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Abstract. Seam carving for still images has attracted lots of attention in recent years. Approaches that can 
work well in this domain may not sufficiently robust enough to be applied to consecutive video frames due to 
the nature of visual dynamics in videos. Carving in consecutive frames with different criteria would usually 
result in discontinuity of visual perception. Therefore, how to preserve the visual continuity in video frames 
is the most critical issue in the field of video seam carving. In this paper, we propose a novel approach for 
modeling dynamic visual attention based on spatiotemporal analysis in order to detect the focus of interest 
automatically. The continuously varied co-sited blocks in a video cube are first detected and their variations 
are characterized as a bag of visual cubes, which are further employed to determine a proper extent of salient 
regions in video frames. Once the proper extent through video cubes is determined, the carving process then 
can be conducted to find the global optimum. Our experiment shows that the proposed content-aware video 
seam carving based on spatiotemporal bag of visual cubes can effectively generate resized videos while keep-
ing their isotropic manipulation and the continuous dynamics of visual perception.  
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1   Introduction 

The rapid growing of the diversity of devices that can browse multimedia has made video data accessible more 
and more easily. However, managing a huge amount of videos for displaying in distinct devices is a challenging 
task since for example the resolution of a video sequence has to be adjusted to fit the monitor size of the device. 
Furthermore, to provide better visual perception for users, the video size has to be dynamically adaptive to the 
size of a browsing window. Therefore, how to adapt the video content to a new display requirement while keep-
ing its isotropic manipulation and the continuous dynamics of visual perception has become a critical research 
issue.  

In recent years, seam carving for adapting still images has attracted lots of attention. Seam carving [1, 2] is a 
technique that is originally proposed to adjust the size of still images. The minimum energy in an image is com-
puted iteratively to determine the positions where the pixels can be removed or inserted. However, to carve 
consecutive images in a video sequence, the temporal axis needs to be considered in order to preserve the conti-
nuity of visual perception. A good way to achieve this aim is to detect and protect the salient regions in 3D 
video volumes that users could be of interested during the carving process. However, what parts of a scene 
should be considered “salient”? According to a study conducted by cognitive psychologists [3] the human visual 
system picks salient features from a scene. Psychologists believe this process emphasizes the salient parts of a 
scene and, at the same time, disregards irrelevant information. To address this question, several visual saliency 
models have been proposed in the last decade [4-14]. Based on the type of attention pattern adopted, the models 
can be roughly categorized into two classes: bottom-up approaches, which extract image-based saliency cues; 
and top-down approaches, which extract task-dependent cues. Usually, extracting task-dependent cues requires a 
priori knowledge of the target(s). However, a priori knowledge of attended objects is usually difficult to obtain. 
Therefore, we focus on a bottom-up approach in this work. 

In the related works of seam carving, Avidan and Shamir [1] define a vertical (horizontal) seam to be an 8-
connected path in a raster scan order to find a pixel-wide path that is of the minimum gradient energy and then 
remove these pixels in the path. Thus, removing a vertical (horizontal) seam reduces the width (height) by one 
pixel. The approach in [1] can work well in finding the globally minimum energy seam while preserves salient 
regions in still images. For video seam carving, the additional temporal axis makes it more challenging than that 
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applied in still images. In [9], the resulting carved videos would show the discontinuity in consecutive frames, 
especially the broken salient objects.  

Carving in consecutive frames using different criteria together, for example the spatial and temporal visual sa-
liency, would usually result in visual discontinuity. Therefore, in this paper, we propose a novel approach for 
modelling dynamic visual attention based on spatiotemporal analysis in order to detect the focus of interest auto-
matically. The continuously varied co-sited blocks in a video cube are first detected and their variations are 
characterized as a bag of visual cubes, which are further employed to determine a proper extent of salient re-
gions in video frames. Once the proper extent through video cubes is determined, the carving process then can 
be conducted to find the global optimum. The concept of the proposed approach is shown in Fig.1. The seam 
surface for carving is determined by spatiotemporal analysis for protecting the salient visual cubes.  

