve their goal by adding extra hardware. The acclivity of hardware cost makes the solu-
tions be suitable for the high performance processors, but not for low-cost embedded processors.

3 The BBQ Approach

As introduced in previous Section, we classify the behaviors of instructions that will cause control penalty into
three types. Each type has its own character and corresponding solutions. In particular, we single out backward
branches used in loops as the most important case of the branch prediction problem.

For backward branches, most of the proposed prediction schemes such as Loop Termination Buffer and Loop
Predictor are all work under the same hardware circumstance like BTB. The organization of associative memory
is used to store the information about the executed branch instructions for predictions. It is really required by
embedded processors a more smart solution to handle the branch prediction problem cost-effectively. In this
work, we show that it is possible to preserve the simple, queue-like behaviors for the majority of backward
branches.

3.1 Basic Concept

We use the nested loop shown in Figure 1 to illustrate the operations of the BBQ. When a program starts its
execution and an innermost backward branch BRz is encountered for the first time in loop Z, the BBQ discovers
that it is a backward branch instruction by checking the OP-code and offset fields in the instruction, and thus the
PC value and the target address of BRz are stored in the BBQ first. As shown in Figure 2(a), the content Z in the
front of the BBQ storage stands the stored information about BRz such as the PC value and Target address.
Although the BBQ encounters BRz for the first time and cannot immediately provide a target address, but there-
after if the same innermost loop, Z, is executed, the BBQ will read the front pointer by the BBQ to locate the
correct predicted address for each time.

Wang and Zeng: BBQ - An Effective Approach for Embedded Processors

31

If the execution of the program exits such innermost loop and enters into a middle loop Y, the BBQ will in-
duce a wrong prediction on BRz. However, the BBQ will not clear its content until the program execution en-
counters the middle backward branch BRy. BRy is also a backward branch. Its target address is in front of the
target address of the innermost backward branch BRz, and the PC value of BRy is greater than the value of BRz,
thus the BBQ will store BRy in the BBQ as shown in Figure 2(b). Thereafter, the execution of BRy will jump
back to repeat the execution, and the read front point of the BBQ is reset to zero (pointing at the jump informa-
tion of a backward instruction of the innermost loop stored in the BBQ) to quickly provide the target address of
BRz from the innermost loop Z, until the last jump prediction fails. By then, the read front pointer will enter
into the next prediction, and adjust the prediction to the next prediction for BRy as shown in Figure 2(c). After
the BRy instruction successfully predicts the middle loop Y, the read front pointer of the BBQ will return to the
starting point automatically as shown in Figure 2(b), so that the next prediction will be an execution of the in-
nermost backward branch BRz. The BBQ will repeat the foregoing operation and continue changing the process
between the innermost loop Z and the middle loop Y alternately. By then, the BBQ will record a “Double-level
loop status” and such status will remain until the execution of the middle loop Y no longer has a backward jump,
that is, there is a miss occurred for BRy and the execution flow into the succeeding section in the outermost loop
X.

The program continues executing the outermost loop X and encounters the branch BRx. Similarly, the loop X
is a backward branch and constitutes a nested loop (the target address of BRx is less than or equal to the target
address of BRy and the PC value of BRx is greater than the PC value of BRy). Therefore, the BBQ will be
added directly with the record of the outermost loop X as shown in Figure 2(d), the BBQ is set to predict the
next encountered backward branch and jump back to the innermost loop Z, and the BBQ will store a “Three-
level loop status” and make changes as shown Figures. 2(d), 2(e) and 2(f).

In Figure 2(f), the execution continues until the outermost loop X no longer jumped, and then the prediction
ends and gets ready to exit this nested loop, but the content in the BBQ will not be cleared yet until the execu-
tion encounters another backward instruction, say BRw, later. The BBQ compares and finds an unmatched con-
dition, the target address of BRw is greater than the target address of BRx or the PC value of BRw is less than
the PC value of BRx, then the BBQ will be cleared, and BRw will be stored in the BBQ, similar to the situation
of BRz as shown in Figure 2(a).

Fig. 2. BBQ in operation

Journal of Computers Vol. 20, No. 4, January 2010

32

3.2 Handling Forward Branches

The basic concept of BBQ is to focus on the predictions of backward branches used in nested loops. However,
there cases, as shown in Figure 3, where forward branches interfere with the control flow of nested loops. If not
handled with care, such forward branches could cause confusion to the BBQ circuits.

S1
S2
S3
S4
S5

S6

S7
BRx

BRz

BRy

X:
Y:

Z:

BRf

F:

S1
S2
S3
S4
S5

S6

S7
BRx

BRz

BRy

X:
Y:

Z:

BRf

F:

S1
S2
S3
S4
S5

S6

S7
BRx

BRz

BRy

X:
Y:

Z:

BRf

F:

(a) (b) (c)
Fig. 3. Conditions of forward branches

The way of the forward branch behavior interfere the prediction of the BBQ is described in detail as follows.
Although the BBQ does not store the information of a forward branch, the flow running from the interior to the
exterior of a nested loop will be ruined after the forward branch instruction jumps. Therefore, the prediction has
to take the effect of the forward branch instructions into consideration. According to the observation from the
behavior of simulated applications, the forward branches of this sort that will alter the regular behaviors of
nested loop are divided into three types as shown in Figure 3.

The situations as shown in Figures 3(a) and 3(b) will not ruin the existing prediction mechanism of the BBQ
and at most it may confuse the BBQ to store unnecessary information only. As the loop continues, the BBQ will
rearrange the predicted information of the foregoing mechanism, so as to eliminate the interference of the jumps
of this sort.

The situation as shown in Figure 3(c) is more complicated. If the forward branch, BRf, occurs in the nested
loop, and its target address is situated in another level of nest loop, the target address will exceed the innermost
backward branch/branches of the nested loop. Refer to the figure, the target address of BRf exceeds the back-
ward branches, BRz and BRy. If the forward branch jumps, it will exit the range of the innermost loop Z. Since
the forward branch instruction BRf jumps and the flow enters directly into the outermost loop X. Meanwhile, the
BBQ retains the original prediction that is pointed to loop Z but not loop X. The condition will make the predic-
tion for the following backward branch to be missed even the loop structure has already built completely. Be-
cause the forward branch instruction BRf in the nested loop will be repeated continuously, the interfering misses
caused by the repeated executions would be seriously. Based on the analysis of the dynamic execution of the
benchmark programs, we discovered that the situation of this sort occupies about 0.9139% of the total number of
executed instructions. Particularly in certain specific applications such as the jpeg and dijkstra shortest path
occupy 5.773% and 16.839% of the total executed instructions respectively. The interfering condition must be
distinguished by the BBQ for prediction accuracy.

To overcome the ruin of this sort of forward branch as described above, some comparators are added to com-
pare the target address of the executing branch instruction and the PC values stored in each entries of BBQ to
determine the location where the forwarding branch jumped. The result of comparisons will adjust the front
pointer to catch the progress of execution flow for the following execution.

4 The BBQ Implementation

In this section, we present the hardware design of the proposed BBQ approach by using the ARM9TDMI archi-
tecture as the reference platform. The ARM-9 architecture is part of the extremely (if not the most) popular
ARM processor family in embedded applications. It is widely used as the processing core of cellular phone,
PDA, and hand-top game player. The use of the ARM-9 as the implementation platform of BBQ makes our
design details presented below readily applicable to real world applications. The instruction pipeline of ARM-9
is shown in Figure 4. We can find from the figure that the execution of branch instructions will induce 2 cycles
penalty to change the execution flow.