The remainder of the paper is organized as follows. In the next section, we describe the proposed visual sali-
ency model and the method of video seam carving. Section 3 shows the experiment results. Then, in Section 4, 
we present our conclusions. 

 

Fig. 1. The seam surface is determined by spatiotemporal analysis to preserve the visual continuity of salient visual cubes 

2   Video Seam Carving Based on Bag of Visual Cubes 

In this section, to preserve visual continuity during the process of video seam carving, we first compute the 
variations in 3D video volumes and then detect a bag of visual salient cubes. A visual salient map is accordingly 
constructed based on the positions of salient cubes. In order to address the priority of each cube, the importance 
of cubes is accumulated. Finally, the visual salient map is obtained and used for determining the carving surface. 
Section 2.1 introduces the method of detecting salient co-sited blocks in neighboring frames. Section 2.2 de-
scribes the features we computed in the salient blocks. Section 2.3 shows the method of determining a bag of 
salient cubes. Then, section 2.4 details the carving process based on the visual salient map.2.1. 

2.1   Detecting Salient Regions in Neighboring Frames 

Since the dynamic modeling of visual saliency is our concern, the variations of co-sited blocks in the neighbor-
ing frames are obtained by computing the difference between them. For reduce the effect of noises, each frame 
is first smoothed by a Gaussian kernel (a 3 × 3 or 5 × 5 binomial kernel) as defined by 
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where x is the distance from the origin in the horizontal axis, y is the distance from the origin in the vertical axis, 
and σ is the standard deviation of the Gaussian distribution. Assume that we have a set of frames f 
={ }1,2,3,....,ν . The difference image dgI , as demonstrated in Fig.2(c), between the original frames fI and 

1fI +  can be obtained by 1-norm distance and then dgI  is binarized adaptively by Otsu’s approach [15] to fur-

ther filter out non-salient regions. In Fig.2(c), regions enclosing by a yellow circle are noises and the ones 
marked by a red bounding box are the targets.  
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To compute the gradient energy in the resulting binarized image, edges are first computed by using Sobel op-
erator. The magnitude of the gradient 

2 2
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is computed by using the horizontal and vertical gradients, IX and IY, respectively. The orientation of the gradient 
is given by 

arctan Y

X

I
I

θ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. 

The process is shown in Fig.2. It can be observed that most salient regions can be detected in Fig. 2(e). 

 

Fig. 2. Demonstration of the process of detecting salient regions (a) current frame; (b) next frame; (c) detected salient 
regions;(d) binarize (c); (e) edge detection 

2.2   Detection of Spatiotemporal Salient Cubes 

Detected salient regions have to be prioritized for further determination of carving surface. In 3D video volumes, 
gradients would change with the variation of moving targets and/or of the scene changes. Therefore, the differ-
ence of the gradient orientation between co-sited blocks is computed to prioritize detected salient regions 
through video frames.  

We first compute the HOG [16] for each block. Fig.3. shows the concept that local object appearance and 
shape can often be characterized rather well by the distribution of local intensity gradients or edge directions, 
even without precise knowledge of the corresponding gradient or edge positions. 

 

Fig.3. In practice this is implemented by dividing the image window into small spatial regions (“cells”), for each cell accu-
mulating a local 1-D histogram of gradient directions or edge orientations over the pixels of the cell. The combined 
histogram entries form the representation 

This can be done by accumulating a measure of local histogram “energy” over somewhat larger spatial re-
gions (“blocks”) and using the results to normalize all of the cells in the block. After the HOG of each frame is 
obtained, we can detect the spatiotemporal salient cubes. The HOG is used for comparing the co-sited blocks. 
Assume that each frame is equally divided into M×N blocks where each block is of size m n×  and gradient 
energy of a block E . Considering the dynamics of co-sited blocks in neighbouring frames, we define the priority 
w of a block (M, N) by 
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where C is a response function to show the dynamics of the co-sited blocks, in which inconsistency between co-
sited blocks would set its value to 1. Otherwise, C is set to 0 to indicate their orientation consistency. w is a 
priority function that can address the degree of visual saliency in 3D video volume. The approach is shown in 
Fig.4. A bag of visual salient cubes can then be obtained by detecting saliency between co-sited blocks when 
their corresponding value w is larger than a predefined threshold. 

 

Fig. 4. Salient visual cubes with priority value w are obtained by computing the dynamics between co-sited blocks 

2.3   Seam Carving Based on Bag of Visual Cubes 

To determine the carving surface, it is necessary to first determine the extent of 3D salient regions. Using the 
detected cubes W, the range of saliency SR is computed by 

( ) ( )
1

, ,
=

= ∑
f

i

i
SR M N W M N , (4) 

where ( ),SR M N  is the degree of saliency of the block (M, N) and f denotes the frame number. The larger value 

of SR represents the more salient of the block. Considering temporal characteristics, the final salient map SRM, 
as demonstrated in Fig. 5., is then obtained by accumulating the SR in the consecutive video frames. 

 

Fig. 5. The red blocks in (a) denote a bag of visual salient cubes W and the SRM based on accumulating w is shown in (b) 

When SRM is obtained, the carving surface can then be determined. For a vertical seam removal, the dynamic 
programming memorization table entry MP(x, y) is given by 
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(5) 

where Eg(x, y) is the gradient energy of the position (x, y) in the current frame. The globally minimum energy 
seam is found by backtracking from the minimum value of the last row in MP to the first row. Using this ap-

(a) (b) 
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proach, the chosen carving paths are determined according to the position of the bag of visual salient cubes and 
applied throughout a video sequence, as demonstrated in Fig. 6. Therefore, we can preserve most visual continu-
ity of the salient cubes when the video sequence is resized by seam carving. Fig. 7(c) and 7(g) demonstrate that 
most carving paths can skip the salient cubes to protect the continuous visual dynamics using our proposed ap-
proach. 

 
Fig. 6. The carving path determined by a bag of visual salient cubes is applied throughout the whole video sequence so that 

we can assure that most salient regions can be preserved 

 

 

 

 
Fig. 7. (a)(e)original frames; (c)(g)carving paths determined based on (b)(f); (d)(h)the resulting consecutive carved frames 
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Fig. 8. (a)(b)(c) original video frames of resolution 320×240; (d) a golf playing sequence with a single moving tar-

get is resized to 170× 240; (e) a baseball playing sequence with two salient targets is reduced to size 
198×240; (f)a gym sequence with three salient targets is resize as 150×150 
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3   Experiment Results 

To evaluate the performance of the proposed visual saliency model, we conducted experiments on different 
kinds of videos of size 320 × 240. The test videos included both standard MPEG-4 testing videos and a variety 
of videos downloaded from the Internet. The extensive dataset includes many kinds of videos with single salient 
object, multiple salient objects and dynamic backgrounds. All experiments are running with 1.25=σ  in Eq. (1), 
which is empirically determined. We collect 50 frames for each test sequence ( 50ν = ) to build the spatiotem-
poral saliency map. The performance is measured by qualitative and quantitative evaluations in 3.1 and 3.2, 
respectively. 

3.1   Qualitative Evaluations 

Fig.8(a)-(c) show the testing videos that are of relatively static background. Their resulting carved videos are 
shown in Fig.8(d)-(f), respectively, in which the frames are in raster scan order. It can be observed that videos 
with single or multiple salient objects are well resized, in which the visual continuity of moving objects is suc-
cessfully preserved. In Fig. 8(e), the pitcher and the hitter are both kept throughout the video sequence even the 
background text with high gradient energy have been removed. The effect of a bag of visual salient cubes results 
in protecting the salient dynamic regions. Fig.9(a)-(c) show the testing videos that are of dynamic background. 
Their resulting carved videos are shown in Fig.9(d)-(f), respectively. It can be observed that videos with single 
or multiple salient objects are well resized, in which the visual continuity of moving objects is successfully pre-
served. In Fig.9(d), the pedestrian is successfully detected and regarded as the most salient region and thus is 
completely preserved throughout the whole video sequence. In Fig.9(f), the tennis player in the resized video is 
mostly kept. Even small portion of his torso is removed; we can still watch and realize the content clearly. 
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Fig. 9. (a)(b)(c) Original video frames with resolution 320×240; (a) a pedestrian walking sequence with relatively huge 

dynamic background. Its resized sequence of size 170×240 is shown in (d); (b) a MPEG-4 testing sequence “foot-
ball” is of multiple moving targets with dynamic background. Its resulting resized video of size 250×200 is shown 
in (e); (c) a MPEG-4 testing sequence “Stefan”. Its resulting video sequence of size 150×220 is illustrated in (f) 