Wang and Zeng: BBQ - An Effective Approach for Embedded Processors

33

Fig. 4. Branch delay in ARM-9 instruction pipeline

Based on the 5 stage pipeline of ARM-9, the function of BBQ is added into the three leading stages: instruc-
tion fetch (IF), decode (ID) and execution (EXE). The control flow of BBQ is shown in Figure5. The behavior
of BBQ can be observed from the figure. It is noted that when the BBQ is full with nested loops, a new entry
will be insert in the first entry as a circular structure does. This situation will destroy the contents in the BBQ
and induce extra cycles to rebuild the nested loop in the following execution. According to the simulation results,
we found that a BBQ with 4-entries can satisfy most of nested loops and sustain a good prediction hit rate. The
hit rate of a BBQ with 8-entries is only slightly higher than the smaller BBQ gained. Thus this study determined
to design the BBQ circuit with 4-entries and simulate the BBQ with the same capacity for performance evalua-
tion.

Fig. 5. The control flow of BBQ in pipeline

Journal of Computers Vol. 20, No. 4, January 2010

34

4.1 BBQ Actions in ARM-9 Pipeline Stages

The block diagram of the BBQ circuits is shown in Figure 6. The core part of BBQ circuit is the unit named
BBQ Element. Since the update of the element is done in EXE stage, the detail circuit of the BBQ Element is
then described in the stage, too.

The circuits for the IF stage uses a NPC multiplexer to select an address to write to the next program counter
(NPC) as the address for the instruction be fetched in the next cycle. Besides selecting the original cumulative
PC values from the arithmetic logic unit (ALU) or memory access, a new data line, BTAR, is added to the mul-
tiplexer as the target address of the predicted backward branch. If the instruction being fetched is a backward
branch and its PC matches the content of BBQ front element, BPC, the comparator will select the target address
by means of EQU signal to NPC multiplexer for indicating the next address being fetched will be the BTAR. It
means that the value of BTAR will be written into the program counter to fetch the predicted instruction in the
next cycle.

REGISTER

PC

Instruction memory

IF/ID

ID/EXE

DECODE&C.U

A
L
U

M
E
M
/

W
B

INC

B
T
A
R

BPC==PC ?

B
P
C

CPSR

Branch type
Identification

Condition
test

Fast Adder

[23:0]

T
A
R
G
E
T

P
C

M
T
A
R

N
Z
C
V

[31:28]

L
T

BBQ Element
EQU

COND
BACKLT

BPC
[0:31]

BTAR
[31:0]

MTAR
[31:0]

Target Address
[31:0]

PC
[31:0]

MPC
[0:31]

[27:23]

EQU

C
O

N
D

Forw
ard

B
A

C
K

A.L.U

M
P
C

MPC < PC
&&

MTAR > = TARGET

P
C

Forward

NPC

Fig. 6. The block diagram of BBQ design for ARM9 datapath

When an instruction enters the decode stage, the decode circuit will use its first level OP-code and the sign bit
of displacement (bits [27:23]) to determine whether the instruction is a branch instruction or not, and identify the
type of the branch instruction such as a forward branch or a backward branch, producing BACK and
FORWARD control inputs to the BBQ Element when the instruction enters the EXE stage. Another control
signal COND is produced in the decode stage by comparing the conditional fields of the decoded instruction
([31:28] bits in the instruction) with the value of NZCV flags by a comparator.

It is noted that in the original ARM-9 architecture, branch target addresses are calculated by ALU at the EXE
stage. This arrangement delays the updates of the BBQ Element to the 4th stage as described in Figure 4. If the
address is calculated at the ID stage, the branch instruction can be completed one stage earlier, and the branch

Wang and Zeng: BBQ - An Effective Approach for Embedded Processors

35

delay can be reduced to one. This optimization technique applies equally to both forward and backward
branches. We therefore modify the ARM-9 pipeline by adding a dedicated branch address adder into the ID
stage (see Fig. 5) and in this way obtain the branch target address one stage earlier than the standard ARM-9
pipeline. By comparing the target address with the MTAR issued from the BBQ Element, and the original PC
value with the MPC of the BBQ Element, the outcome of the comparator, LT, can be made to determine whether
the backward branch is a new one or not, and decide whether the new branch can constitute an outer loop of the
nested loops structure stored in BBQ already. The LT is then latched and send to the next stage for the use of
BBQ Element as BACK/Forward/COND does.

When the execution enters into the execution stage, the BBQ Element will update its content according to the
comparison results in this stage.

4.2 BBQ Element

Besides the control lines such as COND, LT, and EQU produced in the first two stages. There are other in-
put/output lines of BBQ Element defined below.

PC[31:0]. A 32-bit input that provides the address of the instruction being fetched in the present cycle. It should
be written into the BBQ if the instruction is a new backward branch.

 Target Address[31:0]. A 32-bit input that provides the target address of a branch in ID stage. The input is used
for updating the BBQ Element.

BPC[31:0]. A 32-bit output that gives the PC value of the backward branch instruction predicted by the front
pointer.

BTAR[31:0]. A 32-bit output that gives the branch target address read out by the front pointer.

MTAR[31:0]. A 32-bit output that gives the target address of the branch instruction stored in BBQ as the
outermost branch of the nest loop, the one stored in the rear entry in the queue.

MPC[31:0]. A 32-bit output that gives the PC address of the branch instruction stored in BBQ as the outermost
branch of the nest loop.

The circuit design of the BBQ Element is depicted in Fig. 7. The BBQ Element can be divided into three
components:

BBQ Element control circuit. The signals be used to control the action of BBQ Element are all issued from the
control circuit. It’s a combination circuit for translating the input lines to the control signals.

BBQ Element storing circuit. It is the main storage of the BBQ element organized in Flip/Flops and related
decoders and counters (pointers). The front pointer, BBQF, and the rear pointer, BBQR, are two counters used
to address the entry that should be read out for prediction or be written for new branch. Another counter, BBQM,
is used as the pointer which points to an entry in the BBQ that contains the last valid PC/target address pair for
the outer most loop be recorded.

BBQ pointer adjust circuit. The circuit can adjust the prediction entry in the BBQ Element to eliminate the
interfering caused by the forward branches described in section 3. It is also a combination circuit.

For verifying the design and evaluating the efficiency of BBQ, this research adopts Xilinx Foundation 4.2i
and Xilinx ISE as the design tools to implement the circuit in gate level. By incorporating the circuit with an
ARM-9 equivalent circuit that implemented by the formal research [24]. The whole circuit has been verified and
the hardware characters can be concluded below.

Journal of Computers Vol. 20, No. 4, January 2010

36

Write
enable

D

Q
D Flip-Flop

Write
enable

D

Q
D Flip-Flop

Write
enable

D

Q
D Flip-Flop

Write
enable

D

Q
D Flip-Flop

Write
enable

D

Q
D Flip-Flop

Write
enable

D

Q
D Flip-Flop

Write
enable

D

Q
D Flip-Flop

Write
enable

D

Q
D Flip-Flop

2-bits
Counter

32
D3~D0

Decoder
R1
R0

D3~D0
Decoder

R1

R0 2-bits
Counter

M0
M1

BBQR

BBQM

2-bits
Counter

WR

R-reset

Inc

F-reset

M-COUNT

M-reset

M0
M1

F0
F1

F0F1

32
PC

TARGET

32

32

32

32

32

32

32

WR

WR

WR

WR

WR

WR

WR

WR

32
3232

32

F0 F1
R1R0

M0 M1

Null

BPC
[0:31]

BTAR
[31:0]

MTAR
[31:0]

Target Address
[31:0]

PC
[31:0]

MPC
[0:31]