For further performance evaluation, we compare our proposed approach with related works of Hua et al. [8] 
and Wolf [17] using the MPEG-4 test dataset “Akiy” and “Tennis”. The results are shown in Fig. 10. In 
Fig.10(b), we can observe that our approach outperforms the other three approaches since we can keep their 
isotropic manipulation and preserve most of the continuous dynamics of visual perception. The resized video 
sequences obtained by the methods in [8] and [17] both lead to the serious discontinuity in the table. 
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Fig. 10. (a) MPEG-4 testing videos of resolution 320×240, “Akiy” and “Tennis”; (b) From left to right: first column–our 

approach, second column–Hua’s method [8], third column– Wolf et al.’s method [17] (by courtesy) and fourth col-
umn–direct scaling. (c) From left to right: first column–our approach, second column–direct scaling, third column–
Hua’s method [8] and fourth column–Wolf et al.’s method [17]. (d)(e) The resulting video sequences 

3.2   Qualitative Evaluations 

In subjective evaluations, we performed a user study to evaluate the results. Without revealing to the users 
which results are from which methods, we ask the participants to look side-by-side the resize results on 8 video 
clips from the proposed approach, and those from the direct scaling. Users would have five scores 1-5 to evalu-
ate the performance where “1” is the worst and “5” denotes the best. There are 35 users with various back-
grounds who participated in our user study. We first present the distribution of all the scores over the 8 clips 
from all the 35 users in Fig. 11. Over all the scores, 8.57% is poor, 14.3% is moderately, 25.7% is fair, 31.4% is 
good, and 20% is excellent. 

 

Fig. 11. The distribution of all the scores given by 35 users on 8 video clips. A score of 5 (1) is excellent (poor) about our 
approach 

In objective evaluations, to quantify the performance of video seam carving, we use the PSNR (peak signal to 
noise ratio) for measurement. The PSNR is defined as 

225510 log ,PSNR
MSE

⎛ ⎞
= × ⎜ ⎟

⎝ ⎠
 (6) 
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where 
( )2
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q q
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−
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∑

. (7) 

MSE represents the mean square error, qI  is the value of the qth pixel in the original frame and qP  denotes the 

qth pixel in the processed frame. To compare the resulting video frames with the original ones, we manually 
label each salient region with a bounding box in the original frames and crop them through the sequence based 
on the initial bounding box. Fig.12. shows the average PSNR using the dataset in Fig.8(a) and Fig.10(a). In Fig. 
12(a) although the PSNR altered and not stable from the beginning to the end, we can observe that in average 
the PSNR is over 49 which mean that the resulting quality of the resized videos is good enough to represent their 
regions of interest of the original video frames. The vibration of PSNR in Fig.12(b) is relatively large since the 
background is more complicated than that in the “Tennis” sequence.  

 

Fig. 12. (a) PSNR obtained using the dataset in Fig.8(a). (b) PSNR obtained using the dataset in Fig.10(a). The horizontal 
and vertical axes represent the frame number and the PSNR, respectively 

4   Conclusion 

Producing an appropriate extent of salient regions in video sequences by analyzing spatiotemporal visual atten-
tion is still a challenging problem. In this paper, we propose a novel approach for modelling dynamic visual 
attention based on spatiotemporal analysis in order to detect the focus of interest automatically. The continu-
ously varied co-sited blocks in a video cube are first detected and their variations are characterized as a bag of 
visual cubes, which are further employed to determine a proper extent of salient regions in video frames. Once 
the proper extent through video cubes is determined, the carving process then can be conducted to find the 
global optimum. Our experiment shows that the proposed content-aware video seam carving based on spatio-
temporal bag of visual cubes can effectively generate resized videos while keeping their isotropic manipulation 
and the continuous dynamics of visual perception. 
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