32

TARGET

Target>PC

Target>PC

Target>PC

比較器

32

BBQ Adjust

LT

FO
R

W
A

R
D

B
A

C
K

W
A

R
D

EQ
U

C
O

N
D

F-C
hange

B
B

Q
FInc

W
R M
-C

ount

F-R
eset

M
-R

eset

C0

C1

C2

C3

BBQ Element Controller

R
_R

eset

BBQF

F-Change
S0
S1

Fig. 7. The circuit in BBQ Element

The total cost of a 4-entry BBQ in gate counts is 5013 gates. It is noted that the whole register bank built in
the processor cost 22756 gates (including the related decoder circuits) and other 6850 gates been used for a
barrel shifter. The number proved that the hardware cost is much low for implementation. Furthermore, the
study has also built a fully associative BTB with 4 entries for the architecture, too. The hardware comparison
between BBQ and the BTB shows that BBQ is smaller than the BTB (it is designed in the same technology with
5114 gates). For access speed, BBQ can issue the prediction in 0.89 ns, and the BTB will read out the predict
data by 1.324 ns. Since the simplicity of the circuit, the prediction speed of BBQ is much faster than BTB, too. It
must be emphasized that the prediction speed is an important issue for the design of a microprocessor with deep

Wang and Zeng: BBQ - An Effective Approach for Embedded Processors

37

pipeline and high clock frequency. The prediction made by long access time may become the critical path of the
pipeline and make the execution be postponed.

5 Performance Evaluation

We use 12 benchmarks that contribute a representative part of Mibench [25] as a standard performance testing
programs. They are Bitcount and Quicksort used in industrial applications, Jpeg encode/decode and Tiff2bw
used in consumer programs, Dijkstra, CRC32, and FFT for telecommunication usage, SHA, Blowfish en-
crypt/decrypt, and Rijndael encrypt/decrypt for security functions. All of these benchmarks are popular and
widely used in the various applications of embedded systems. The testing platform selected for simulation is
Simplescalar [26], which is a well-known and reliable simulation tool used for architecture studies. Simplescalar
can behave as the architectures of MIPS or ARM9 processors for simulation. We can also modify the target
architecture to fit the features of the study and then simulate the benchmarks to get the data about simulation
conveniently.

The simulation results reveal the truth that BBQ is a cost-effective technology for embedded processors.
Since a successful prediction include the hit of a stored entry that can provide the target address and the correct
direction provide by the prediction strategy. The simulation gathers statistics in term of prediction rate to stand
the successful prediction with correct target address.

We simulated with the same benchmarks for the backward branch prediction rate made by different BTBs for
comparison. The rates about these BTBs are statistic from the execution of backward branches. The predictions
for forward branches are omitted in the simulations. As shown in Figure 8, the simulated results show that even
predicted by a 128-entry direct mapped BTB with bimodal prediction strategy, which is the BTB equipped in
XScale processor, the prediction rate for backward branches is only 82.33%.

88.37%

59.24%
56.60%

91.70%

82.33%81.35%

79.43%
77.68%

40%

50%

60%

70%

80%

90%

100%

4 8 16 32 64 128 256

BTB BBQ

Fig. 8. The backward branch prediction rates of direct mapped BTBs and 4-entries BBQ

The BTB with direct mapped structure must be equipped with more than 256 entries to gain a prediction rate
higher than 90%. Further, a BTB with set-associative structure can achieve higher prediction rate by complex
hardware. A 128-entry 4-way set associative BTB with bimodal prediction strategy can predict backward
branches in 91.77% prediction rate. The simulation results exhibited in Figure 9 shows that our BBQ could
achieve 93.66% of the prediction rate of a 128-entry 4-way set associative BTB.

Journal of Computers Vol. 20, No. 4, January 2010

38

88.37%
93.66%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

B
itcount

Q
sort

Jpeg-E

Jpeg-D

tiff2bw

dijkstra

SH
A

C
R

C
32

FFT

B
low

fis-E

B
low

fish-D

rijndael

A
V

G

BBQ BTB(4w) 128 entries

Fig. 9. The comparison of backward branch prediction rate between 4-entries BBQ and set associative BTB with 128 entries

It is interesting to observe the prediction efficiency of a small but intelligent BTB to serve backward branch
prediction as BBQ does. We simulated a fully associative BTB with 4 entries to store the backward branches
recently executed. By equipping the BTB with two different prediction strategies, one is bimodal model and the
other is gshare model, for simulation. The prediction rates are shown in Figure 10. The curves in Figure 9 show
that although BBQ acts as a simple prediction mechanism that predict backward branch by the assumption of
regular loop structure, which is not as flexible as fully associative BTB that can find the correct branch instruc-
tion from the 4 entries without any limitation. The prediction strategy of BBQ is also very simple that always
predict the executed backward branch will be taken. The prediction rate of BBQ is just a little lower than the
fully associative BTBs. The 4-entry BBQ can achieve 95% of prediction accuracy of a smart BTB. We must
remind that the smart BTB simulated is equipped with a global history table indexed by a 10-bits shift register.
The hardware is more complex than the BBQ as introduced in the previous section. Moreover, it should be em-
phasized again that the gate delay is also another important issue for the design. According to the implementa-
tion circuit, we can find that the BBQ can provide the prediction in the speed that is 1.5 times faster than the
BTB.

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

B
ac

kw
ar

d
br

an
ch

 p
re

di
ct

io
n

ra
te

BTB-bimodal 96.25% 66.49% 95.27% 94.38% 99.49% 98.03% 95.52% 100.00% 60.87% 97.53% 97.53% 88.56% 90.10%

BTB-gshare 96.22% 88.56% 97.67% 96.29% 99.71% 98.56% 96.08% 100.00% 79.79% 97.54% 97.54% 94.26% 93.02%

BBQ 88.76% 73.38% 86.21% 90.30% 99.33% 96.27% 90.49% 100.00% 65.56% 95.07% 95.07% 79.99% 88.37%

Bitcount Qsort Jpeg-E Jpeg-D tiff2bw dijkstra SHA CRC32 FFT Blowfis-E Blowfish-
D

rijndael AVG

Fig. 10. The comparison of prediction rate between BBQ and set associative BTB

Wang and Zeng: BBQ - An Effective Approach for Embedded Processors

39

Although BBQ can achieve the high prediction accuracy by a little cost, the performance improved by the de-
sign should be evaluated more carefully since BBQ only work in the execution for backward branches. Figure
11 shows the performance improved by a 4-entry BBQ over the execution without branch prediction for the
benchmarks. From the figure we can conclude that the BBQ can improve the performance to 8.62% in average.
It is noted that the performance improved by a 128-entry 4-way set associative BTB is 20.45%, the BBQ
achieves 42% of the performance benefits of the BTB by the hardware cost with less than 3.2% of the cost for
the BTB. The improvement is gained by adding only 6% of the gate counts of the ARM-9 processor core. It
means that the idea of BBQ can be used in low-end embedded processors individually to improve the efficiency
in a much cost-effective way.

17.66%

5.12%

9.82%

6.79%

17.88%

14.80%
15.99%

2.87% 2.66%
1.69%

4.03% 4.18%

8.62%

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

B
itcount

Q
sort

Jpeg-E

Jpeg-D

tiff2bw

dijkstra

S
H

A

C
R

C
32

F
F

T

B
low

fis-E

B
low

fish-D

rijndael

average

Fig. 11. Performance improved by a 4-entry BBQ

The original idea of BBQ is not proposed to replace the role of other branch prediction mechanisms. It can
also be equipped to cooperate with other prediction mechanisms to achieve a more cost-effective design, too. By
equipping a BTB to handle the prediction of forward branches and a 4 entry BBQ to predict backward branches,
the prediction rates shown in Figure 12 exhibit the prediction rates achieved by the cooperation of a BBQ and
direct mapped BTB, the lines show that the hybrid usage can achieve a higher improvement by combining the
BBQ with a smaller BTB. For a high-end embedded processor, the hybrid prediction mechanism can effectively
reduce the hardware cost for implementation and achieve a cost-effective design. However, it should be noted
that the improvement by combining the features of BBQ and set associative BTBs is comparatively small than
the values shown for direct mapped BTBs. Because of the higher prediction accuracy of set associative structure,
the hybrid feature can benefit prediction evidently only in the conditions that the capacity of the BTB is less or
equal than 32 entries.

40%

50%

60%

70%

80%

90%

100%

B
T

B
(D

IR
) 4

B
T

B
(D

IR
) 4 +

B
B

Q

B
T

B
(D

IR
) 8

B
T

B
(D

IR
) 8 +

B
B

Q

B
T

B
(D

IR
) 16

B
T

B
(D

IR
) 16+

B
B

Q

B
T

B
(D

IR
) 32

B
T

B
(D

IR
) 32+

B
B

Q

B
T

B
(D

IR
) 64

B
T

B
(D

IR
) 64+

B
B

Q

B
T

B
(D

IR
) 128

Fig. 12. Prediction rates of direct mapped BTBs with BBQ

Journal of Computers Vol. 20, No. 4, January 2010

40

6 Concluding Remarks

In this paper, we propose a novel mechanism, BBQ, for the branch prediction. By focusing only on backward
branches used to create loops, we show that BBQ is able to sustain good prediction accuracies in a most cost-
effective way. The idea of BBQ creates new tradeoff points of costs, performance, and power consumptions that
best suit embedded processors.

There is an important issue for BBQ been observed from the simulation results, we found that the behavior of
function call and the condition of multiple nested loops exist in a same outer loop confuse BBQ and introduce
some unnecessary misses. We are now improving the BBQ design by modifying the update algorithm of BBQ to
maintain the prediction data more efficiently. A BBQ with circular replacement strategy is proposed. According
to the preliminary simulation, we expect that the modification can promote the prediction rate of BBQ to over
92%. The detail of this improvement will be proposed when the hardware verification is completed.

The goal of our research is to find a more smart way to achieve branch prediction in less complexity for em-
bedded processors. BBQ does not only provide a cost-effective prediction for backward branches, it also main-
tains the execution state by tracing the execution flow to identify the current position in a nested loop. The in-
formation of current position can be used to help the prediction for forward branches. For example, the structure
of associative memory can be modified by means of the information to manage the placement and replacement
of a BTB. We expect that the modification can promote the prediction rate and reduce the hardware complexity
of a BTB. The design of a smart forward branch prediction mechanism is the next design target of our research.

7 Acknowledgement

This work was supported by National Science Council in Taiwan under grants 94-2213-E-035-038 and 95-2221-
E-035-009. We would like to thank Dr. Yih Huang for his advice and discussions.

References

[1] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach, Morgan Kaufmann, San Fran-

cisco, CA, 1996.

[2] M. B. Kamble and K. Ghose, “Analytical Energy Dissipation Models for Low Power Caches,” Proceedings of the 1997

International Symposium on Low Power Electronics and Design, pp. 143-148, 1997.

[3] V. E. Hummel and H. Sharangpani, “Return Register Stack Target Predictor,” United State Patent Number 6,560,696,

2003.

[4] J. A. Fisher and S. M. Freudenberger, “Predicting Conditional Branch Directions from Previous Runs of a Pprogram,”

Proceedings of the 5th international conference on Architectural support for programming languages and operating

systems, pp. 85-95, 1992.

[5] M. Alba and D. Kaeli, “Runtime Predictability of Loops,” Proceedings of IEEE International Workshop on Workload

Characterization (WWC-4), pp. 91-98, 2001.

[6] T. Sherwood and B. Calder, “Loop Termination Prediction,” Proceedings of the 3rd International Symposium on High

Performance Computing. Springer-Verlag, pp. 73-87, 2000.

[7] V. H. Allan, R. B. Jones, R. M. Lee, S. J. Allan, “Software Pipelining,” ACM Computing Surveys, Vol. 27, No. 3, pp.

367-432, 1995.

[8] T. R. Gross and J. L. Hennessy, “Optimizing Delayed Branches,” Proceedings of the 15th annual workshop on Micro-

programming, pp. 114-120, 1982.

[9] L. H. Lee, J. Scott, B. Moyer, J. Arends, “Low-cost Branch Folding for Embedded Ppplications with Small Tight

Loops,” Proceedings of the 32nd Annual International Symposium on Microarchitecture, pp. 103-111, 1999.

Wang and Zeng: BBQ - An Effective Approach for Embedded Processors

41

[10] J. E. Smith, “A Study of Branch Prediction Strategies,” Proceedings of the 8th International Symposium on Computer

Architecture, USA, pp. 135-148, 1981.

[11] J. W. Kwak and C. S. Jhon, “High-performance Embedded Branch Predictor by Combining Branch Direction History

and Global Branch History,” IET Computers & Digital Techniques, Vol. 2, No. 2, pp. 142-154, 2008.

[12] Intel XScaleTM Technology, http://www.intel.com/design/ intelxscale/.

[13] T.Y. Yeh and Y. Patt, “Two-level Adaptive Training Branch Prediction,” Proceedings of the 24th annual international

symposium on Microarchitecture, pp. 51-61, 1991.

[14] A. Fern, R. Givan, B. Falsafi, T. N. Vijaykumar, “Dynamic Feature Selection for Hardware Prediction,” Journal of

System Architecture, Vol. 52, No. 4, pp. 213-234, 2006.

[15] Y. Ma, H. Gao, H. Zhou, “Using Indexing Functions to Reduce Conflict Aliasing in Branch Prediction Tables,” IEEE

Transactions on Computers, Vol. 55, No. 8, pp. 1057-1061, 2006.

[16] J. W. Kwak, J. H. Kim, C. S. John, “The Impact of Branch Direction History Combined with Global Branch History in

Branch Prediction,” IEICE Transactions on Information and Systems, Vol. E88-D, No. 7, pp. 1754-1758, 2005

[17] L. Vintan and M. Iridon, “Towards a High Performance Neural Branch Predictor,” Proceedings of the International

Joint Conference on Neural Networks, Vol. 2, pp. 868-873, 1999.

[18] D. A. Jimenez and C. Lin, “Dynamic Branch Prediction with Perceptrons,” Seventh International Symposium on High-

Performance Computer Architecture, pp. 197-206, 2001.

[19] V. Desmet, L. Eeckhout, K. De Bosschere, “Improved Composite Confidence Mechanisms for a Perceptron Branch

Predictor,” Journal of Systems Architecture, Vol. 52, No. 3 , pp. 143-151, 2006.

[20] D. Parikh, K. Skadron, Y. Zhang, M. R Stan, “Power-Aware Branch Prediction: Characterization and Design,” IEEE

Transaction on Computers, Vol. 53, No. 2, pp.168-186, 2004.

[21] W Tang, R Gupta, A Nicolau, “Power Savings in Embedded Processors through Decode Filer Cache,” Proceedings of

the 2002 Design, Automation and Test in Europe Conference and Exhibition, pp. 443-448, 2002.

[22] S. W. Chung, G. H. Park, S. B. Park, “A Low-Power Branch Predictor for Embedded Processors,” IEICE

TRANSACTIONS on Information and Systems, Vol. E87-D, No. 9, pp. 2253-2257, 2004.

[23] P. Petrov and A. Orailoglu, “Low-power Branch Target Buffer for Application-specific Embedded Processors,” IEE

Proceedings-Computers and Digital Techniques, Vol. 152, No. 4, pp. 482-488, 2005.

[24] H.Y. Lo and L. Wang, “SmartARM- An Improved Microarchitecture Design for ARM Processor,” National Computer

Symposium, Taipei, 2005.

[25] EDN Embedded Microprocessor Benchmark Consortium, http://www.eembc.org.

[26] T. M. Austin and D. C. Burger, “SimpleScalar Version 4.0 Release,” Tutorial in conjunction with 34th Annual Interna-

tional Symposium on Microarchitecture, 2001.

